MARIAN UNIVERSITY Indianapolis ® Values of Special Angles from 0° to 90° cos π/2 π/3 60° 90° THE “HAND” METHOD Instructions π/4 1. Fold down the finger of the desired angle. 2. Place in the numerator the number of fingers from the folded finger in the direction of the desired function. 3. Place over the numerator. 4. Place 2 in the denominator. 45° sin MATHEMATICS Y π/6 30° cos θ = 0° 0 top fingers 2 sin θ = bottom fingers 2 tan θ = bottom fingers top fingers X UNIT CIRCLE Y VALUES CHART Angle cos sin tan 0 1 0 0 π/6 3/2 1/2 3/3 π/4 2/2 2/2 1 π/3 1/2 3/2 3 π/2 0 1 undefined www.marian.edu (cos θ, sin θ) (0,1) (_ 1 , 3 ) ( 1 , 2 2 2 π __ 2 2 90° , (_ ) 2 π 2π __ __ 2 2 3 __ π 3 3π __ (_ 3 , 1 ) 4 120° 60° 4 2 2 5π __ 45° 135° 6 150° (-1,0) 180° π 30° 3) 2 ( 2 , 2) 2 2 π __ 6 0° 0 360° 2π ( 3,1) 2 2 X (1,0) 210° 330° 11π 7π ___ __ 315° 6 6 5π 225° 300° 7π __ __ 240° (_ 3 , _ 1 ) ( 3 ,_ 1 ) 4 4 4π 2 2 2 2 5π __ __ 3 2 2 2 2 3π 3 _ _ _ __ , , ( ( ) ) 270° 2 2 2 2 2 (_ 1 , _ 3 ) ( 1 ,_ 3 ) (0,-1) 2 2 2 2 ANGLE MEASUREMENT AND ALGEBRAIC FORMULAS r Slope: s θ r π radians = 180° 1°= (θ in radians) π rad 180 1 rad = m= y2 - y1 x2 - x1 Line: Quadratic Formula: y = mx + b y - y1 = m(x - x1) x= -b ± b2 - 4ac 2a where ax2 + bx + c = 0 Distance: 180° π Special Polynomials: x3 + y3 = (x + y) (x2 - xy + y2) x3 - y3 = (x - y) (x2 + xy + y2) (x + y)3 = x3 + 3x2y + 3xy2 + y3 (x - y)3 = x3 - 3x2y + 3xy2 - y3 d = (x2 - x1)2 + (y2 - y1)2 s = rθ Circular Function Definitions, where θ is any angle: Y r y r= x2 + y2 θ X x Right Triangle Definitions, where 0 < θ < π/2: y sin θ = r x cos θ = r r csc θ = y r sec θ = x y tan θ = x x cot θ = y ) e us n ote p (hy p hy θ opp sin θ = hyp adj cos θ = hyp opp tan θ = adj opposite (opp) (x, y) MATHEMATICS IDENTITIES adjacent (adj) hyp csc θ = opp hyp sec θ = adj adj cot θ = opp FORMULAS Tangent and Cotangent Identities: tan θ = sin θ cos θ cot θ = cos θ sin θ 1 sin θ 1 sec θ = cos θ 1 cot θ = tan θ 1 csc θ 1 cos θ = sec θ 1 tan θ = cot θ sin θ = Double Angle Formulas: sin(2θ) = 2sin θ cos θ cos(2θ) = cos2 θ — sin2 θ = 2cos2 θ — 1 = 1 —2sin2 θ 2tanθ tan(2θ) = 1 — tan2 θ Periodic Formulas - If n is an integer: sin θ + cos θ = 1 sin(θ + 2πn) = sin θ csc(θ + 2πn) = csc θ tan2 θ + 1 = sec2 θ cos(θ + 2πn) = cos θ sec(θ + 2πn) = sec θ 1 + cot2 θ = csc2 θ tan(θ + πn) = tan θ cot(θ + πn) = cot θ 2 Reciprocal Identities: csc θ = Pythagorean Identities: 2 Even/Odd Formulas: Cofunction Formulas: sin(— θ) = — sin θ csc(— θ) = — csc θ cos(— θ) = cos θ sec(— θ) = sec θ tan(— θ) = — tan θ cot(— θ) = — cot θ CONICS Circle: x2 + y2 = a2 Ellipse: x y + 2 =1 a2 b 2 2 1 Y y = sin x 0 1 π 2π X Y 0 y = cos x π 2π X Parabola: y = 4ax 2 Hyperbola: π — θ) = sin θ 2 π sec( — θ) = csc θ 2 π cot( θ) = tan θ — 2 cos( GRAPHS x2 y2 — 2 =1 2 a b 2 1 0 Y y = tan x π 2π X -1 -1 2 1 0 www.marian.edu π — θ) = cos θ 2 π csc( — θ) = sec θ 2 π tan( — θ) = cot θ 2 sin( -1 Y y = csc x π 2π X 2 1 0 -2 Y y = sec x π 2π X 2 1 0 -1 -1 -1 -2 -2 -2 Marian University is sponsored by the Sisters of St. Francis, Oldenburg, Indiana. MAY 2016 Y y = cot x π 2π X
© Copyright 2026 Paperzz