Mathematica Lecture 4 Symbolic capabilities of Mathematica Expand@H1 + xL ^ 10D 1 + 10 x + 45 x2 + 120 x3 + 210 x4 + 252 x5 + 210 x6 + 120 x7 + 45 x8 + 10 x9 + x10 Factor@%D H1 + xL10 Simplify@Cos@xD ^ 2 - Sin@xD ^ 2D Cos@2 xD Simplify@Sqrt@x ^ 2DD x2 Simplify@Sqrt@x ^ 2D, x > 0D x Simplify@Sqrt@x ^ 2D, x œ RealsD Abs@xD PowerExpand@Sqrt@x ^ 2DD x Simplify@Gamma@zD Gamma@1 - zDD Gamma@1 - zD Gamma@zD FullSimplify@Gamma@zD Gamma@1 - zDD p Csc@p zD ComplexExpand@Exp@x + I yDD ‰x Cos@yD +  ‰x Sin@yD TrigExpand@Cos@20 xDD Cos@xD20 - 190 Cos@xD18 Sin@xD2 + 4845 Cos@xD16 Sin@xD4 - 38 760 Cos@xD14 Sin@xD6 + 125 970 Cos@xD12 Sin@xD8 - 184 756 Cos@xD10 Sin@xD10 + 125 970 Cos@xD8 Sin@xD12 38 760 Cos@xD6 Sin@xD14 + 4845 Cos@xD4 Sin@xD16 - 190 Cos@xD2 Sin@xD18 + Sin@xD20 TrigReduce@%D Cos@20 xD sol = Solve@x ^ 2 - 3 x - 10 ã 0, xD 88x Ø -2<, 8x Ø 5<< 2 class4.nb x ê. sol 8-2, 5< x ê. sol@@2DD 5 D@Cos@4 xD ê H1 - Sin@4 xDL, xD 4 Cos@4 xD2 H1 - Sin@4 xDL2 - 4 Sin@4 xD 1 - Sin@4 xD Simplify@%D 4 HCos@2 xD - Sin@2 xDL2 FullSimplify@%16D - 4 -1 + Sin@4 xD TrigReduce@%D - 4 -1 + Sin@4 xD IntegrateAx4 ë Ia2 + x2 M, xE -a2 x + x3 3 x + a3 ArcTanB F a D@%, xD êê Simplify x4 a2 + x2 Integrate@x ^ 4 Log@x Hx + 3LD ê Sqrt@xD, 8x, 1, 2<D 92 728 2835 -6 3 p + 36 3 ArcTanB 2 3 F- 4 Log@2D 9 + 4 2 H-22 153 + 2520 Log@10DL Integrate@1 ê Ha + b Cos@xDL, 8x, 0, Pi<D êê Timing 2835 a a a :38.0999, IfB ReB F § -1 »» ReB F ¥ 1 »» ImB F ≠ 0 && a ≠ b && a + b ≠ 0, b b b -LogB F + LogB a-b -a2 +b2 -a+b -a2 +b2 -a2 + b2 Assumptions Ø ! F , IntegrateB 1 a + b Cos@xD , 8x, 0, p<, a a a ReB F § -1 »» ReB F ¥ 1 »» ImB F ≠ 0 && a ≠ b && a + b ≠ 0 FF> b b b Simplify@Integrate@1 ê Ha + b Cos@xDL, 8x, 0, Pi<D, a > b > 0D êê Timing :32.138, p a2 - b2 > class4.nb 3 Integrate@1 ê Ha + b Cos@xDL, 8x, 0, Pi<D êê Simplify@Ò, a > b > 0D & êê Timing :32.0658, > p a2 b2 - Note that in the current version of Mathematica these commands, where you do the general integral and them simplify it, are rather inefficient. It is much better to specify that a > b > 0 at the start using the Assuming command: In[1]:= Out[1]= Assuming@a > b > 0, Integrate@1 ê Ha + b Cos@xDL, 8x, 0, Pi<D D êê Timing :1.76236, > p a2 - b2 Even better is to put the condition a > b > 0, as a Assumptions option to Integrate, as follows: In[2]:= Out[2]= Integrate@1 ê Ha + b Cos@xDL, 8x, 0, Pi<, Assumptions Ø Ha > b > 0LD êê Timing :0.269622, > p a2 - b2 Sum@1 ê n ^ 2, 8n, 1, 5<D 5269 3600 Sum@1 ê n ^ 12, 8n, 1, Infinity<D 691 p12 638 512 875 Series@Exp@Sin@xDD, 8x, 0, 30<D :0.000107, 1 + x + 58 913 x14 4 151 347 200 - 3631 x19 34 735 100 400 x2 2 - x4 8 x5 - 15 5699 x15 2 554 051 500 + x6 - 240 + 33 728 645 300 825 889 414 000 000 Series@Sqrt@1 + xD, 8x, 0, 4<D 2 8 x3 16 - 5 x4 128 ser = Normal@%D 1+ x 2 - x2 8 + x3 16 - 5 x4 128 - x9 5670 - + O@xD5 - + - 2951 x10 3 628 800 19 993 x17 43 418 875 500 6 050 353 x21 623 668 727 682 000 26 976 017 466 662 584 320 000 36 698 180 928 319 x29 + 5760 + 11 162 375 477 471 x24 403 291 461 126 605 635 584 000 000 x2 31 x8 20 922 789 888 000 8 529 964 147 714 967 x26 - + 52 635 599 x16 3 283 268 567 040 000 306 265 893 058 125 x 90 27 069 353 x20 47 438 x23 1+ x7 + + - + - x11 3150 + 181 x12 14 515 200 1 126 610 929 x18 6 402 373 705 728 000 118 802 490 419 x22 34 060 628 114 472 960 000 41 478 716 501 x25 473 364 564 310 638 000 000 3 818 348 299 x27 271 488 500 119 336 500 000 - + 2417 x13 48 648 600 + + + - 2 610 006 147 952 249 x28 2 074 070 371 508 257 554 432 000 000 1 446 188 098 724 255 329 x30 3 844 244 345 104 218 241 105 920 000 000 + O@xD31> + 4 class4.nb N@8ser, Sqrt@1 + xD< ê. x Ø 0.7D 81.30081, 1.30384< Limit@HSin@xD - Tan@xDL ê x ^ 3, x Ø 0D - 1 2 sol = DSolve@8y ''@xD + 8 y '@xD + 16 y@xD ã 0, y@0D ã 2, y '@0D ã 1<, y@xD, xD 99y@xD Ø ‰-4 x H2 + 9 xL== Plot@y@xD ê. sol, 8x, 0, 2<D 2.0 1.5 1.0 0.5 0.5 y@xD ê. sol ê. x Ø 2 : 20 ‰8 1.0 1.5 2.0 > y@2D y@2D My preferred way to solve an ODE analytically is to use DSolve to give a function rather than a replacement rule as follows: ans@x_D = y@xD ê. DSolve@8y ''@xD + 8 y '@xD + 16 y@xD ã 0, y@0D ã 2, y '@0D ã 1<, y@xD, xD@@1DD ‰-4 x H2 + 9 xL ans@2D 20 ‰8 ans '@2D - 71 ‰8 ans ''@uD + 8 ans '@uD + 16 ans@uD ã 0 êê Simplify True One gets the same results if one puts y, rather than y[x], at the end of the DSolve command: class4.nb ans@x_D = y@xD ê. DSolve@8y ''@xD + 8 y '@xD + 16 y@xD ã 0, y@0D ã 2, y '@0D ã 1<, y, xD@@1DD ‰-4 x H2 + 9 xL Now do 2 coupled oscillators sol = DSolveA9x1 ''@tD + 2 w2 x1@tD - w2 x2@tD ã 0, x2 ''@tD + 2 w2 x2@tD - w2 x1@tD ã 0, x1 '@0D ã 0, x2 '@0D ã 0, x1@0D ã 0, x2@0D ã a=, 8x1, x2<, tE@@1DD; xx1@t_D = x1@tD ê. sol 1 2 a JCos@t wD - CosB 3 t wFN xx2@t_D = x2@tD ê. sol 1 2 a JCos@t wD + CosB 3 t wFN Plot@Evaluate@8xx1@tD, xx2@tD< ê. 8w Ø 1, a Ø 1<D, 8t, 0, 15<, PlotStyle Ø 88AbsoluteThickness@3D, Hue@0D<, 8AbsoluteThickness@3D, [email protected]`D, Dashing@80, 0.01, 0.02<D<<D 1.0 0.5 2 4 6 8 -0.5 -1.0 x = 6; y = 36; p = Hx ^ 2 ã yL True p True Clear@x, fD f@x_D := 1 ê; Abs@xD < 1; f@x_D := 0 ê; Abs@xD > 1; f@x_D := 1 ê 2 ê; Abs@xD ã 1; 10 12 14 5 6 class4.nb Plot@f@xD, 8x, -4, 4<D 1.0 0.8 0.6 0.4 0.2 -4 -2 2 NIntegrate@f@xD, 8x, -Infinity, Infinity<D 4 2. Integrate@f@xD, 8x, -1 ê 2, 1 ê 2<D ‡ - 1 2 1 f@xD „ x 2 Plot3DBImB x +  y F, 8x, -2, 2<, 8y, -2, 2<, PlotPoints Ø 50, AxesLabel Ø 8"x", "y", ""<F
© Copyright 2026 Paperzz