O R I G I NA L A RT I C L E doi:10.1111/j.1558-5646.2009.00694.x BODY SIZE DIVERSIFICATION IN ANOLIS: NOVEL ENVIRONMENT AND ISLAND EFFECTS Gavin H. Thomas,1,2 Shai Meiri,1,3 and Albert B. Phillimore1,4 1 NERC Centre for Population Biology & Division of Biology, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, United Kingdom 2 E-mail: [email protected] 3 E-mail: [email protected] 4 E-mail: [email protected] Received August 8, 2008 Accepted March 3, 2009 Extreme morphologies of many insular taxa suggest that islands have unusual properties that influence the tempo and mode of evolution. Yet whether insularity per se promotes rapid phenotypic evolution remains largely untested. We extend a phylogenetic comparative approach to test the influence of novel environments versus insularity on rates of body size and sexual size dimorphism diversification in Anolis. Rates of body size diversification among small-island and mainland species were similar to those of anole species on the Greater Antilles. However, the Greater Antilles taxa that colonized small islands and the mainland are ecologically nonrandom: rates of body size diversification among small-island and mainland species are high compared to their large-island sister taxa. Furthermore, rates of diversification in sexual size dimorphism on small islands are high compared to all large-island and mainland lineages. We suggest that elevated diversifying selection, particularly as a result of ecological release, may drive high rates of body size diversification in both small-island and mainland novel environments. In contrast, high abundance (prevalent among small-island lizard communities) mediating intraspecific resource competition and male–male competition may explain why sexual size dimorphism diversifies faster among small-island lineages than among their mainland and large-island relatives. KEY WORDS: Anolis lizards, body size, ecomorphs, islands, morphological diversification rates, novel environments, phylogeny, sexual size dimorphism. The extremes and unusual diversity of morphological forms found on islands (Sondaar 1977; Case 1978), including dwarf and giant morphs of many taxa (Russell 1877; Hooijer 1967; Keogh et al. 2005; Hedges 2008), have prompted comparisons of the rate of trait evolution between insular and mainland taxa (Millien 2006; Harmon et al. 2008; Pinto et al. 2008). High rates of trait evolution on islands are commonly attributed to ecological release in which species’ expand their resource use or habitat primarily because of a reduction in the number of competitors (Grant 1972). Rapid trait change driven by ecological release is expected to occur following colonization of a novel environment that has fewer potential competitors than the source (Grant 1972; Losos and De Queiroz 1997). This scenario is likely to be particularly preva C 2017 lent for island colonization (Lister 1989; Dayan and Simberloff 1998; Meiri et al. 2005) because islands are often species poor. If ecological release is widespread among species following island colonization then we might expect morphological and ecological traits to diversify more rapidly among island species than their mainland counterparts. High rates of evolution may also occur when colonizing a novel environment as a result of shifts in selection pressures driven by, for example, differences in climate, vegetation, resource base, competitors, or predators (Blondel 2000). In principle, this explanation is applicable to both novel island and novel continental habitats (Campbell and Echternacht 2003). However, Price (2008) suggests that the effects of differences in selection pressure will C 2009 The Society for the Study of Evolution. 2009 The Author(s). Journal compilation Evolution 63-8: 2017–2030 G AV I N H . T H O M A S E T A L . be more pronounced where there are multiple colonization events onto different islands rather than into different novel continental habitats. This is because the composition of island communities (in terms of species identity) is likely to be more heterogeneous (both between islands and through time) than the composition of novel continental communities (Price et al. 2009). Consequently, there should be greater variation in selection pressure between species that have colonized multiple islands than between species that have colonized a similar number of new areas of the mainland. This model therefore implies that there is greater potential for rapid trait divergence among species that have colonized islands than among species that have colonized mainland novel environments. Rates of phenotypic diversification, however, could be higher among species in both forms of novel environment than among the source pool of species. Recent studies of Australasian birds, Caribbean anoles, and African chameleons have highlighted several systems in which islands are the source for mainland colonization (Raxworthy et al. 2002; Filardi and Moyle 2005; Nicholson et al. 2005; reviewed in Bellemain and Ricklefs 2008). The biogeographic history of Caribbean Anolis lizards (Nicholson et al. 2005) is well suited to the study of morphological evolution in novel environments versus islands per se. From a mainland South or Central American source, anoles diverged and speciated in situ and by dispersal between the islands of the Greater Antilles (Cuba, Hispaniola, Jamaica, and Puerto Rico). In turn, the adaptive radiation of Greater Antillean anoles has been the source of multiple colonization events onto smaller islands throughout the Caribbean, and of recolonization of the mainland (Schoener 1969; Glor et al. 2005; Nicholson et al. 2005). Anole communities on the Greater Antilles are species-rich and complex (Williams 1983; Losos et al. 2003) with as many as 14 or 15 species known to occur in sympatry in parts of Cuba (Diaz et al. 1998; Garrido and Hedges 2001). However, communities on small islands tend to be speciespoor (with a maximum of four anole species) and consequently ecological opportunity is expected to be high for new colonizers. In contrast, mainland communities are more species-rich and contain many potential competitors including the sister-clade of Caribbean anoles (sometimes referred to as Dactyloa), and consequently have low expected ecological opportunity. Island colonizers are expected to encounter low interspecific competition, but they may be subject to increased intraspecific competition due to density compensation (MacArthur et al. 1972). Density compensation describes the association between low species richness and increased population density and seems to be a common feature of insular lizard communities (Case 1975; Buckley and Jetz 2007). If increased population density elevates intraspecific competition, then there may be divergence in resource use within populations. This may lead to increased sexual dimorphism, particularly in body size or in the trophic apparatus 2018 EVOLUTION AUGUST 2009 (Selander 1966). If the population density varies among islands then we predict that sexual dimorphism should diversify more rapidly among islands (competitor-poor, both high and low abundance) than among novel mainland areas (competitor-rich, usually low abundance). Our primary objective here is to compare rates of diversification in body size and sexual size dimorphism between Greater Antillean (large island source pool), small-island colonizing, and mainland colonizing anoles. However, several studies have suggested that anole lineages that dispersed away from the Greater Antilles are an ecologically and morphologically nonrandom set of species (Losos and De Queiroz 1997; Poe et al. 2007). This may be important in interpreting any differences in rates of morphological diversification. Greater Antillean anoles have been classified into six clearly defined ecological and morphological groupings or “ecomorphs” (Williams 1972, 1983; Losos 1994). Both body sizes (Schoener 1969; Williams 1983) and sexual dimorphism (Butler et al. 2000; Butler et al. 2007) differ substantially between ecomorphs. For example, “twig” anoles are typically small bodied and sexually monomorphic species, whereas “trunk-ground” and “trunk-crown” species tend to have intermediate body sizes and strong male-biased sexual size dimorphism. Most mainland species have not been assigned to ecomorphs (Irschick et al. 1997) but solitary species on small islands often resemble the “trunkcrown” or “trunk-ground” ecomorphs (Williams 1969; Losos and De Queiroz 1997). This may be because small-island (or mainland) colonizers are derived from the “trunk-crown” or “trunkground” ecomorphs. Alternatively, colonizing species may have converged on these two ecomorphs. If it is the former (as inferred by Poe et al. 2007) then it is interesting to ask whether rates of morphological diversification among small-island or mainland species exceed rates among large-island “trunk-crown” or “trunkground” species even if rates are not greater than all large-island species together. Therefore, morphological divergence of “trunkcrown” and “trunk-ground” species on the Greater Antilles may be constrained by competition with other anoles that would be absent from small islands or the mainland. Here, we test whether colonizing lineages are nonrandom with respect to the ecomorph of the likely founding lineage. We then extend and apply a recent phylogenetic method (O’Meara et al. 2006; Thomas et al. 2006) to examine the influence of novel environments (mainland recolonizers) versus insularity per se (small-island colonizers) on rates of body size diversification in anoles. Methods NONRANDOM COLONIZATION AMONG ECOMORPHS We tested for bias in the ecomorphs of anole lineages that have colonized small islands or the mainland by reconstructing the S I Z E D I V E R S I F I C AT I O N I N A N O L E S ancestral ecomorph states on a recent phylogeny of anoles (Nicholson et al. 2005). We classified each Greater Antillean anole species using the ecomorph (sensu Williams 1972) designations of Losos et al. (2006). Ecomorphs are named for the microhabitat they occupy: grass-bush, trunk, trunk-ground, trunk-crown, twig, and crown-giant. Some species do not fit into any of these six categories and are classified as unique (Supplementary Appendix S1 & S2). Two studies of 76 species in total (Supplementary Appendix S3) have shown that the six Greater Antilles ecomorphs form distinct clusters in morphospace (Losos et al. 1998; Beuttell and Losos 1999). Some species have not been subject to morphometric analyses but our main interest is in the ecological definition of ecomorph: definitions in Losos et al. (2006) were based on qualitative observations in the field and descriptions of species’ habitat use from the literature (J. Losos, pers. comm.). We used an ultrametric version of Nicholson et al’s (2005) phylogeny with branch lengths proportional to time based on penalized likelihood downloaded from http:// biosgi.wustl.edu/∼lososlab/anolis_mbg_2005/. We pruned the phylogeny to include only Greater Antillean species (that is, only the source pool species for which ecomorphs have been assigned; Supplementary Appendix S4). Ancestral ecomorphs were inferred using the maximum-likelihood Mk1 model in Mesquite version 2.0 (Maddison and Maddison 2006, 2007). This analysis confirmed that both small-island and mainland anoles are most likely derived from species of the trunk-crown and trunk-ground ecomorphs (Fig. 1 and Supplementary Appendix S4). DATA We categorized Anolis species as mainland, large-island, or smallisland species (Supplementary Appendix S1) following Nicholson et al. (2005). Large islands (Cuba, Jamaica, Hispaniola, and Puerto Rico) are all > 9000 km2 in area. Small islands are all < 3500 km2 . There are no Caribbean islands of intermediate area. Small-island status was only assigned to species endemic to small islands. Because small-island and mainland species are all derived from large-island lineages of the trunk-crown and trunk-ground ecomorphs (see above), we further divided large-island species into two ecomorph categories: species of the trunk-crown and trunkground ecomorphs, and species that are unique or fit one of the four remaining ecomorphs. Thus, we placed each species into one of four geographical and ecomorph categories: small-island species (scored as 0); large-island trunk-crown and trunk-ground species (1); large-island other ecomorph species (2); and, mainland species (3). Lizards continue growing after reaching sexual maturity and the maximum, rather than mean, body size of a sample is often a more appropriate estimator of age-independent adult size (Stamps and Andrews 1992). Although maximum body size is likely to increase with sample size, around 20 individuals are considered sufficient to provide a reliable estimate of asymptotic body size with 25 individuals considered “adequate for most applications” (Stamps and Andrews 1992). We compiled sex-specific data on maximum snout vent length (SVL) of Anolis lizards from the literature and recorded sample sizes when available. All body size data, including sample sizes and sources, are provided in Supplementary Appendices S1 and S2. Our focus is on anoles including all Caribbean island species and their descendents that recolonized the mainland. We excluded species of Dactyloa, the mostly mainland-dwelling South American sister group of Greater Antilles anoles (Nicholson et al. 2005) and note that this group is extremely undersampled both morphologically and phylogenetically (Pinto et al. 2008). Although phylogenetic sampling of the species that have reinvaded the mainland is not complete, the sampled species are an unbiased representation of the diversity of body sizes found in this clade (see data in Meiri 2008). Low intraspecific sampling can inflate variance across species and may influence estimates of relative morphological diversification rates. This is particularly important if sampling effort is inconsistent across groups. We used a chi-square test to examine sampling bias for male and female size across the four geographic and ecomorph categories. We divided species into those with good (n ≥ 20) and poor (n < 20) sampling (following Stamps and Andrews 1992) and assumed that species with no sample sizes reported were poorly sampled (n < 20). We found no evidence for differences in the quality of sampling between the geographic and ecomorph classes (male SVL: χ2 = 2.524, df = 3, P = 0.471; female SVL: χ2 = 1.795, df = 3, P = 0.616). Using more stringent definitions for good sampling quality (minimum sample of 25, 30, 40, and 50 individuals), we still found no evidence for sampling bias. Nonetheless, we repeated all our main analyses on a subset of the data that included only species with maximum SVL based on at least 20 individuals (see below). PHENOTYPIC DIVERSIFICATION RATES The Brownian motion model of trait evolution describes a linear increase in phenotypic variance with distance from the root of the tree. The expected covariance among species can be described by the variance–covariance matrix (V) representation of the phylogenetic tree. The Brownian model is a suitable model of trait evolution under random genetic drift and also shares comparable expected covariance structures with directional, fluctuating, and punctuated evolution (Hansen and Martins 1996). Following Freckleton et al. (2002) the unbiased Brownian variance (σ2 ) is given by σ2 = 1 (y − α̂X)T V−1 (y − α̂X), (n − 1) (1) where n is the number of tips, y is an n × 1 vector of trait values at the tips, α is an n × 1 vector of the phylogenetic mean EVOLUTION AUGUST 2009 2019 G AV I N H . T H O M A S E T A L . Figure 1. Anolis phylogeny. Includes all species used in this study, after Nicholson et al. (2005). Lineages are colored according to geographic and ecomorph category. Asterisks indicate species that have been subject to morphometric analyses of ecomorphs (see Supplementary Appendix S3 for further details). for the trait, X is an n × 1 design matrix in which all entries are set to one, and the superscript T shows that the transpose is calculated. The Brownian variance is an estimate of the minimum rate of evolutionary change (Garland 1992) and can therefore be considered a measure of the rate of phenotypic diversification. However, the Brownian model may incorrectly estimate the rate of evolution (distinct from the rate of diversification) if traits have evolved, for example, by directional, fluctuating, or punctuated evolution. If the rate of phenotypic diversification is heterogeneous then the covariance among species may deviate from expectation de- 2020 EVOLUTION AUGUST 2009 rived from the phylogeny. Several methods have been proposed to test for rate heterogeneity among lineages (Garland 1992; McPeek 1995; Mooers et al. 1999; O’Meara et al. 2006; Thomas et al. 2006). The maximum-likelihood method proposed by Thomas et al. (2006) describes the expected covariance among species as the entry-wise sum of two matrices, V 0 and V 1 , where V 0 refers to branches of the phylogeny that share a binary character in state 0 and V 1 refers to the branches the character in state 1. To derive the expected variance–covariance matrix, a scalar, θ, is applied to one of the two matrices such that V = V 0 + θV 1 (note that the θ parameter in our model is not the same as the mean θ in Butler S I Z E D I V E R S I F I C AT I O N I N A N O L E S and King’s (2004) Ornstein–Uhlenbeck model). The maximumlikelihood value of θ is then estimated where deviation from θ = 1 indicates rate heterogeneity. Here we extend the Thomas et al. (2006) model to allow for multiple rate parameters such that V = V 0 + θ 1 V 1 + ··· + θ k −1 V k −1 where k is the number of different parts of the tree such that the estimate of the Brownian variance (σ2 ) is given by σ2 = 1 (y − âX)T (V0 + θ1 V1 (n − k) + · · · + θk−1 Vk−1 )−1 (y − α̂X). (2) In contrast to equation (1), here X is an n × k design matrix describing a multilevel factor. Our approach differs from the “noncensored” method of O’Meara et al. (2006) because by including X as a design matrix, we allow a different phylogenetic mean (as well as a different rate) in each of the k parts of the tree rather than assuming a single phylogenetic mean across the tree. Because multiple means are estimated, the denominator n − 1 in equation (1) is replaced by n − k in equation (2) (differing from O’Meara et al who use n in their noncensored method). The full derivation of the maximum-likelihood model is described in detail by Freckleton et al. (2002). Although the inclusion of different means has been questioned (Revell 2008), we argue that most hypotheses postulating different rates imply different evolutionary regimes such that a difference in mean is also a likely outcome. Means could differ if trait evolution in one group is parallel (e.g., consistent shifts to small body size in elephant species on islands compared to their mainland sister species, Roth 1992; or the evolution of flightlessness in endemic rails, Trewick 1997), or if there is a single shift in trait values at the base of a clade (e.g., the clade-wide increase in bill length in Hawaiian honeycreepers, Lovette et al. 2001). A difference in means due to a single rapid change at the base of clade is a form of rate shift. However, although it may be possible to show that such a rate shift has occurred, it may not be possible to identify which group increased or decreased in rate. It is therefore informative to distinguish between a rate shift that is due to a change in mean and one that is due to differences in rates across all species in each group of interest. We show by simulation that models assuming a common mean can indicate a rate shift if the means of each group differ even if the Brownian variances within each group do not (see Supplementary Appendix S5). If the relevant hypothesis refers to differences in rates across all species in each group of interest then the inference of a rate shift due to differences in mean should be regarded as a type I error. Our model allows each group to effectively jump to different means but within each group the trait follows a Brownian model. Consequently, shifts in mean, but not in rates of whole groups, are not inferred as rate shifts (Supplementary Appendix S5). RATES MODELS We used the phenotypic diversification rate tests described above to compare rates of diversification in male maximum SVL, female maximum SVL, and sexual size dimorphism (SSD) across the four island type/ecomorph categories. We log 10 transformed male (162 species) and female (163 species) SVLs prior to analysis and calculated sexual size dimorphism (n = 160 species) as log 10 (male SVL / female SVL) following the recommendations of Smith (1999). Branches in the phylogeny were assigned to one of the four island type/ecomorph categories (Fig. 1) based on the ancestral state reconstruction described above and on Nicholson et al. (2005). The phylogeny with branch assignments as node labels is available in Supplementary Appendix S6. The most complex model of phenotypic diversification rates has four rates, one each for small-island lineages, large island trunk-ground and trunk-crown lineages, large island “other" lineages, and mainland lineages. In all models the parameter estimates were rescaled so that θ = 1 for the small-island group to allow model averaging (see below). The simplest model is the null constant-rate Brownian model. We fitted each of the 12 possible models to male SVL, female SVL, and SSD in turn. We ranked models using the smallsample Akaike Information Criterion (AICc) and calculated both delta AICc and Akaike weights (Burnham and Anderson 2002). We used the Akaike weights to estimate model-averaged parameter estimates. We ran each set of 12 models four times using: (1) the full dataset and allowing different means in each group; (2) the full dataset and assuming a common mean; (3) the full dataset with different means in each group but after transforming the phylogeny according to the maximum-likelihood estimate of the branch length transformation kappa (see below); and (4) a reduced dataset including only species with SVL estimates based on samples of at least 20 individuals and allowing different means in each group. In the main text, we present only the first set of models and the results of the remaining three sets of models are available as Supporting Information (Supplementary Appendix S7). R code for the phenotypic diversification rate tests and an example analysis is available in Supplementary Appendices S8 and S9. We also compared the maximum likelihood of each model with the likelihood of the constant-rate model using the likelihoodratio statistic. This statistic is assumed to be asymptotically chi-square distributed with degrees of freedom equal to the difference in the number of parameters between the models (Edwards 1972). Previous studies based primarily on tworate models indicate appropriate type I errors and that parameter estimates are unbiased (O’Meara et al. 2006; Thomas et al. 2006; Revell 2008), however, multiple parameter models have not previously been tested. We therefore simulated the evolution of a trait along the anole phylogeny with a single rate 10,000 times for each of the 12 models. We EVOLUTION AUGUST 2009 2021 G AV I N H . T H O M A S E T A L . compared each model with the null to estimate type I error rates. KAPPA TRANSFORMATION If a trait evolves in a punctuated rather than gradual fashion (Eldredge and Gould 1972) then there could be a bias toward higher rates in one group if it has a predominance of short branches relative to the groups with which it is being compared. This is relevant here because short branches separate many small-island lineages and consequently high rates among these lineages could be an artifact of a speciational evolutionary process rather than a reflection of elevated rates of trait diversification on islands. We therefore tested for speciational evolution in our data by estimating the parameter κ (Pagel 1997) on the phylogeny for each of the three traits (male and female maximum SVL, and SSD) where κ = 1 indicates evolutionary change consistent with a Brownian model, κ < 1 indicates that there is evolutionary stasis in long branches, and κ > 1 indicates accelerated evolution in long branches. The maximum-likelihood estimate of κ can be compared with a model with κ = 1 using the likelihood-ratio statistic assuming a chi-square distribution with one degree of freedom. Results SIMULATIONS Based on 10,000 simulations, we found very slightly elevated type I errors for most models (Supplementary Appendix S10). The maximum type I error rate across the full set of models was 0.058. Consequently, we also checked that models found to differ significantly from the null (constant rates) model using the likelihood-ratio tests were also significant based on the simulated distribution of the likelihood-ratio statistic. The qualitative interpretations of our results are not affected. However, we suggest that simulations should be used a matter of course when using the rates test, particularly when multiple rates are estimated. MALE AND FEMALE SVL The model-averaged parameter estimates for both male and female SVL show that the rate of phenotypic diversification is lower among large island trunk-ground and trunk-crown species than in the three other categories, which do not differ from one another (male SVL, Table 1; female SVL, Table 2). This is consistent with the single best-fitting model and the parameter estimates in the four-rate model (Table 1 and Fig. 2A; Table 2 and Fig. 2B). Models in which the rates of phenotypic diversification were equal for both large island categories but allowed to differ for mainland and/or small-island lineages were substantially worse than the best-fitting model (male SVL: AICc > 8; female SVL AICc > 11). This suggests that rates among small-island or mainland lineages do not exceed those of all large-island taxa but 2022 EVOLUTION AUGUST 2009 are higher than those of the large-island lineages from which they are derived. Models in which we assumed a common mean (see Supplementary Appendix S7) typically have slightly lower AICc values than the equivalent multiple-means models, indicating that neither male SVL nor female SVL differs between groups. This is evident from the phylogenetically corrected 95% confidence intervals (based on model averaged variances) for male SVL in millimeters from the multiple means models: small-island species = 63.0–74.9; large-island trunk-crown and trunk-ground species = 67.9–73.4; large-island other ecomorph species = 59.3–71.3; and mainland species = 58.5–69.1. The equivalent 95% confidence intervals for female SVL are: small-island species = 48.8–56.6; large-island trunk-crown and trunk-ground species = 55.6–59.6; large-island other ecomorph species = 51.4–64.0; and mainland species = 52.0–61.9. The model averaged parameter estimates for the common mean models were consistent with the multimeans analyses (Supplementary Appendix S7). We found no evidence for long-branch stasis (male SVL: κ = 0.841; comparison with κ = 1: χ2 = 1.820, P = 0.177; female SVL: κ = 1.054; comparison with κ = 1: χ2 = 0.219, P = 0.640) and the model averaged parameter estimates were again similar when we first transformed the phylogeny according to the maximum-likelihood estimate of kappa (see Supplementary Appendix S7). This was also the case when we used the reduced dataset (see Supplementary Appendix S7). Overall, and regardless of the choice of analysis, rates among small-island or mainland lineages do not differ from those of all large-island taxa but are higher than those of the large-island lineages from which they are derived. SEXUAL SIZE DIMORPHISM The model-averaged parameter estimates for SSD show that the rate of phenotypic diversification is highest among small-island species with the lowest rates among both large-island other ecomorph species and mainland species. There is some evidence for intermediate rates among large-island trunk-crown and trunkground species (Table 3). This is consistent with the single bestfitting model and the parameter estimates in the four-rate model (Table 3; Fig. 2C). Models in which we assumed a common mean (see Supplementary Appendix S7) typically have higher AICc values, indicating that SSD differs substantially between groups (phylogenetically corrected mean SSD ± 95% confidence intervals based on model averaged variance: small-island species = 0.097–0.130; large-island trunk-crown and trunkground species = 0.077–0.094; large-island other ecomorph species = 0.047–0.058; mainland species = 0.030–0.040). However, the model-averaged parameter estimates assuming a common mean were consistent with those allowing multiple means (Supplementary Appendix S7). The model-averaged Small islands 1.000 1.000 1.000 1.000 (0.533–2.008) 1.000 (0.542–2.043) 1.000 1.000 1.000 (0.828–3.152) 1.000 1.000 (0.658–2.520) 1.000 1.000 (0.673–2.574) 1.000 Model M5 M3 M4 M9 M1 M11 All equal M7 M2 M8 M10 M6 Model average 0.409 (0.243–0.731) 0.379 (0.226–0.673) 0.445 (0.266–0.789) 0.415 (0.242–0.728) 0.409 (0.244–0.725) 1.000 1.000 0.651 1.000 0.817 1.000 0.800 0.447 Large island TC & TG 1.000 1.000 1.214 (0.758–1.954) 1.018 1.115 (0.696–1.795) 1.455 (0.901–2.362) 1.000 1.059 (1.009–2.636) 1.741 (1.080–2.820) 0.817 1.000 0.800 1.062 Large island other 1.000 0.809 (0.500–1.367) 1.000 1.018 0.879 (0.542–1.484) 1.000 1.000 0.651 1.421 (0.877–2.400) 0.817 1.041 (0.642–1.761) 0.865 (0.667–1.828) 0.961 Mainland 0.000 1.598 1.625 2.183 3.724 6.233 6.430 6.846 6.961 8.217 8.562 10.312 deltaAICc 0.389 0.175 0.173 0.131 0.060 0.017 0.016 0.013 0.012 0.006 0.005 0.002 wtAIC and ∗∗∗ denotes P<0.001. Models in which at least two rate categories are specified are named M1–M11 and the constant rate model is named All equal. 122.539 122.833 122.820 122.541 122.877 119.423 118.246 120.209 120.152 118.431 118.258 118.476 Maximum likelihood ∗ (6) (7) ∗ (7) ∗ (7) ∗ (8) NS (6) (5) NS (7) NS (7) NS (6) NS (6) NS (7) ∗∗ P (k) according to the small-sample Akaike Information Criteria (AICc): delta AICc shows the difference in AICc between the candidate model and the best-fitting model and wtAIC refers to the Akaike weights. The maximum likelihood of each model is also compared with the constant-rates Brownian model (which has five parameters: four means and one rate) using the likelihood-ratio statistic (χ2 ) with degrees of freedom equal to the difference in the number of estimated parameters (k) and where ∗ denotes P<0.05, ∗∗ denotes P<0.01, Table 1. Rates of diversification in male snout vent length. The maximum-likelihood estimates of θ with approximate 95% confidence intervals in parentheses for male snout vent lengths. Estimates of θ are shown for small-island, large-island trunk-ground and trunk-crown, large-island “other" ecomorph and mainland lineages. The models are ranked S I Z E D I V E R S I F I C AT I O N I N A N O L E S EVOLUTION AUGUST 2009 2023 2024 1.000 1.000 1.000 (0.337–1.308) 1.000 (0.533–2.069) 1.000 1.000 1.000 1.000 (0.583–2.316) 1.000 1.000 (0.422–1.700) 1.000 1.000 (0.425–1.712) 1.000 Small islands Large island other 1.527 (0.956–2.451) 1.000 1.583 1.804 (1.130–2.895) 1.000 2.655 (1.654–4.283) 1.858 (1.154–3.010) 1.717 (1.180–3.076) 1.000 1.241 1.000 1.232 1.469 Large island TC & TG 0.412 (0.245–0.734) 0.337 (0.198–0.610) 0.494 (0.184–0.563) 0.486 (0.289–0.867) 0.309 (0.183–0.556) 1.000 1.000 0.904 1.000 1.241 1.000 1.232 0.460 Rates of diversification in female snout vent length. Details follow Table 1. M4 M5 M9 M1 M3 M2 M11 M7 All equal M8 M10 M6 Model average Model Table 2. 1.000 1.000 1.583 1.267 (0.782–2.139) 0.791 (0.489–1.336) 1.905 (1.177–3.217) 1.000 0.904 1.000 1.241 1.057 (0.653–1.784) 1.265 (0.634–1.734) 1.164 Mainland 0.000 0.483 1.116 1.854 1.948 2.974 5.695 7.802 10.037 11.835 12.147 14.008 deltaAICc 0.290 0.228 0.166 0.115 0.110 0.066 0.017 0.006 0.002 0.001 0.001 0.000 wtAIC 150.862 149.529 150.304 151.041 149.888 149.375 146.923 146.961 143.673 143.853 143.697 143.858 Maximum likelihood ∗∗∗ (7) (6) ∗∗ (7) ∗∗ (8) ∗∗ (7) ∗∗ (7) ∗ (6) ∗ (7) (5) NS (6) NS (6) NS (7) ∗∗∗ P (k) G AV I N H . T H O M A S E T A L . EVOLUTION AUGUST 2009 Figure 2. and (C) sexual size dimorphism among Anolis lizards. For the four ecomorph/island categories, the maximum-likelihood value of the Rates of diversification of (A) male SVL, (B) female SVL, relative rate estimates along with approximate 95% confidence intervals are shown for the full four-rate model. The four categories are labeled as: Small island (small-island species), Large TCTG (large-island trunk-ground and trunk-crown species), Large other (large-island species that are not trunk-ground and trunkcrown anoles), and Mainland (mainland species). parameter estimates were also consistent when we first transformed the phylogeny according to the maximum-likelihood estimate of kappa, even though we found evidence for long-branch stasis (κ = 0.666; comparison with κ = 1: χ2 = 5.081, P = 0.024). The intermediate rates among large-island trunk-crown and trunk-ground species are not present when we used the (7) (6) ∗∗ (8) ∗∗ (7) ∗∗ (7) ∗∗ (7) ∗ (6) ∗ (6) NS (7) (5) NS (7) NS (6) ∗∗∗ ∗∗∗ 256.094 254.072 256.178 254.767 254.573 254.468 250.364 250.234 250.375 248.190 250.249 248.438 0.406 0.160 0.146 0.108 0.089 0.080 0.004 0.003 0.001 0.001 0.001 0.001 0.000 1.855 2.049 2.653 3.042 3.250 9.270 9.531 11.437 11.459 11.689 13.122 0.293 0.354 0.272 (0.164–0.471) 0.275 (0.432–1.246) 0.403 (0.244–0.697) 0.388 1.000 0.565 (0.341–0.982) 1.000 1.000 0.574 (0.346–0.996) 1.000 0.321 0.293 0.354 0.307 (0.194–0.492) 0.383 0.455 (0.288–0.730) 0.311 (0.506–1.283) 0.605 (0.382–0.970) 1.000 0.595 (0.376–0.954) 1.000 1.000 1.000 0.337 1.000 (1.831–7.047) 1.000 (1.519–5.829) 1.000 (0.537–2.067) 1.000 (1.400–5.382) 1.000 1.000 (1.386–5.318) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 M9 M8 M1 M6 M2 M7 M11 M10 M4 All equal M3 M5 Model average 0.505 (1.032–2.981) 0.354 0.505 (0.303–0.873) 0.383 1.000 0.388 1.000 1.000 0.958 (0.576–1.651) 1.000 1.049 (0.632–1.801) 1.204 (0.726–2.068) 0.508 Mainland Large island other Large island TC & TG Small islands Model Table 3. Rates of diversification in sexual size dimorphism in snout vent length. Details follow Table 1. deltaAICc wtAIC Maximum likelihood P (k) S I Z E D I V E R S I F I C AT I O N I N A N O L E S reduced dataset: instead this group has a similar low rate to the large-island other ecomorph species and mainland species (see Supplementary Appendix S7). Taken together, these results strongly suggest exceptionally high rates of diversification in SSD among small-island species. Discussion Dispersal to novel, previously unoccupied, habitats can result in changes to both the strength and direction of selection pressures (Simpson 1944; Barton 1996; Blondel 2000; Herrel et al. 2008; Price 2008). Phenotypic change may be driven by differences in, for example, climate, community structure, and predation risk experienced by colonizing species (Blondel 2000; Blumstein 2002). Typically, studies of ecologically driven variation in rates of morphological evolution have considered islands as novel environments (Millien 2006; Harmon et al. 2008). Our results show that lineages of Anolis lizards that disperse to novel mainland environments have similar rates of body size diversification to lineages that dispersed to small-island (i.e., novel island) environments. However, whether rates of trait diversification among mainland and small-island lineages differ from those of the (largeisland) source pool depends on the definition of the source pool. Compared to all large-island taxa, rates of body size diversification on small islands or the mainland are not high: they are indistinguishable from the adaptive radiation of anoles on the Greater Antilles. Yet if the source pool is restricted to include only those lineages that appear to be ecologically predisposed to being successful dispersers and colonizers, that is the trunk-crown and trunk-ground ecomorphs (Poe et al. 2007), then rates of body size diversification are elevated among small-island lineages. Furthermore, rates of morphological diversification in sexual size dimorphism are high among small-island lineages, but not among mainland lineages, regardless of how the source pool is defined. We also note that large-island species of the other four ecomorphs have a higher rate of diversification in body size than large-island species of the trunk-crown and trunk-ground ecomorphs. This may imply that rather than high rates among small-island anoles, there is a low rate among large-island trunk-crown and trunkground species. Although we suggest that it is more parsimonious to infer high rates among small-island species, we also discuss the alternatives below. A restricted definition of the source pool is valid and important in interpreting our results. Small-island and mainland taxa are similar to the trunk-crown or trunk-ground ecomorphs (Losos and De Queiroz 1997) because they are descended from them not because small-island or mainland lineages have converged toward these two ecomorphs (our Results and Poe et al. 2007). Why, then, are diversification rates higher in both small-island and mainland lineages than in the restricted source pool lineages? One EVOLUTION AUGUST 2009 2025 G AV I N H . T H O M A S E T A L . explanation is that rates of diversification are low among trunkcrown and trunk-ground species because there is something unusual about these two particular ecomorphs. Male–male competition is known to be particularly strong with sexual selection favoring large male size in trunk-crown and trunk-ground anoles (Butler et al. 2000; Butler and Losos 2002; Butler et al. 2007). This may limit the extent to which ecological factors can influence diversification in body size. Indeed, a substantial proportion of morphospace occupancy in trunk-crown and trunk-ground anoles is determined by sexual dimorphism rather than by interspecific variation (Butler et al. 2007). Consequently, sexual selection may be a stronger constraint on body size divergence in trunk-crown and trunk-ground anoles than in the other ecomorphs. The difference in rates between our two groups of large-island ecomorphs may also be partly artefactual. Species’ ecomorphs are designated on the basis of ecology, habitat use, and behavior but they also form distinct clusters in morphological space such that there are greater morphological difference between ecomorphs than within them (Losos et al. 1998; Beuttell and Losos 1999). When we compare the species that belong to the colonizing ecomorphs to the rest of the large island species, we are comparing two ecomorphs with four ecomorphs and unique species that do not fit to any particular ecomorph. Hence, a lower rate among the group of trunk-crown and trunk-ground species is not surprising because it captures little of the overall between ecomorph variation. Although either of these explanations may explain the difference between the two ecomorph groupings of large island species, they cannot explain why small-island species have a much higher rate of body size diversification than the trunk-crown and trunkground ecomorphs. There is no evidence to suggest that species of any of the four other ecomorphs have successfully colonized small islands. We therefore suggest that the difference in rates that we identified between small-island species and trunk-crown and trunk-ground species is most likely due to net increases in rate among small-island species. One nonadaptive explanation that may apply over short periods of time is that founder effects (e.g., Mayr 1954; Carson and Templeton 1984) or random genetic drift acting on standing genetic variation (Kimura 1968) has resulted in elevated rates of trait diversification. However, this is unlikely to explain our results given that most field studies indicate that phenotypic differences between populations are generally best explained by selection rather than by purely neutral processes (e.g., Merilä and Crnokrak 2001; Clegg et al. 2002; Leinonen et al. 2008). Two nonmutually exclusive ecological explanations may be important. First, the variation in selection pressure (particularly the direction of selection) encountered by lineages colonizing new environments may result in each colonizing species having distinct optima in each new environment (Price 2008). If this is the case, then variation in optima from one species or novel 2026 EVOLUTION AUGUST 2009 environment to the next will result in elevated rates of phenotypic diversification across species. However, variation in selection pressure is expected to be greatest among island settings, and will increase as island area decreases, due to greater variation in community composition (Price et al. 2009). The elevated rates among mainland taxa (compared to the restricted source pool) that we observed are therefore not expected in this model. One possible reason is that while species identity within communities may be variable in island settings and may link to variation in selection pressure, selection and trait optima may be influenced by other factors such as the greater complexity and variety of possible species interactions in the more species-rich mainland communities. The second, and most frequently invoked mechanism is that ecological opportunity is high on islands largely because some communities have few or no competitors, and this allows rapid trait diversification. If so, rates among small-island lineages may be high because they are not competing with smaller (twig ecomorphs) and larger (crown-giant ecomorph) competitors that may inhibit the size evolution of trunk-crown and trunk-ground species on species-rich large islands. In contrast, the mainland recolonizers may come into contact and compete with members of the species-rich Dactyloa sister clade (Nicholson et al. 2005). If there is variation in the direction of selection on different islands, as in the Price model (Price 2008), then ecological opportunity would elevate rates among small-island but not mainland anoles. A recent study by Pinto et al. (2008), however, suggests that anoles that have recolonized the mainland may not compete with Dactyloa anoles. They argue that Caribbean anoles and their descendents that recolonized the mainland have better-developed toe-pads than the Dactyloa species (Macrini et al. 2003; Velasco and Herrel 2007). The toe-pad may therefore be a key innovation or exaptation (Simpson 1944; Gould and Vrba 1982) that has increased ecological opportunity for the mainland colonizers. Our results are clearly consistent with this explanation and suggest a role for variation in the direction of selection as suggested by Price in combination with ecological opportunity both on small islands and the mainland. At present, there is insufficient phylogenetic data to test Pinto et al.’s (2008) hypothesis that the large clade of mainland recolonizers represents an adaptive radiation. Our results for rates of diversification in body size are consistent with a reduction in the number of competitors and a role for unusual toe-pad evolution (Macrini et al. 2003; Velasco and Herrel 2007; Pinto et al. 2008). However, it has also been suggested that evolution in mainland anoles is regulated by predators whereas evolution in Caribbean anoles is regulated by intraspecific interactions (Andrews 1979; Pinto et al. 2008). Intraspecific interactions may be particularly important on small islands, where anole population densities are often exceptionally high (Lister 1976; Schoener and Schoener 1980; Wright 1981; Buckley and Jetz 2007). This may explain the relatively high rates of S I Z E D I V E R S I F I C AT I O N I N A N O L E S diversification in sexual size dimorphism on small islands in two ways, both related to the niche variation hypothesis (Van Valen 1965). First, high population density should, all else being equal, increase intraspecific competition and may promote resource partitioning between the sexes if the resource base is sufficiently large (Fitch 1981; Dayan and Simberloff 1998). Second, some islands have a narrow resource base such that males and females cannot diverge from one another, causing sexual size dimorphism to diminish (Lack 1947; Meiri et al. 2005). Increased trait diversification rates could therefore arise simply because species on some small islands become more dimorphic whereas species on other small islands become less dimorphic so the range of dimorphism across all small-island species increases. An alternative, although not mutually exclusive explanation, is that sexual selection that favors larger males in the battle for breeding territories may be intensified at high densities (Grant 1968; Stamps et al. 1997). The importance of sexual selection relative to ecological explanations is likely to depend on the colonizing lineages. Species of the trunk-crown and trunk-ground ecomorphs typically display more pronounced male–male competition than other ecomorphs (Butler et al. 2000; Butler and Losos 2002; Butler et al. 2007) and at high densities competition may be stronger. This implies that the high rate of diversification in SSD on small islands is at least partly due a combination of nonrandom colonization and increased sexual selection. This is further supported because species on small islands show, on average, more extreme male-biased dimorphism than large-island trunk-crown and trunk-ground species. THE MULTIPLE RATES MODEL The multiple rate method that we introduce here is a simple extension of Thomas et al’s (2006) method for comparing rates of phenotypic diversification. It differs from the noncensored approach of O’Meara et al. (2006) by allowing each different partition of the phylogeny to have a different phylogenetic mean. We suggest that, contrary to Revell (2008), many hypotheses that infer different rates imply different evolutionary regimes and hence different means. This is not a trivial distinction because assuming a common mean can have serious consequences for the inferred differences in rates. Our simulations (Supplementary Appendix S5) show that models that assume a single mean (e.g., the noncensored test in O’Meara et al. 2006), but not our multiple-means model, can infer differences in rate even if only the means differ. Where there is no difference in means, or if that difference is small, then the common mean and multiple mean models are similar. When should each model be used? The common mean approach is appropriate if there is no mean difference between groups and the interest is in a net overall difference in rate between groups, or when means differ and the interest is in any form of rate shift. In contrast, the multiple means model is appropriate if the interest is in a net overall difference in rate between groups regardless of whether they differ in mean. In practice, it will often be informative to use both to explore whether observed differences between groups can be explained by differences in rates, means, or both. The common mean model is a special (nested) case of our multiple means model and they can be readily compared using maximum likelihood or AIC. In general, both the common mean and multiple mean models should be regarded as tests for differences in the net rate of phenotypic diversification but they may not reflect the true rate of evolution if, for example, there is parallel directional selection across lineages (where evolution can be fast, but diversification slow). Our model also differs from the most frequently used implementation of the Ornstein–Uhlenbeck (OU) model in which different groups are allowed to have different optima but only a single rate (Butler and King 2004). OU models are designed primarily to test for evidence of stabilizing selection and each group has a parameter that reflects the strength of selection (sometime referred to the “rubber band” parameter) and a single drift parameter across all groups. In principle, it is possible to fit OU models with multiple drift parameters and explore nested models in which both optima and rate can vary (O’Meara et al. 2006). Our model is similar to this variant of the OU model except that we effectively set the strength of selection parameter to zero. CONCLUSIONS We have shown that in the light of nonrandom island colonization both properties of novel environments and ecological properties characteristic of small islands influence morphological diversification rates in anoles. Ecological opportunity may be high on small-islands as a result of a reduction in the number of competing species, most obviously the lack of the twig, trunk, crowngiant, and grass-bush ecomorphs. In contrast, on the mainland a unique toe-pad may allow colonizing species to minimize competition with Dactyloa and hence they also have enhanced ecological opportunity (Pinto et al. 2008). Ecological opportunity promotes morphological variation and if the direction of selection encountered by different colonizing species also varies then traits may diverge rapidly (Price 2008; Price et al. 2009). Although novel environments promote body size diversification in lineages relative to their ancestral stock, the evolutionary trajectories of males and females appear to differ depending on the properties of those novel environments. Where species richness is low and abundance is high (on small islands), the sexes diverge from one another. Where species richness and potential interspecific competition is high, and abundance is presumably lower (on the mainland) body sizes diverge but the sexes evolve in parallel with one another. ACKNOWLEDGMENTS We are indebted to J. Losos for invaluable advice; N. Cooper, T. Ezard, R. Freckleton, S. Fritz, R. Grenyer, J. Hortal, W. Jetz, O. Jones, R. Lande, EVOLUTION AUGUST 2009 2027 G AV I N H . T H O M A S E T A L . B. Langerhans, J. Losos, L. Mahler, L. McInnes, D. Orme, A. Pigot, T. Price, A. Purvis, and L. Revell for comments on the manuscript and/or insightful discussion; L. Harmon and B. O’Meara for thorough and helpful reviews; J. Losos and R. Powell for data; R. McDiarmid & J. Rosado for help measuring anoles in museum collections; L. Butcher and B. Sanger from the Michael Way Library for their invaluable help in data collecting; and NERC for funding. LITERATURE CITED Andrews, R. M. 1979. Evolution of life histories: a comparison of Anolis lizards from matched island and mainland habitats. Breviora 454:1–51. Barton, N. H. 1996. Natural selection and random genetic drift as causes of evolution on islands. Philos. Trans. R. Soc. B 351:785–795. Bellemain, E., and R. E. Ricklefs. 2008. Are islands the end of the colonization road? Trends Ecol. Evol. 23:461–468. Beuttell, K., and J. B. Losos. 1999. Ecological morphology of Caribbean anoles. Herpetol. Monogr. 13:1–28. Blondel, J. 2000. Evolution and ecology of birds on islands: trends and prospects. Vie et Milieu 50:205–220. Blumstein, D. T. 2002. Moving to suburbia: ontogenetic and evolutionary consequences of life on predator-free islands. J. Biogeogr. 29:685–692. Buckley, L. B., and W. Jetz. 2007. Insularity and the determinants of lizard population density. Ecol. Letts. 10:481–489. Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York. Butler, M. A., and A. A. King. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164:683–695. Butler, M. A., and J. B. Losos. 2002. Multivariate sexual dimorphism, sexual selection, and adaptation in Greater Antillean Anolis lizards. Ecol. Monogr. 72:541–559. Butler, M. A., T. W. Schoener, and J. B. Losos. 2000. The relationship between sexual size dimorphism and habitat use in Greater Antillean Anolis lizards. Evolution 54:259–272. Butler, M. A., S. A. Sawyer, and J. B. Losos. 2007. Sexual dimorphism and adaptive radiation in Anolis lizards. Nature 447:202–205. Campbell, T. S., and A. C. Echternacht. 2003. Introduced species as moving targets: changes in body sizes of introduced lizards following experimental introductions and historical invasions. Biol. Invas. 5:193–212. Carson, H. L., and A. R. Templeton. 1984. Genetic revolutions in relation to speciation phenomena: the founding of new populations. Annu. Rev. Ecol. Syst. 15:97–131. Case, T. J. 1975. Species numbers, density compensation, and colonizing ability of lizards on island in the Gulf of California. Ecology 56:3–18. ———. 1978. A general explanation for insular body size trends in terrestrial vertebrates. Ecology 59:1–18. Clegg, S. M., S. M. Degnan, C. Moritz, A. Estoup, J. Kikkiawa, and I. P. F. Owens. 2002. Microevolution in island forms: the roles of drift and directional selection in morphological divergence of a passerine bird. Evolution 56:2090–2099. Dayan, T., and D. Simberloff. 1998. Size patterns among competitors: ecological character displacement and character release in mammals, with special reference to island populations. Mammal Rev. 28:99–124. Diaz, L. M., N. Navarro, and O. H. Garrido. 1998. Nueva especie de Chamaeleolis (Sauria: Iguanidae) de las Meseta de Cabo Cruz, Granma, Cuba. Avicennia 8/9:27:34. Edwards, A. W. F. 1972. Likelihood. Cambridge Univ. Press, Cambridge. Eldredge, N., and S. J. Gould. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82–115 in T. J. M. Schopf, ed. Models in paleobiology. Freeman, Cooper & Co, San Francisco. 2028 EVOLUTION AUGUST 2009 Filardi, C. E., and R. G. Moyle. 2005. Single origin of a pan-Pacific bird group and upstream colonization of Australasia. Nature 438:216–219. Fitch, H. S. 1981. Sexual size differences in reptiles. Univ. Kansas Mus. Nat. Hist. Miscellaneous Publications 70:1–72. Freckleton, R. P., P. H. Harvey, and M. Pagel. 2002. Phylogenetic analysis and comparative data: a test and review of the evidence. Am. Nat. 125:1– 15. Garland, T. 1992. Rate tests for phenotypic evolution using phylogenetically independent contrasts. Am. Nat. 140:509–519. Garrido, O. H., and S. B. Hedges. 2001. A new anole from the northern slope of the Sierra Maestra in eastern Cuba (Squamata: Iguanidae). J. Herpetol. 35:378–383. Glor, R. E., J. Losos, and A. Larson. 2005. Out of Cuba: overwater dispersal and speciation among lizards in the Anolis carolinensis subgroup. Mol. Ecol. 14:2419–2432. Gould, S. J., and E. S. Vrba. 1982. Exaptation—a missing term in the science of form. Paleobiology 8:4–15. Grant, P. R. 1968. Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. Syst. Biol. 17:319–333. ———. 1972. Convergent and divergent character displacement. Biol. J. Linn. Soc. 4:39–68. Hansen, T. F., and E. P. Martins. 1996. Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution 50:1404–1417. Harmon, L. J., J. Melville, A. Larson, and J. B. Losos. 2008. The role of geography and ecological opportunity in the diversification of day geckos (Phelsuma). Syst. Biol. 57:562–573. Hedges, S. B. 2008. At the lower size limit in snakes: two new species of threadsnakes (Squamata: Leptotyphlopidae: Leptotyphlops) from the Lesser Antilles. Zootaxa 1841:1–30. Herrel, A., K. Huyghe, B. Vanhooydonck, T. Backeljau, K. Breugelmans, I. Grbac, R. Van Damme, and D. J. Irschick. 2008. Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource. Proc. Natl. Acad. Sci. USA 105:4792–4795. Hooijer, D. A. 1967. Indo-Australian insular elephants. Genetica 38:143–162. Irschick, D. I., L. J. Vitt, P. A. Zani, and J. B. Losos. 1997. A comparison of evolutionary radiations in mainland and Caribbean Anolis lizards. Ecology 78:2191–2203. Keogh, J. S., I. A. W. Scott, and C. Hayes. 2005. Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes. Evolution 59:226–233. Kimura, M. 1968. Evolutionary rate at the molecular level. Nature 217:624– 626. Lack, D. L. 1947. Darwin’s finches. Cambridge Univ. Press, Cambridge. Leinonen, T., R. B. O’Hara, J. M. Cano, and J. Merila. 2008. Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J. Evol. Biol. 21:1–17. Lister, B. C. 1976. The nature of niche expansion in West Indian Anolis lizards I: ecological consequences of reduced competition. Evolution 30:659–676. Lister, A. M. 1989. Rapid dwarfing of red deer on Jersey in the last interglacial. Nature 342:539–542. Losos, J. 1994. Integrative approaches to evolutionary ecology: Anolis lizards as model systems. Annu. Rev. Ecol. Syst. 25:467–493. Losos, J., and K. De Queiroz. 1997. Evolutionary consequences of ecological release in Caribbean Anolis lizards. Biol. J. Linn. Soc. 61:459–483. Losos, J. B., T. R. Jackman, A. Larson, K. De Queiroz, and L. Rodriguez-Schettino. 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:2115– 2118. S I Z E D I V E R S I F I C AT I O N I N A N O L E S Losos, J. B., M. Leal, R. E. Glor, K. De Queiroz, P. E. Hertz, L. RodriguezSchettino, L. A. Chamizo, T. R. Jackman, and A. Larson. 2003. Niche lability in the evolution of a Caribbean lizard community. Nature 424:542– 545. Losos, J., R. E. Glor, J. J. Kolbe, and K. E. Nicholson. 2006. Adaptation, speciation, and convergence: a hierarchical analysis of adaptive radiation in Caribbean Anolis lizards. Ann. Mo. Bot. Gardens 93:24–33. Lovette, I. J., E. Bermingham, and R. E. Ricklefs. 2001. Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proc. R. Soc. Lond. B 269:37–42. MacArthur, R., J. M. Diamond, and J. R. Karr. 1972. Density compensation in island faunas. Ecology 53:330–342. Macrini, T. E., D. I. Irschick, and J. B. Losos. 2003. Ecomorphological differences in toepad characteristics between mainland and island anoles. J. Herpetol. 37:52–58. Maddison, W. P., and D. R. Maddison. 2006. StochChar: a package of Mesquite modules for stochastic models of character evolution. Version 1.1. ———. 2007. Mesquite: a modular system for evolutionary analysis. Version 2.0. http://mesquiteproject.org. Mayr, E. 1954. Changes of genetic environment and evolution. Pp. 157–180 in E. B. Ford, ed. Evolution as a process. Allen & Unwin, London. McPeek, M. A. 1995. Testing hypotheses about evolutionary change on single branches of phylogeny using evolutionary contrasts. Am. Nat. 145:686– 703. Meiri, S. 2008. Evolution and ecology of lizard body sizes. Glob. Ecol. Biogeogr. 17:724–734. Meiri, S., T. Dayan, and D. Simberloff. 2005. Variability and sexual size dimorphism in carnivores: testing the niche variation hypothesis. Ecology 86:1432–1440. Merilä, J., and P. Crnokrak. 2001. Comparison of genetic differentiation at marker loci and quantitative traits. J. Evol. Biol. 14:892–903. Millien, V. 2006. Morphological evolution is accelerated among island mammals. PLoS Biol. 4:e321. Mooers, A. O., S. M. Vamosi, and D. Schluter. 1999. Using phylogenies to test macroevolutionary hypotheses of trait evolution in cranes (Gruidae). Am. Nat. 154:249–259. Nicholson, K. E., R. E. Glor, J. J. Kolbe, A. Larson, S. Blair Hedges, and J. Losos. 2005. Mainland colonization by island lizards. J. Biogeogr. 32:929–938. O’Meara, B. C., C. Ané, M. J. Sanderson, and P. C. Wainwright. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922–933. Pagel, M. 1997. Inferring evolutionary processes from phylogenies. Zool. Script. 26:331–348. Pinto, G., D. L. Mahler, L. J. Harmon, and J. B. Losos. 2008. Testing the island effect in adaptive radiation: rates and patterns of morphological diversification in Caribbean and mainland Anolis lizards. Proc. R. Soc. Lond. B 275:2749–2757. Poe, S., J. R. Goheen, and E. P. Hulebak. 2007. Convergent exaptation and adaptation in solitary island lizards. Proc. R. Soc. Lond. B 274:2231– 2237. Price, T. 2008. Speciation in birds. Roberts & Company Publishers, Greenwood Village, CO. Price, T. D., A. B. Phillimore, M. Awodey, and R. Hudson. 2009. Ecological and geographical influences on the allopatric phase of island specia- tion. In P. R. Grant and B. R. Grant, eds. From field observations to mechanisms. A program in evolutionary biology. Princeton Univ. Press, Princeton, NJ. In press. Raxworthy, C. J., M. R. J. Forstner, and R. A. Nussbaum. 2002. Chameleon radiation by oceanic dispersal. Nature 415:784–787. Revell, L. J. 2008. On the analysis of evolutionary change along single branches in a phylogeny. Am. Nat. 172:140–147. Roth, V. L. 1992. Inferences from allometry and fossils: dwarfing of elephants on islands. Pp. 259–288 in D. Futuyama and J. Antonovics, eds. Oxford Surveys in Evolutionary Biology, vol. 8. Oxford Univ. Press, Oxford. Russell, I. C. 1877. The giant birds of New Zealand. Am. Nat. 11:11– 21. Schoener, T. W. 1969. Size patterns in West Indian Anolis lizards: I. Size and species diversity. Syst. Zool. 18:386–391. Schoener, T. W., and A. Schoener. 1980. Densities, sex ratios, and population structure in four species of Bahamian Anolis lizards. J. Anim. Ecol. 49:19–53. Selander, R. K. 1966. Sexual dimorphism and differential niche utilization in birds. Condor 68:113–151. Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia Univ. Press, New York. Smith, R. J. 1999. Statistics of sexual size dimorphism. J. Hum. Evol. 36:423– 459. Sondaar, P. Y. 1977. Insularity and its effect on mammal evolution. Pp. 671– 707 in M. K. Hecht, P. C. Goody, and B. M. Hecht, eds. Major patterns in vertebrate evolution. Plenum, New York. Stamps, J. A., and R. M. Andrews. 1992. Estimating asymptotic size using the largest individuals per sample. Oecologia 92:503–512. Stamps, J. A., J. B. Losos, and R. M. Andrews. 1997. A comparative study of population density and sexual size dimorphism in lizards. Am. Nat. 149:64–90. Thomas, G. H., R. P. Freckleton, and T. Székely. 2006. Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds. Proc. R. Soc. Lond. B 273:1619– 1624. Trewick, S. A. 1997. Flightlessness and phylogeny amongst endemic rails (Aves: Rallidae) of the New Zealand region. Philos. Trans. R. Soc. B 352:429–446. Van Valen, L. M. 1965. Morphological variation and the width of the ecological niche. Am. Nat. 99:377–390. Velasco, J. A., and A. Herrel. 2007. Ecomorphology of Anolis lizards of the Chocó region in Colombia and comparisons with Greater Antillean ecomorphs. Biol. J. Linn. Soc. 92:29–39. Williams, E. E. 1969. The ecology of colonization as seen in the zoogeography of anoline lizards. Q. Rev. Biol. 44:345–389. ———. 1972. The origin of faunas. Evolution of lizard congeners in a complex island fauna: a trial analysis. Evol. Biol. 6:47–89. ———. 1983. Ecomorphs, faunas, island size, and diverse end points in island radiations of Anolis. Pp. 326–370 in R. B. Huey, E. R. Pianka, and T. W. Schoener, eds. Lizard ecology: studies of a model organism. Harvard Univ. Press, Cambridge. Wright, S. J. 1981. Extinction-mediated competition: the Anolis lizards and insectivorous birds of the West Indies. Am. Nat. 117:181–192. Associate Editor: G. Hunt EVOLUTION AUGUST 2009 2029 G AV I N H . T H O M A S E T A L . Supporting Information The following supporting information is available for this article: Appendix S1. Data and Sample size (see separate tab-delimited text file). Appendix S2. References for data sources. Appendix S3. Species that have been subject to morphological analyses of ecomorph. Appendix S4. Maximum likelihood reconstruction of Anolis ecomorphs. Appendix S5. Common mean simulations. Appendix S6. Phylogeny with ecomorph/geographic setting as node labels (see separate nexus file). Appendix S7. Results of common mean, reduced dataset, and kappa-transformed analyses. Appendix S8. Source code for rates analyses in R (see separate R file). Appendix S9. Example of rates analyses (see separate R file). Appendix S10. Multiple-rates simulations. Supporting Information may be found in the online version of this article. (This link will take you to the article abstract). Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article. Additional results and discussion can be found in a document at http://www.repository.naturalis.nl/record/289893. 2030 EVOLUTION AUGUST 2009 Supplementary Appendices for: Thomas, Meiri and Phillimore Body size diversification in Anolis: novel environments and island effects. Contents Supplementary Appendix S1 – data and sample size (see separate tab-delimited text file) Supplementary Appendix S2 – references for data sources (this file) Supplementary Appendix S3 – species that have been subject to morphological analyses of ecomorph (this file) Supplementary Appendix S4 – maximum likelihood reconstruction of Anolis ecomorphs (this file) Supplementary Appendix S5 – common mean simulations (this file) Supplementary Appendix S6 – phylogeny with ecomorph/geographic setting as node labels (see separate nexus file) Supplementary Appendix S7 – supplementary results (this file) Supplementary Appendix S8 – source code for rates analyses in R (see separate R file) Supplementary Appendix S9 – example of rates analyses (see separate R file) Supplementary Appendix S10 – multiple-rates simulations (this file) Supplementary Appendix S1 – data and sample size Species A acutus Anolis acutus Island type SmallIsland ecomorph NA geo ecomorph 0 Female SVL 49 Male SVL min n females 67 A ahli Anolis ahli LargeIsland TrunkGround 1 52.4 61.7 A alayoni A alfaroi Anolis alayoni Anolis alfaroi LargeIsland LargeIsland Twig GrassBush 2 2 38.9 33 46.8 36 A aliniger Anolis aliniger LargeIsland TrunkCrown 1 57 60 A allisoni Anolis allisoni LargeIsland TrunkCrown 1 75 A allogus A altae Anolis allogus Anolis altae LargeIsland Mainland TrunkGround NA 1 3 A altitudi Anolis altitudinalis LargeIsland TrunkCrown A alumina Anolis alumina LargeIsland GrassBush min n males 37 76 3 n females 37 (Lazell 1972) n males refs notes 76 (Lazell 1972) Clobert et al. 1998, Dunham and Miles 1985, Stamps et al. 1997, Perry and Garland 2002, Roughgarden 1995, Cox et al. 2003, Schwartz and Henderson 1991, Andrews and Rand 1974, Lazell 1972, Stamps and Andrews 1992, Dunham et al. 1988, NA Fitch 1981, Schettino 1999, Schwartz and Henderson 1991 NA Schettino 1999, Uetz 2006 Schettino 1999 NA NA 8 3 (Schettino 1999) 16 13 (Schettino 1999) NA 8 (Schettino 1999) 16 (Schettino 1999) NA 4 10 4 (Butler et al. 2000) 10 (Butler et al. 2000) 100 88 170 88 (Schoener 1970), 16 (Schettino 1999) 170 (Schoener 1970), 27 (Schettino 1999) 49 52 62.8 52 367 1 777 NA 367 (Schoener 1970), 10 (Schettino 1999) 1 (Taylor 1956) 777 (Schoener 1970), 10 (Schettino 1999) NA 1 51 52 NA NA NA NA 2 37 40 NA NA 13 NA NA A alutaceu Anolis alutaceus LargeIsland GrassBush 2 37 37.5 334 295 A angustic Anolis angusticeps LargeIsland Twig 2 47 53 60 41 NA NA 334 (Schoener 1970), 8 (Schettino 1999) 295 (Schoener 1970), 9 (Schettino 1999) 60 (Butler et al. 2000) 40 (Schoener 1970), 41 (Butler et al. 2000) Schwartz and Henderson 1991, Williams 1983, Butler et al. 2000 Schoener 1970, Fitch 1981, Schettino 1999, Schwartz and Henderson 1991, Herrel et al. 2004, Butler et al. 2000, McCranie et al. 2005 Schoener 1970, Fitch 1981, Schettino 1999, Schwartz and Henderson 1991, Butler et al. 2000, Rogner 1997 Savage 2002, Taylor 1956 Schettino 1999, Schwartz and Henderson 1991 Fitch 1981, Schwartz and Henderson 1991, Williams 1983 Schoener 1970, Fitch 1981, Schettino 1999, Schwartz and Henderson 1991, Herrel et al. 2004, Butler et al. 2000 Schoener 1970, Stamps et al. 1997, Fitch 1981, Perry and Garland 2002, Cox et al. 2003, Schettino 1999, Schwartz and Henderson 1991, Herrel et al. 2004, Butler et al. 2000, NA NA NA NA Sometimes considered a subspecies of isolepis but data from Garrido and Hedges suggest that alt is the larger of the two. No data can be confidently assigned to isolepis rather than altitudinalis so we omit isolepis NA NA NA Species Island type ecomorph geo ecomorph Female SVL Male SVL min n females min n males n females n males refs notes Uetz 2006 A annecten A aquaticu A argenteo A argillac A armouri Anolis annectens Anolis aquaticus Anolis argenteolus Anolis argillaceus Anolis armouri Mainland Mainland LargeIsland LargeIsland LargeIsland NA NA Unique Unique TrunkGround 3 3 2 2 1 63.3 62 51 44.8 56 77.6 9 71 10 59.8 12 62 46.2 67 10 23 NA A auratus Anolis auratus Mainland NA 3 57 51 A bahoruco A baleatus A baracoae Anolis bahorucoensis LargeIsland GrassBush 2 44 51 NA Anolis baleatus LargeIsland CrownGiant 2 148 180 NA Anolis baracoae LargeIsland CrownGiant 2 155 172 A barahona Anolis barahonae LargeIsland CrownGiant 2 148 160 A barbatus Anolis barbatus LargeIsland Unique 2 157 170 A barbouri Anolis barbouri LargeIsland Unique 2 55 44 25 62 (Schettino 1999) 54 23 (Schoener 1970), 19 (Schettino 1999) NA 21 NA 45 NA NA 10 NA 10 NA 2 NA 2 NA A bartschi Anolis bartschi LargeIsland Unique 2 63.6 80 31 25 A bimacula Anolis bimaculatus SmallIsland NA 0 70 123 77 113 A biporcat Anolis biporcatus Mainland NA 3 105 105 19 9 (Barros et al. 2007) 9 (Fitch 1976, Fitch 1981), 1 (Taylor 1956), 10 (Fitch et al. 1976) 24 1 (Williams 1974), 10 (Barros et al. 2007) 10 (Fitch 1976, Fitch 1981), 2 (Taylor 1956), 12 (Fitch et al. 1976) Williams 1974, Barros et al. 2007 NA Fitch 1976, Fitch 1981, Cox et al. 2003, Savage 2002, Fitch and Hillis 1984, Taylor 1956, Fitch et al. 1976 NA 52 (Schettino 1999) 54 (Schoener 1970), 18 (Schettino 1999) Schettino 1999, Schwartz and Henderson 1991, Rogner 1997 Schoener 1970, Fitch 1981, Schettino 1999, Schwartz and Henderson 1991 Schwartz and Henderson 1991, Herrel et al. 2004, Williams 1983 19 (Fitch 1981), 8 (Fitch 1976), 15 (Vitt and de Carvalho 1995), 10+11 (Hoogmoed 1973) NA 45 (Fitch 1981), 31 (Fitch 1976), 21 (Vitt and de Carvalho 1995), 7+14 (Hoogmoed 1973), 1 (Boulenger 1896) NA NA NA 10 (Schettino 1999) NA 10 (Schettino 1999) NA NA 2 (Leal and Losos 2000) 2 (Leal and Losos 2000) NA NA 31 (Schettino 1999) 25 (Schettino 1999) 77 (Lazell 1972) 113 (Lazell 1972) Stamps et al. 1997, Fitch 1976, Fitch 1981, Cox et al. 2003, Avila-Pires 1995, Vitt and de Carvalho 1995, Andrews and Rand 1974, Hoogmoed 1973, Herrel et al. 2004, Boulenger 1896 Fitch 1981, Schwartz and Henderson 1991, Rogner 1997, Herrel et al. 2004, Williams 1983 Fitch 1981, Schwartz and Henderson 1991, Williams 1983 Schettino 1999, Schwartz and Henderson 1991 Fitch 1981, Schwartz and Henderson 1991, Herrel et al. 2004, Williams 1983 Schettino 1999, Schwartz and Henderson 1991, Herrel et al. 2004, Leal and Losos 2000 Schwartz and Henderson 1991, Herrel et al. 2004, Losos Pers. Comm Schettino 1999, Schwartz and Henderson 1991, Rogner 1997, Losos Pers. Comm Stamps et al. 1997, Fitch 1981, Roughgarden 1995, Schwartz and Henderson 1991, Andrews and Rand 1974, Herrel et al. 2004, Lazell 1972, Stamps and Andrews 1992, Powell et al. 2005 19 (Fitch 1981), 2 (Guyer and Donnelly 2005) 24 (Fitch 1981), 1 (Ruthven 1916), 2 (Guyer and Donnelly 2005) Fitch 1976, Fitch 1981, Campbell 1999, Andrews and Rand 1974, Herrel et al. 2004, Ruthven 1916, Guyer and Donnelly 2005 NA NA NA NA NA NA NA NA NA NA NA NA NA Species A bitectus Anolis bitectus Island type Mainland ecomorph NA geo ecomorph 3 Female SVL 54.7 Male SVL min n females 55.8 min n males 2 2 n females n males refs notes 2 (Meiri, unpublished) 2 (Meiri, unpublished) Meiri, unpublished NA 9 (Fitch 1981) 9 (Fitch 1981) Fitch 1981, Schettino 1999, Schwartz and Henderson 1991 15 (Schwartz 1980) 27 (Schwartz 1980) A bremeri Anolis bremeri LargeIsland TrunkGround 1 52.3 72 9 9 A breslini Anolis breslini LargeIsland TrunkGround 1 45 60 15 27 A breviros A brunnneu Anolis brevirostris LargeIsland Trunk 2 45 51 175 451 175 (Schoener 1970) 451 (Schoener 1970) Anolis brunneus SmallIsland TrunkCrown 0 70 76 A capito Anolis capito Mainland NA 3 97 91 15 NA 13 (Fitch 1981), 4 (Taylor 1956), 12 (Guyer and Donnelly 2005) NA 13 (Fitch 1981), 3 (Taylor 1956), 15 (Guyer and Donnelly 2005) A caroline Anolis carolinensis Mainland NA 3 57.5 NA NA 13 71 12 47 14 (Fitch 1981, Fitch et al. 1976), 8 (Guyer and Donnelly 2005) 14 (Fitch 1976), 47 (Gerber and Echternacht 2000), 1 (Boulenger 1885) 6 (Fitch 1981, Fitch et al. 1976), 6 (Guyer and Donnelly 2005) 12 (Fitch 1976), 1 (Boulenger 1885) Schwartz 1980 Schoener 1970, Fitch 1981, Schwartz and Henderson 1991, Williams 1983, Butler et al. 2000 Schwartz and Henderson 1991 Stamps et al. 1997, Fitch 1976, Fitch 1981, Savage 2002, Herrel et al. 2004, Taylor 1956, Guyer and Donnelly 2005 Tinkle et al. 1970, Dunham and Miles 1985, Stamps et al. 1997, Fitch 1970, 1981, Perry and Garland 2002, Cox et al. 2003, Andrews and Rand 1974, Gerber and Echternacht 2000, Boulenger 1885, Dunham et al. 1988 Fitch 1976, Fitch 1981, Fitch and Hillis 1984, Herrel et al. 2004, Guyer and Donnelly 2005, Fitch et al. 1976 Schwartz and Henderson 1991, Williams 1983 Schettino 1999, Schwartz and Henderson 1991 Schoener 1970, Fitch 1981, Schettino 1999, Schwartz and Henderson 1991 Schoener 1970, Fitch 1981, Schwartz and Henderson 1991, Williams 1983, Butler et al. 2000 Schoener 1970, Fitch 1981, Schwartz and Henderson 1991, Williams 1983 Schettino 1999, Schwartz and Henderson 1991 Schoener 1970, Fitch 1981, Schwartz and Henderson 1991, Herrel et al. 2004, Williams 1983, Butler et al. 2000 A carpente Anolis carpenteri Mainland NA 3 45 41 A caudalis Anolis caudalis LargeIsland Trunk 2 44 48 NA NA NA NA A centrali Anolis centralis LargeIsland Unique 2 46 47.2 NA NA NA NA A chamaele Anolis chamaeleonides 79 (Schoener), 33 (Fitch 1981) 42 (Schoener), 12 (Fitch 1981) A chlorocy Anolis chlorocyanus LargeIsland TrunkCrown 1 54.8 80 197 396 197 (Schoener 1970) 396 (Schoener 1970) A christop Anolis christophei LargeIsland Unique 2 45 49 33 27 33 (Schoener) 27 (Schoener) A clivicol Anolis clivicola LargeIsland GrassBush 2 45 49.4 10 9 10 (Schettino 1999) 9 (Schettino 1999) A coelesti A confusus Anolis coelestinus LargeIsland TrunkCrown 1 60.3 84 572 1242 Anolis confusus LargeIsland TrunkGround 1 48 53 3 12 3 (Schettino 1999) 1242 (Schoener 1970) 12 (Schettino 1999) Anolis conspersus LargeIsland TrunkCrown 1 47 76 35 NA 35 (Gerber and Echternacht 2000) Schettino 1999 Cox et al. 2003, Gerber and Echternacht 2000, Licht and Gorman 1970 6 (Butler et al. 2000) 22 (Butler et al. 2000) Fitch 1981, Roughgarden 1995, Schwartz and Henderson 1991, A conspers A cooki Anolis cooki LargeIsland LargeIsland Unique TrunkGround 2 1 172 59 14 177 70 79 NA 6 6 42 22 572 (Schoener 1970) NA Sometimes considered a subspecies of whitemani but distinguished by Schwartz (1980) NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Species Island type ecomorph geo ecomorph Female SVL Male SVL min n females min n males n females n males refs notes Williams 1983, Butler et al. 2000 A crassulu Anolis crassulus Mainland NA 3 56 53 7 8 A cristate A cupeyale Anolis cristatellus Anolis cupeyalensis LargeIsland TrunkGround 1 76 75 498 876 LargeIsland GrassBush 2 31 33 9 10 A cupreus Anolis cupreus Mainland NA 3 51 57 461 657 A cuvieri A cyanople A cybotes A darlingt A desechen A distichu A dolichoc A equestri Anolis cuvieri Anolis cyanopleurus Anolis cybotes LargeIsland CrownGiant 2 135 137 LargeIsland GrassBush 2 36.2 43 LargeIsland TrunkGround 1 Anolis darlingtoni LargeIsland Twig 2 Anolis desechensis SmallIsland TrunkGround 0 Anolis distichus Anolis dolichocephalus LargeIsland Trunk LargeIsland LargeIsland 66 NA 16 NA 81 27 NA 148 74 NA 45 57 NA 2 48 58 GrassBush 2 52 51 CrownGiant 2 170 190 245 3 NA 616 NA 1022 NA 385 468 7 (Fitch 1976, Fitch 1981), 6 (McCranie et al. 1992) 498 (Schoener 1970), 19 (Butler and Losos 2002) 8 (Fitch 1976, Fitch 1981), 3 (McCranie et al. 1992) 9 (Schettino 1999) 876 (Schoener 1970), 20 (Butler and Losos 2002) 10 (Schettino 1999) 461 (Fitch 1981), 428 (Fitch 1976) 657 (Fitch 1981), 640 (Fitch 1976) 16 (Schoener 1970), 3 (Butler and Losos 2002) 27 (Schoener 1970), 6 (Butler and Losos 2002) NA NA 148 (Schoener 1970), 133 (Fitch), 27 (Fobes et al. 1992) 245 (Schoener 1970), 230 (Fitch 1981), 18 (Fobes et al. 1992) NA 3 (Thomas and Hedges 1991) NA NA 616 (Schoener 1970) 1022 (Schoener 1970) NA NA 385 (Schoener 1970) 468 (Schoener 1970) A ernestwi Anolis equestris Anolis ernestwilliamsi SmallIsland TrunkGround 0 60 82 NA NA NA NA A etheridg A Anolis etheridgei Anolis LargeIsland LargeIsland Unique Unique 2 2 43 61 43 72 NA NA NA NA NA NA NA NA Fitch 1976, Fitch 1981, Cox et al. 2003, Kohler et al. 2006, McCranie et al. 1992 Schoener 1970, Fitch 1981, Perry and Garland 2002, Butler and Losos 2002, Roughgarden 1995, Savage 2002, Schwartz and Henderson 1991, Herrel et al. 2004, Smith 1934b, Williams 1983, Butler et al. 2000 Schettino 1999, Schwartz and Henderson 1991 Clobert et al. 1998, Stamps et al. 1997, Fitch 1973a, 1976, 1981, Perry and Garland 2002, Cox et al. 2003, Savage 2002, Dunham et al. 1988, Fitch and Hillis 1984 Schoener 1970, Butler and Losos 2002, Schwartz and Henderson 1991, Andrews and Rand 1974, Herrel et al. 2004, Butler et al. 2000, Perry and garland 2002, Roughgarden 1995, Williams 1983 Schettino 1999, Schwartz and Henderson 1991 Schoener 1970, Fitch 1981, Schwartz and Henderson 1991, Licht and Gorman 1970, Fobes et al. 1992, Herrel et al. 2004, Williams 1983, Butler et al. 2000 Thomas and Hedges 1991, Schwartz and Henderson 1991, Williams 1983 Schwartz and Henderson 1991 Schoener 1970, Stamps et al. 1997, Fitch 1981, Perry and Garland 2002, Cox et al. 2003, Schwartz and Henderson 1991, Rogner 1997, Herrel et al. 2004, Williams 1983, Stamps and Andrews 1992, Butler et al. 2000 Fitch 1981, Schwartz and Henderson 1991, Williams 1983 Schoener 1970, Fitch 1981, Schettino 1999, Schwartz and Henderson 1991, Dalrymple 1980, Herrel et al. 2004, Butler et al. 2000 Roughgarden 1995, Schwartz and Henderson 1991 Schwartz and Henderson 1991, Williams 1983 Schwartz and Henderson 1991, NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Species Island type ecomorph geo ecomorph Female SVL Male SVL min n females eugenegr eugenegrahami A evermann Anolis evermanni LargeIsland TrunkCrown 1 52.4 78 A ferreus Anolis ferreus SmallIsland NA 0 65 119 NA A fowleri Anolis fowleri LargeIsland Unique 2 75 77 NA A fuscoaur Anolis fuscoauratus Mainland NA 3 52 min n males n males refs notes 19 (Butler and Losos 2002) 17 (Butler and Losos 2002) NA NA NA NA NA NA 47 22 (Fitch 1981), 10 (Duellman and Mendelson 1995), 11 (Hoogmoed 1973), 15+12 (Duellman 2005), 1 (Lotzkat 2007), 108 (Vitt et al. 2003) NA 21 (Fitch 1981), 6 (Duellman and Mendelson 1995), 11 (Hoogmoed 1973), 7 (Duellman 2005), 1 (Lotzkat 2007), 47 (Vitt et al. 2003) Williams 1983 Losos 1990, Fitch 1981, Butler and Losos 2002, Roughgarden 1995, Schwartz and Henderson 1991, Herrel et al. 2004, Williams 1983, Butler et al. 2000 Roughgarden 1995, Schwartz and Henderson 1991, Herrel et al. 2004, Lazell 1972, Lazell 1964 Schwartz and Henderson 1991, Williams 1983 68 (Schoener 1970), 12 (Butler and Losos 2002), 7 (Herrel et al. 2004) 3 (Schettino 1999) 86 (Schoener 1970), 10 (Butler and Losos 2002), 6 (Herrel et al. 2004) 5 (Schettino 1999) 61 (Lazell 1972) 111 (Lazell 1972) 19 49 17 108 A garmani A garridoi Anolis garmani Anolis garridoi LargeIsland LargeIsland CrownGiant Twig 2 2 95 36.8 132 41.8 68 3 86 5 A gingivin Anolis gingivinus SmallIsland NA 0 55 72 61 111 n females A grahami Anolis grahami LargeIsland TrunkCrown 1 64 75 21 23 21 (Butler and Losos 2002), 1 (Boulenger 1885), 17 (Herrel et al. 2004) A guafe A guamuhay A guazuma Anolis guafe LargeIsland TrunkGround 1 40 48.8 13 24 13 (Schettino 1999) 18 (Butler and Losos 2002), 1 (Boulenger 1885), 23 (Herrel et al. 2004) 24 (Schettino 1999) 1 (Schettino 1999) NA 3 (Schettino 1999) 7 (Schettino 1999) 19 (Butler and Losos 2002) 18 (Butler and Losos 2002) NA NA 128 (Schoener 1970) 203 (Schoener 1970?) A gundlach A haetianu A henderso Anolis guamuhaya LargeIsland Unique 2 162 Anolis guazuma LargeIsland Twig 2 41 48.5 3 7 Anolis gundlachi LargeIsland TrunkGround 1 52 75 19 18 Anolis haetianus LargeIsland TrunkGround 1 60 75 Anolis hendersoni LargeIsland GrassBush 2 42.6 NA 1 49.3 NA NA NA 128 203 Fitch 1976, Fitch 1981, Duellman and Mendelson 1995, Avila-Pires 1995, Duellman 1978, Andrews and Rand 1974, Dixon and Soini 1986, Hoogmoed 1973, Duellman 2005, Herrel et al. 2004, Lotzkat 2007, Vitt et al. 2003, Lotzkat 2007 Schoener 1970, Stamps et al. 1997, Fitch 1981, Trivers 1976, Butler and Losos 2002, Schwartz and Henderson 1991, Rogner 1997, Butler et al. 2000, Losos 1990, Herrel et al. 2004, Williams 1983 Schettino 1999 Roughgarden 1995, Schwartz and Henderson 1991, Herrel et al. 2004, Lazell 1972, Stamps and Andrews 1992, Powell et al. 2005 Fitch 1981, Butler and Losos 2002, Cox et al. 2003, Schwartz and Henderson 1991, Andrews and Rand 1974, Boulenger 1885, Licht and Gorman 1970, Rogner 1997, Herrel et al. 2004, Williams 1983, Butler et al. 2000 NA NA NA NA NA NA NA Schettino 1999 NA Schettino 1999 Schettino 1999, Schwartz and Henderson 1991 Losos 1990, Fitch 1981, Butler and Losos 2002, Roughgarden 1995, Schwartz and Henderson 1991, Andrews and Rand 1974, Rogner 1997, Herrel et al. 2004, Williams 1983, Stamps and Andrews 1992, Butler et al. 2000 NA Schwartz and Henderson 1991 Schoener 1970, Fitch 1981, Schwartz and Henderson 1991, Williams 1983, Butler et al. 2000 NA NA NA NA Species A homolech A humilis Anolis homolechis Anolis humilis Island type LargeIsland Mainland ecomorph TrunkGround geo ecomorph 1 Female SVL 55.8 Male SVL 70 NA 3 44 45 min n females NA min n males NA 222 216 n females n males NA NA 106 (Fitch), 1 (Taylor 1956), 222 (Guyer and Donnelly 2005) 155 (Fitch 1981), 29 (Fitch and Hillis 1984), 1 (Taylor 1956), 216 (Guyer and Donnelly 2005) A imias Anolis imias LargeIsland TrunkGround 1 46.5 67.4 2 5 2 (Schettino 1999) A inexpect Anolis inexpectatus LargeIsland GrassBush 2 35 37 15 16 15 (Schettino 1999) 5 (Schettino 1999) 16 (Schettino 1999) 19 (Butler et al. 2000) 20 (Butler et al. 2000) A insolitu Anolis insolitus LargeIsland Twig 2 44 47 19 20 A intermed Anolis intermedius Mainland NA 3 54 54 98 241 A isthmicu Anolis isthmicus Mainland NA 3 58 63 9 25 A jubar Anolis jubar LargeIsland TrunkGround 1 53.2 62 A krugi Anolis krugi LargeIsland GrassBush 2 39.3 55 19 A laeviven Anolis laeviventris Mainland NA 3 65 61 A leachi Anolis leachii SmallIsland NA 0 70 123 A lemurinu A limifron Anolis lemurinus Anolis limifrons Mainland Mainland NA NA 3 3 79 51 79 51 98 (Fitch), 3 (Taylor 1956) 9 (Fitch 1981), 3 (Fitch 1978) 241 (Fitch 1981) 25 (Fitch 1981), 6 (Fitch and Hillis 1984), 8 (Fitch 1978) NA NA 18 19 (Butler and Losos 2002) 13 24 13 (Fitch 1976) 18 (Butler and Losos 2002) 24 (Fitch 1976), 1 (Barbour 1932a&b) 41 47 41 (Lazell 1972) 13 16 (Fitch 1976), 15 (Guyer and Donnelly 2005) 47 (Lazell 1972) 13 (Fitch 1976), 3 (Fitch and Hillis 1984), 10 (Guyer and Donnelly 2005) 284 (Fitch 1981), 2 (Taylor 1956), 46 (Guyer and Donnelly 2005), 21 (Kohler and Sunyer 2008), 33 (Fitch et al. 1976) 400 (Fitch 1981), 65 (Fitch and Hillis 1984), 1 (Taylor 1956), 102 (Guyer and Donnelly 2005), 50 (Kohler and Sunyer 2008), 42 (Fitch et al. 1976) NA NA 16 284 400 refs Schoener 1970, Fitch 1981, Schettino 1999, Schwartz and Henderson 1991, Butler et al. 2000 Stamps et al. 1997, Fitch 1973a, 1973b, 1976, 1981, Savage 2002, Andrews 1979, Andrews and Rand 1974, Herrel et al. 2004, Taylor 1956, Stamps and Andrews 1992, Vitt et al. 2002, Guyer and Donnelly 2005, Dunham et al. 1988, Kohler et al. 2006, Fitch and Hillis 1984 Schettino 1999, Schwartz and Henderson 1991 Schettino 1999, Schwartz and Henderson 1991 Schwartz and Henderson 1991, Williams 1983, Butler et al. 2000 Clobert et al. 1998, Fitch 1973a, 1976, 1981, Savage 2002, Taylor 1956, Fitch and Hillis 1984 Fitch 1981, Fitch and Hillis 1984, Fitch 1978 Schettino 1999, Schwartz and Henderson 1991 Losos 1990, Fitch 1981, Butler and Losos 2002, Roughgarden 1995, Schwartz and Henderson 1991, Herrel et al. 2004, Williams 1983, Butler et al. 2000 Fitch 1976, Barbour 1932a&b Roughgarden 1995, Lazell 1972, Kolbe et al. 2008 Fitch 1976, Savage 2002, Andrews and Rand 1974, Fitch and Hillis 1984, Herrel et al. 2004, Klutsch et al. 2007, McCranie et al. 2005, Guyer and Donnelly 2005 Tinkle et al. 1970, Clobert et al. 1998, Fitch 1973a, 1973b, 1976, 1981, Perry and Garland 2002, Andrews 1976, Cox et al. 2003, Savage 2002, Andrews 1979, Andrews and Rand 1974, Herrel et al. 2004, Taylor 1956, Stamps and Andrews 1992, Guyer and Donnelly 2005, Dunham et al. 1988, Kohler and Sunyer 2008, Fitch et al. 1976, Stamps et al. 1997, Smith 1981 notes NA NA NA NA NA NA NA NA NA NA NA NA NA Species Island type ecomorph geo ecomorph Female SVL Male SVL min n females min n males n females n males refs 21 (Butler and Losos 2002), 58 (Herrel et al. 2004) Losos 1990, Stamps et al. 1997, Fitch 1981, Perry and Garland 2002, Butler and Losos 2002, Cox et al. 2003, Schwartz and Henderson 1991, Andrews and Rand 1974, Licht and Gorman 1970, Herrel et al. 2004, Williams 1983, Butler et al. 2000, Losos Pers. Comm A lineatop Anolis lineatopus LargeIsland TrunkGround 1 51 73 45 58 24 (Butler and Losos 2002), 45 (Herrel et al. 2004) A lionotus Anolis lionotus Mainland NA 3 70 76 44 59 44 (Campbell 1973) 59 (Campbell 1973) A lividus A longicep Anolis lividus Anolis longiceps SmallIsland SmallIsland NA TrunkCrown 0 0 55 76 70 83 64 NA 44 (Lazell 1972) NA 64 (Lazell 1972) NA A longitib A loveridg Anolis longitibialis Anolis loveridgei LargeIsland Mainland TrunkGround NA 1 3 59 72 117.9 NA NA NA 2 (McCranie 1992) A loysiana Anolis loysiana LargeIsland Trunk 2 204 (Schoener 1970), 16 (Schettino 1999), 1 (Boulenger 1885) NA NA 57 (Schoener 1970), 11 (Schettino 1999) 298 (Schoener 1970), 17 (Schettino 1999), 1 (Boulenger 1885) NA 38.2 44 NA NA 2 47.2 40 57 40 (Schoener), 10 (Schettino 1999) Campbell 1973 Fitch 1981, Roughgarden 1995, Schwartz and Henderson 1991, Andrews and Rand 1974, Herrel et al. 2004, Lazell 1972 Schwartz and Henderson 1991 Schwartz and Henderson 1991, Williams 1983 McCranie 1992 Schoener 1970, Fitch 1981, Schettino 1999, Schwartz and Henderson 1991, Butler et al. 2000 notes NA A. lionotus measurements from Panama (as suggested by Savage), all other "lionotus" measurements are taken to be from oxylophus NA NA NA NA NA A lucius Anolis lucius LargeIsland Unique 2 60 70 A luteogul A macilent A marcanoi Anolis luteogularis Anolis macilentus LargeIsland LargeIsland CrownGiant GrassBush 2 2 176 36 191 41 NA NA NA NA NA NA NA NA Anolis marcanoi LargeIsland TrunkGround 1 49 65 NA NA NA NA A marmorat Anolis marmoratus SmallIsland NA 0 57 82 NA NA NA NA A marron A maynardi Anolis marron LargeIsland Trunk 2 42 50 NA NA NA NA Schoener 1970, Fitch 1981, Schettino 1999, Schwartz and Henderson 1991, Boulenger 1885, Rogner 1997 Schettino 1999, Schwartz and Henderson 1991 Schettino 1999 Schwartz and Henderson 1991, Williams 1983 Roughgarden 1995, Schwartz and Henderson 1991, Rogner 1997, Lazell 1972, Lazell 1964 Schwartz and Henderson 1991, Williams 1983 Anolis maynardi SmallIsland TrunkCrown 0 48 76 NA NA NA NA Schwartz and Henderson 1991 NA A meridion Anolis meridionalis Mainland NA 3 46.5 48 9 (Vitt and Caldwell 1993) 3 (Vitt and Caldwell 1993) Vitt and Caldwell 1993 NA 204 298 9 3 A mestrei Anolis mestrei LargeIsland TrunkGround 1 48.5 56.5 10 8 A monensis Anolis monensis SmallIsland TrunkGround 0 46 59 34 24 A monticol Anolis monticola LargeIsland Unique 2 42 56 NA NA 10 (Schettino 1999) 8 (Schettino 1999) 34 (Losos Pers. Comm.) 24 (Losos Pers. Comm.) NA NA Fitch 1981, Schettino 1999, Schwartz and Henderson 1991 Schwartz and Henderson 1991, Herrel et al. 2004, Losos Pers. Comm, Powell pers.com. Fitch 1981, Schwartz and Henderson 1991, Williams 1983, Losos Pers. Comm NA NA NA NA NA NA NA NA NA Species A nebuloid Anolis nebuloides Island type Mainland ecomorph NA geo ecomorph 3 Female SVL Male SVL 44 min n females 55.5 min n males 4 7 A nitens Anolis nitens Mainland NA 3 85 83 A noblei Anolis noblei LargeIsland CrownGiant 2 172.1 190 A nubilus Anolis nubilis SmallIsland NA 0 52 81 6 19 A occultus Anolis occultus LargeIsland Twig 2 39.2 40 10 4 A oculatus Anolis oculatus SmallIsland NA 0 65 96 A olssoni Anolis olssoni LargeIsland GrassBush 2 44 50 A onca Anolis onca Mainland NA 3 67 75 A opalinus Anolis opalinus LargeIsland TrunkCrown 1 46 56 A ophiolep A oporinus Anolis ophiolepis LargeIsland GrassBush 2 39.5 Anolis oporinus LargeIsland TrunkCrown 1 46.7 39.8 NA 36 NA 63 NA NA NA 97 114 NA 1 118 232 20 1 10 NA n females 4 (Smith 1934) 1 (Duellman and Mendelson 1995), (Lotzkat 2007), 36 (Vitt et al. 2008), 1 (dos Santos et al. 2007) refs notes 2 (Fitch and Hillis 1984), 3 (Fitch 1978), 7 (Smith 1934) Fitch and Hillis 1984, Smith 1934 NA 2 (Duellman and Mendelson 1995), (Lotzkat 2007), 63 (Vitt et al. 2008) NA NA 6 (Lazell 1972) 19 (Lazell 1972) 10 (Butler and Losos 2002) 4 (Butler and Losos 2002) NA NA NA 114 (Schoener 1970) 1 (Boulenger 1885) 118 (Schoener), 84 (Fitch), 21 (Butler and Losos 2002) 232 (Schoener), 18 (Butler and Losos 2002) 97 (Schoener 1970) 20 (Schettino 1999) 1 (Garrido and Hedges 2001) Mainland NA 3 52 57 8 8 A oscellos Anolis ortonii Anolis ocelloscapularis 8 (Fitch 1976), 5 (Hoogmoed 1973), 1+2 (Duellman 2005) Mainland NA 3 46.5 42 5 1 5 (Kohler et al. 2001) A oxylophu A Anolis oxylophus Anolis pachypus Mainland Mainland NA NA 3 3 72 50 85 50 24 24 19 32 24 (Fitch), 14 (Guyer and Donnelly 2005) 24 (Fitch 1981) A ortonii n males 10 (Schettino 1999) NA 8 (Fitch 1976), 4 (Hoogmoed 1973), 2 (Duellman 2005) 1 (Kohler et al. 2001) 19 (Fitch 1981), 3 (Fitch and Hillis 1984), 1 (Boulenger 1894), 13 (Guyer and Donnelly 2005) 32 (Fitch 1981) Duellman and Mendelson 1995, Vitt and Zani 1998, Herrel et al. 2004, Lotzkat 2007, Vitt et al. 2002, Vitt et al. 2008, dos Santos et al. 2007 Schettino 1999, Schwartz and Henderson 1991 Fitch 1981, Roughgarden 1995, Schwartz and Henderson 1991, Lazell 1972 Losos 1990, Fitch 1981, Butler and Losos 2002, Roughgarden 1995, Schwartz and Henderson 1991, Williams 1983, Butler et al. 2000 Stamps et al. 1997, Fitch 1981, Andrews 1976, Roughgarden 1995, Andrews 1979, Schwartz and Henderson 1991, Andrews and Rand 1974, Rogner 1997, Herrel et al. 2004, Lazell 1972, Dunham et al. 1988 Schoener 1970, Fitch 1981, Schwartz and Henderson 1991, Herrel et al. 2004, Williams 1983, Butler et al. 2000 Andrews and Rand 1974, Boulenger 1885 Schoener 1970, Losos 1990, Fitch 1981, Butler and Losos 2002, Cox et al. 2003, Schwartz and Henderson 1991, Andrews and Rand 1974, Rogner 1997, Herrel et al. 2004, Williams 1983, Butler et al. 2000 Schettino 1999, Schwartz and Henderson 1991, Herrel et al. 2004, Butler et al. 2000 NA NA NA NA NA NA NA NA NA Garrido and Hedges 2001 Cox et al. 2003, Fitch 1976, AvilaPires 1995, Duellman 1978, Dixon and Soini 1986, Hoogmoed 1973, Duellman 2005, Herrel et al. 2004 NA NA Kohler et al. 2001 NA Fitch 1981, Fitch and Hillis 1984, Boulenger 1894, Guyer and Donnelly 2005 Fitch 1976, Fitch 1981, Savage 2002 see notes on lionotus NA Island type ecomorph Anolis pandoensis Mainland NA Anolis paternus LargeIsland Twig Species pachypus A pandoens A paternus geo ecomorph Female SVL Male SVL 3 60 53 2 47.8 50 min n females min n males NA NA 14 A placidus Anolis placidus LargeIsland Twig 2 46 45.3 A poecilop Anolis poecilopus Mainland NA 3 68 74 9 8 A pogus Anolis pogus SmallIsland NA 0 42 50 25 A polylepi Anolis polylepis Mainland NA 3 53 57 48 A polyrhac Anolis polyrhachis Mainland NA 3 50 A poncensi Anolis poncensis LargeIsland GrassBush 2 40 48 6 6 A porcatus Anolis porcatus LargeIsland TrunkCrown 1 61.4 74.3 300 688 A porcus Anolis porcus LargeIsland Unique 2 172 NA 16 NA NA 3 162 NA n females n males refs notes NA NA 16 (Schettino 1999) Savage 2002 Schettino 1999, Schwartz and Henderson 1991 Hedges and Thomas 1989, Schwartz and Henderson 1991 Stamps et al. 1997, Fitch 1981, Williams 1984b Roughgarden 1995, Powell et al. 2005 Stamps et al. 1997, Fitch 1976, Fitch 1981, Perry and Garland 2002, Savage 2002, Andrews 1979, Andrews and Rand 1974, Fitch and Hillis 1984, Stamps and Andrews 1992 NA 14 (Schettino 1999) NA NA 9 (Fitch 1981) 8 (Fitch 1981) 40 25 (Lazell 1972) 40 (Lazell 1972) 40 48 (Fitch 1981) 1 (Smith 1968), 3 (Campbell et al. 1989, McCranie et al. 1993) NA 6 (Butler and Losos 2002) 6 (Butler and Losos 2002) 300 (Schoener 1970) 688 (Schoener 1970) NA NA 40 (Fitch 1981), 7 (Fitch and Hillis 1984) NA NA 131 (Schoener), 20 (Butler and Losos 2002) 251 (Schoener 1970), 19 (Butler and Losos 2002) A pulchell Anolis pulchellus LargeIsland GrassBush 2 37.5 51 131 251 A pumilis A purpurgu A quadrioc Anolis pumilus Anolis purpurgularis Anolis quadriocellifer LargeIsland Unique 2 39.2 34.2 11 7 Mainland NA 3 58.1 59.3 4 9 11 (Schettino 1999) 4 (McCranie et al. 1993) LargeIsland TrunkGround 1 48.5 55 10 10 10 (Schettino 1999) A quercoru Anolis quercorum Mainland NA 3 41 46 16 26 16 (Fitch 1981), 6 (Fitch 1978) 7 (Schettino 1999) 9 (McCranie et al. 1993) 10 (Schettino 1999) 26 (Fitch 1981), 16 (Fitch and Hillis 1984), 12 (Fitch 1978) A recondit Anolis reconditus LargeIsland Unique 2 84 100 NA NA A rejectus Anolis rejectus LargeIsland GrassBush 2 36.7 37 7 6 7 (Schettino 1999) 6 (Schettino 1999) A ricordii Anolis ricordi LargeIsland CrownGiant 2 151 160 40 88 40 (Butler et al. 2000) A rubribar Anolis rubribarbus LargeIsland TrunkGround 1 47.5 65.9 4 10 4 (Schettino 1999) 88 (Butler et al. 2000) 10 (Schettino 1999) NA NA Smith 1968, Campbell et al. 1989, McCranie et al. 1993 Losos 1990, Fitch 1981, Butler and Losos 2002, Roughgarden 1995, Schwartz and Henderson 1991, Williams 1983, Butler et al. 2000 Schoener 1970, Fitch 1981, Schettino 1999, Schwartz and Henderson 1991, Rogner 1997, Herrel et al. 2004, Butler et al. 2000 Schettino 1999, Schwartz and Henderson 1991, Herrel et al. 2004 Schoener 1970, Losos 1990, Fitch 1981, Butler and Losos 2002, Roughgarden 1995, Schwartz and Henderson 1991, Herrel et al. 2004, Williams 1983, Butler et al. 2000 Schettino 1999, Schwartz and Henderson 1991 Cox et al. 2003, McCranie et al. 1993 Schettino 1999, Schwartz and Henderson 1991 Fitch 1981, Fitch and Hillis 1984, Fitch 1978 Schwartz and Henderson 1991, Herrel et al. 2004, Williams 1983, Losos Pers. Comm Schettino 1999, Schwartz and Henderson 1991 Fitch 1981, Schwartz and Henderson 1991, Williams 1983, Butler et al. 2000 Schettino 1999 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Species A sabanus Anolis sabanus Island type SmallIsland ecomorph NA geo ecomorph 0 Female SVL 51 Male SVL min n females 69 min n males 26 57 n females n males 26 (Lazell 1972) 57 (Lazell 1972) 146 (Schoener 1970), 25 (Butler and Losos 2002), 451 (Campbell and Echternacht 2003) 426 (Schoener 1970), 21 (Butler and Losos 2002), 82 (Gerber and Echternacht 2000), 461 (Campbell and Echternacht 2003) Fitch 1981, Roughgarden 1995, Schwartz and Henderson 1991, Lazell 1972, Powell et al. 2005 Schoener 1970, Losos 1990, Stamps et al. 1997, Fitch 1981, Perry and Garland 2002, Butler and Losos 2002, Campbell 1999, Schettino 1999, Smith 1946, Schwartz and Henderson 1991, Andrews and Rand 1974, Gerber and Echternacht 2000, Licht and Gorman 1970, Rogner 1997, Herrel et al. 2004, Maisano 2002, Campbell and Echternacht 2003, Williams 1983, Stamps and Andrews 1992, Butler et al. 2000, McCranie et al. 2005, Cox et al. 2003 42 (Lazell 1972) 77 (Lazell 1972) Lazell 1972 1 (Cope 1895) 1 (Cope 1895) A sagrei A schwartz Anolis sagrei LargeIsland TrunkGround 1 57 73 451 461 Anolis schwartzi SmallIsland NA 0 43 49 42 77 A scriptus Anolis scriptus SmallIsland NA 0 64 76 1 1 A semiline Anolis semilineatus LargeIsland GrassBush 2 43 47 43 70 43 (Schoener 1970) 47 34 (Fitch 1981), 12 (Alvarez del Toro and Smith 1956) 70 (Schoener 1970) 47 (Fitch 1981), 34 (Fitch and Hillis 1984), 5 (Alvarez del Toro and Smith 1956) NA NA 48 (Butler et al. 2000) 28 (Butler et al. 2000) NA A sericeus Anolis sericeus Mainland NA 3 47 52 A sheplani Anolis sheplani LargeIsland Twig 2 40 41 A shrevei Anolis shrevei LargeIsland TrunkGround 1 50 60 A singular Anolis singularis LargeIsland TrunkCrown 1 45 52 A smallwoo Anolis smallwoodi LargeIsland CrownGiant 2 165 190 A smaragdi Anolis smaragdinus SmallIsland TrunkCrown 0 51 64 A sminthus Anolis sminthus Mainland NA 3 58 51 A strahmi A stratulu Anolis strahmi Anolis stratulus LargeIsland LargeIsland TrunkGround TrunkCrown 1 1 64 46 79 50 34 NA NA 48 NA 28 NA NA NA NA NA NA 7 NA NA 10 NA 48 129 refs 7 (Fitch 1981), 6 (McCranie et al. 1992) Schwartz and Henderson 1991, Herrel et al. 2004, Cope 1895 Schoener 1970, Fitch 1981, Schwartz and Henderson 1991, Andrews and Rand 1974, Williams 1983, Butler et al. 2000 Fitch 1973a, 1976, 1981, Savage 2002, Fitch and Hillis 1984, Fitch 1978, Alvarez del Toro and Smith 1956, McCranie et al. 2005, Kohler et al. 2006 Hedges and Thomas 1989, Schwartz and Henderson 1991, Williams 1983 notes NA NA NA NA NA NA NA NA Schwartz and Henderson 1991, Williams 1983, Butler et al. 2000 Schwartz and Henderson 1991, Williams 1983 NA NA Schettino 1999, Schwartz and Henderson 1991, Herrel et al. 2004 NA Stamps et al. 1997, Schwartz and Henderson 1991, Herrel et al. 2004 NA Fitch 1976, Fitch 1981, Fitch and Hillis 1984, Kohler et al. 2006, McCranie et al. 1992 NA NA 10 (Fitch 1981), 2+7 (Fitch and Hillis 1984), 9 (McCranie et al. 1992) NA NA 48 (Schoener 1970), 26 (Butler and Losos 2002) 129 (Schoener 1970), 11 (Butler and Losos 2002) Schwartz and Henderson 1991, Herrel et al. 2004, Williams 1983 Schoener 1970, Losos 1990, Fitch 1981, Butler and Losos 2002, Roughgarden 1995, Avila-Pires 1995, Schwartz and Henderson 1991, Herrel et al. 2004, Williams 1983 NA NA NA Species Island type ecomorph geo ecomorph Female SVL Male SVL min n females min n males n females n males refs notes Fitch 1976, Fitch 1981, Duellman and Mendelson 1995, Avila-Pires 1995, Duellman 1978, Andrews and Rand 1974, Dixon and Soini 1986, Herrel et al. 2004, Vitt et al. 2002, Amaral 1933 NA A tropidon Anolis tropidonotus Mainland NA 3 55 56 34 16 34 (Fitch) 129 (Fitch 1981), 2 (Duellman and Mendelson 1995), 1 (Amaral 1933), 50 (Vitt et al. 2002) 24 (Fitch 1976, Fitch 1981), 1 (Ruthven 1916), 2 (Barbour 1932a&b) 16 (Fitch 1981), 10 (Fitch and Hillis 1984), 1 (Alvarez del Toro and Smith 1956) A uniformi Anolis uniformis Mainland NA 3 40.5 40.3 13 29 13 (Fitch 1981) 29 (Fitch 1981) A trachyde Anolis trachyderma Mainland NA 3 58 61 101 129 101 (Fitch 1981), 28 (Vitt et al. 2002) A tropidog Anolis tropidogaster Mainland NA 3 54 63 15 24 15 (Fitch 1976, Fitch 1981) 98 71 (Lazell 1972) 98 (Lazell 1972) 43 10 55 4 NA 43 (Schwartz 1990), 18 (Butler et al. 2000) 10 (Fitch 1981) NA 55 (Schwartz 1990), 19 (Butler et al. 2000) 4 (Fitch 1981) Fitch 1976, Fitch 1981, Cox et al. 2003, Ruthven 1916, Barbour 1932a&b Stamps et al. 1997, Fitch 1976, Fitch 1981, Fitch and Hillis 1984, Rogner 1997, Alvarez del Toro and Smith 1956, Kohler et al. 2006, D'Cruze and Stafford 2006 Fitch 1976, Fitch 1981, Kohler et al. 2006 Stamps et al. 1997, Losos 1990, Fitch 1981, Schoener 1970, Perry and Garland 2002, Butler and Losos 2002, Schwartz and Henderson 1991, Herrel et al. 2004, Williams 1983, Butler et al. 2000, Andrews and Rand 1974, Losos Pers. Comm Schettino 1999, Schwartz and Henderson 1991 Schettino 1999, Schwartz and Henderson 1991, Herrel et al. 2004, Losos Pers. Comm Stamps et al. 1997, Fitch 1981, Roughgarden 1995, Schwartz and Henderson 1991, Lazell 1972, Stamps and Andrews 1992, Powell et al. 2005, Kolbe et al. 2008 Schwartz and Henderson 1991, Williams 1983 Schwartz and Henderson 1991, Herrel et al. 2004, Schwartz 1980, Williams 1983, Butler et al. 2000 Fitch 1976, Fitch 1981, Savage 2002 8 6 8 (Kohler and McCranie 2001) 6 (Kohler and McCranie 2001) Kohler and McCranie 2001 A valencie Anolis valencienni LargeIsland Twig 2 74 86 29 40 29 (Schoener), 15 (Butler and Losos 2002), 21 (Herrel et al. 2004) A vanidicu Anolis vanidicus LargeIsland GrassBush 2 37 39 9 10 9 (Schettino 1999) 40 (Schoener), 29 (Butler and Losos 2002), 25 (Herrel et al. 2004) 10 (Schettino 1999) 12 (Schettino 1999) 21 (Schettino 1999) A vermicul Anolis vermiculatus LargeIsland Unique 2 84.9 124.5 A wattsi Anolis wattsi SmallIsland NA 0 49 58 A websteri Anolis websteri LargeIsland Trunk 2 47 51 A whiteman A woodi Anolis whitemani Anolis woodi LargeIsland Mainland TrunkGround NA 1 3 54 86 67 95 A zeus Anolis zeus Mainland NA 3 44 40 12 21 144 NA NA NA NA NA NA NA NA NA NA NA NA NA Supplementary Appendix S2 Data sources cited in Supplementary Appendix S1 Alvarez Del Toro, M., and H. M. Smith. 1956. Notulae herpetologicae Chiapasiae. I. Herpetologica 12:3-17. Amaral, A. D. 1933. Estudos sobre Lacertilios neotropicos. I. novos generos e especies de largartos do Brasil. Memorias do Instituto de Butantan 7. Andrews, R. M. 1976. Growth rate in island and mainland anoline lizards. Copeia 1976:477-482. Andrews, R. M. 1979. Evolution of life histories: a comparison of Anolis lizards from matched island and mainland habitats. Breviora 454:1-51. Andrews, R. M., and A. S. Rand. 1974. Reproductive effort in anoline lizards. Ecology 55:1317-1327. Avila-Pires, T. C. S. 1995. Lizards of Brazilian Amazonia. Backhuys Publishers, Leiden. Barbour, T. 1932a. New Anoles. Proceedings of the New England Zoological Club 12:97-102. Barbour, T. 1932b. On a new Anolis from Western Mexico. Copeia 1932:11-12. Barros, T. R., L. F. Esqueda, A. Mijares-Urrutia, E. La Marca, and K. E. Nicholson. 2007. The anoline “lost link” rediscovered: variation and distribution of Anolis annectens Williams 1974 (Squamata Polychrotidae). Tropical Zoology 20:4153. Boulenger, G. A. 1885. Catalogue of the Lizards in the British Museum (Nat. Hist.) II. Iguanidae, Xenosauridae, Zonuridae, Anguidae, Anniellidae, Helodermatidae, Varanidae, Xantusiidae, Teiidae, Amphiesbaenidae. Trustees of the British Museum, London. Boulenger, G. A. 1894. Second report on additions to the lizard collection in the Natural History Museum. Proceedings of the Zoological Society of London 1894:722-736. Boulenger, G. A. 1896. Descriptions of new reptiles and batrachians from Colombia. Annals and Magazine of Natural History 17:16-21. Butler, M. A., and J. B. Losos. 2002. Multivariate sexual dimorphism, sexual selection, and adaptation in Greater Antillean Anolis lizards. Ecological Monographs 72:541-559. Butler, M. A., T. W. Schoener, and J. B. Losos. 2000. The relationship between sexual size dimorphism and habitat use in Greater Antillean Anolis lizards. Evolution 54:259-272. Campbell, H. W. 1973. Ecological observations on Anolis lionotus and Anolis poecilopus (Reptilia, Sauria) in Panama. American Museum Novitates 2516:129. Campbell, J. A. 1999. Amphibians and Reptiles of Northern Guatemala, the Yucatan, and Belize. University of Oklahoma Press, Norman. Campbell, J. A., D. M. Hillis, and W. W. Lamar 1989. A new lizard of the genus Norops (Sauria: Iguanidae) from the cloud forest of Hidalgo, Mexico. Herpetologica 45:232-242. Campbell, T. S., and A. C. Echternacht. 2003. Introduced species as moving targets: changes in body sizes of introduced lizards following experimental introductions and historical invasions. Biological Invasions 5:193-212. Clobert, J., T. Garland, and R. Barbault. 1998. The evolution of demographic tactics in lizards: a test of some hypotheses concerning life history evolution. Journal of Evolutionary Biology 11:329-364. Cope, E. D. 1895. The Batrachia and Reptilia of the University of Pennsylvania West Indian expedition of 1890 and 1891. Proceedings of the Academy of Natural Sciences of Philadelphia 46:429-442. Cox, R. M., S. L. Skelly, and H. B. John-Alder. 2003. A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution 57:1653-1669. D'Cruze, N. C., and P. J. Stafford. 2006. Resource partitioning of sympatric Norops (Beta Anolis) in a subtropical mainland community. Herpetological Journal 16:273-280. Dalrymple, G. H. 1980. Comments on the density and. diet of a giant anole, Anolis equestris. Journal of Herpetology 14:412-415 Dixon, J. R., and P. Soini. 1986. The reptiles of the upper Amazon basin, Iquitos Region, Peru. 2nd edition. Milwaukee Public Museum., Milwaukee. dos Santos, A. R., J. G. da Frota, and F. R. V. Ribeiro. 2007. Reptilia, Squamata, Polychrotidae, Anolis nitens tandai: Distribution extension, new state record, and geographic distribution map. Check List 3:9-10. Duellman, W. E. 1978. The biology of an equatorial herpetofauna in Amazonian Ecuador. University of Kansas Museum of Natural History Miscellaneous publications 65:1-352. Duellman, W. E. 2005. Cusco Amazónico: The lives of amphibians and reptiles in an Amazonian Rainforest. Cornell University Press, Ithaca. Duellman, W. E., and J. R. Mendelson. 1995. Amphibians and reptiles from Northern Departamento Loreto, Peru: Taxonomy and Biogeography. University of Kansas Science Bulletin 55:329-376. Dunham, A. E., and D. B. Miles. 1985. Patterns of covariation in life history traits of squamate reptiles: the effects of size and phylogeny reconsidered. American Naturalist 126:231-257. Dunham, A. E., P. J. Morin, and H. M. Wilbur. 1988. Methods for the study of reptile populations. Pp. 331-373 in C. Gans, and R. B. Huey, eds. Biology of the Reptilia. Vol. 16. Ecology B. Defense and life history. Liss, New York. Fitch, H. S. 1970. Reproductive cycles of lizards and snakes. University of Kansas Museum of Natural History Miscellaneous publications 52:1-247. Fitch, H. S. 1973a. A field study of Costa Rican lizards. University of Kansas Science Bulletin 50:39-126. Fitch, H. S. 1973b. Population structure and survivorship in some Costa Rican lizards. Occasional Papers of the Museum of Natural History, University of Kansas 18:1-41. Fitch, H. S. 1976. Sexual size differences in the mainland anoles. Occasional Papers of the Museum of Natural History, University of Kansas 50:1-21. Fitch, H. S. 1978. Two new anoles (Reptilia: Iguanidae) from Oaxaca with comments on other Mexican species. Milwaukee Public Museum Contributions in Biology and Geology 20:1-15. Fitch, H. S. 1981. Sexual size differences in reptiles. University of Kansas Museum Natural History Miscellaneous Publications 70:1-72. Fitch, H. S., A. F. Echelle, and A. A. Echelle. 1976. Field observations on rare or little known mainland anoles. University of Kansas Science Bulletin 51:91-128. Fitch, H. S., and D. M. Hillis. 1984. The Anolis dewlap: interspecific variability and morphological associations with habitat. Copeia 1984:315-323. Fobes, T. M., R. Powell, J. S. Parmerlee, A. Lathrop, and D. D. Smith. 1992. Natural history of Anolis cybotes (Sauria: Polychrotidae) from an altered habitat in Barahona, Dominican Republic. Caribbean Journal of Science 28:200-207. Garrido, O. H., and S. B. Hedges. 2001. A new anole from the northern slope of the Sierra Maestra in eastern Cuba (Squamata: Iguanidae). Journal of Herpetology 35:378-383. Gerber, G. P., and A. C. Echternacht. 2000. Evidence for asymmetrical intraguild predation between native and introduced Anolis lizards. Oecologia 124:599607. Guyer, C., and M. A. Donnelly. 2005. Amphibians and reptiles of La Selva, Costa Rica, and the Caribbean slope: A comprehensive guide. University of Chicago Press, Chicago. Hedges, S. B., and R. Thomas. 1989. A new species of Anolis (Sauria: Iguanidae) from the Sierra de Neiba, Hispaniola Herpetologica 45:330-336. Herrel, A., B. Vanhooydonck, R. Joachim, and D. J. Irschick. 2004. Frugivory in polychrotid lizards: effects of body size. Oecologia 140:160-168. Hoogmoed, M. S. 1973. Notes on the herpetofauna of Surinam IV.: the lizards and amphisbaenians of Surinam. W. Junk Publishers, Den Haag. Klutsch, C. F. C., B. Misof, W.-R. Grosse, and R. F. A. Moritz. 2007. Genetic and morphometric differentiation among island populations of two Norops lizards (Reptilia: Sauria: Polychrotidae) on independently colonized islands of the Islas de Bahia (Honduras). Journal of Biogeography 34:1124-1135. Kohler, G. 2001. Type material and use of the name Anolis bourgeaei Bocourt (Sauria: Polychrotidae). Copeia 2001. Kohler, G., and J. R. McCranie. 2001. Two new species of anoles from northern Honduras (Squamata: Polychrotidae). Senckenbergiana biologica 81:235-245. Kohler, G., J. R. McCranie, and L. D. Wilson. 2001. A new species of anole from western Honduras (Squamata: Polychrotidae). Herpetologica 57:247-255. Kohler, G., and J. Sunyer. 2008. Two new species of anoles formerly referred to as Anolis limifrons (Squamata, Polychrotidae). Herpetologica 64:92-108. Kohler, G., M. Vesely, and E. Greenbaum. 2006. The Amphibians and Reptiles of El Salvador. Krieger Publishing Company, Malabar. Kolbe, J. J., P. L. Colbert, and B. E. Smith. 2008. Niche relationships and interspecific interactions in Antiguan lizard communities. Copeia 2008:261272. Lazell, J. D. 1964. The anoles (Sauria: Iguanidae) of the Guadeloupeen Archipelago. Bulletin of the Museum of Comparative Zoology 131:359-401. Lazell, J. D. 1972. The anoles (Sauria: Iguanidae) of the Lesser Antilles. Bulletin of the Museum of Comparative Zoology 143:1-115. Leal, M., and J. B. Losos. 2000. Natural history of the Cuban lizard Chamaeleolis barbatus. Journal of Herpetology 34:318-322. Licht, P., and G. C. Gorman. 1970. Reproductive and fat cycles in Caribbean Anolis lizards. University of California Publications in Zoology 35:1-52. Losos, J. B. 1990. Ecomorphology, performance ability and scaling of West Indian Anolis lizards: an evolutionary analysis. Ecological Monographs 60:369-388. Lotzkat, S. 2007. Taxonomie und zoogeographie der herpetofauna des NirguaMassivs, Venezuela. Johann Wolfgang Goethe-Universität, Frankfurt am Main. Maisano, J. A. 2002. Terminal fusions of skeletal elements as indicators of maturity in squamates. Journal of Vertebrate Paleontology 22:268-275. McCranie, J. R. 1992. Rediscovery of the Honduran Giant Anole—Norops loveridgei (Sauria: Polychrotidae). Caribbean Journal of Science 28:233-234. McCranie, J. R., L. D. Wilson, and G. Kohler. 2005. Amphibians and reptiles of the Bay Islands and Cayos Cochinos, Honduras. Bibliomania. McCranie, J. R., L. D. Wilson, and K. L. Williams. 1992. A new species of anole of the Norops crassulus group (Sauria: Polychridae) from northwestern Honduras. Caribbean Journal of Science 28:208-215. McCranie, J. R., L. D. Wilson, and K. L. Williams. 1993. Another new species of lizard of the Norops schiedei group (Sauria: Polychrotidae) from northern Honduras. Journal of Herpetology 27:393-399. Perry, G., and T. J. Garland. 2002. Lizard home ranges revisited: effects of sex, body size, diet, habitat, and phylogeny. Ecology 83:1870-1885. Powell, R., H. R. W, and J. S. Parmerlee. 2005. Powell, R., Henderson R. W. and Parmerlee, J. S. 2005. The Reptiles and Amphibians of the Dutch Caribbean St Eustatius, Saba, and St Maarten. International Union for the Conservation of Nature. Rogner, M. 1997. Lizards. Volume 1. Krieger Publishing Company, Malabar, FL. Roughgarden, J. 1995. Anolis Lizards of the Caribbean: Ecology, Evolution, and Plate Tectonics. Oxford University Press. Ruthven, A. G. 1916. Three new species of Anolis from the Santa Marta Mountains, Colombia. Occasional Papers of the Museum of Zoology, University of Michigan 32:1-8. Savage, J. M. 2002. The Amphibians and Reptiles of Costa Rica. The University of Chicago Press, Chicago. Schettino, L. R. 1999. The iguanid lizards of Cuba. University Press of Florida, Miami. Schoener, T. W. 1970. Size patterns in West Indian Anolis Lizards: II. Correlations with sizes of particular sympatric species - displacement and convergence. The American Naturalist 104:155-174. Schwartz, A. 1980. Variation in Hispaniolan Anolis whitemani Williams. Journal of Herpetology 14:399-406. Schwartz, A., and R. W. Henderson. 1991. Amphibians and Reptiles of the West Indies. University of Florida Press, Gainesville. Smith, H. M. 1934. Notes on some Mexican lizards of the genus Anolis with the description of a new species, A. megapholidotus. Transactions of the Kansas Academy of Science 36:318-320. Smith, H. M. 1946. Handbook of lizards. Lizards of the United States and Canada. Cornell University Press, Ithaca. Smith, H. M. 1968. Another new lizard from Mexico of the schiedi group of Anolis. Southwestern Naturalist 13:368-370. Smith, R. J. 1981. Interpretation of correlations in intraspecific and interspecific allometry. Growth 45. Stamps, J. A., and R. M. Andrews. 1992. Estimating asymptotic size using the largest individuals per sample. Oecologia 92:503-512. Stamps, J. A., J. B. Losos, and R. M. Andrews. 1997. A comparative study of population density and sexual size dimorphism in lizards. American Naturalist 149:64-90. Taylor, E. H. 1956. A review of the lizards of Costa Rica. University of Kansas Science Bulletin 38:3-322. Thomas, R., and S. B. Hedges. 1991. Rediscovery and description of the Hispaniolan lizard Anolis darlingtoni (Sauria, Iguanidae) Caribbean Journal of Science 27:90-93. Tinkle, D. W., H. M. Wilbur, and S. G. Tilley. 1970. Evolutionary strategies in lizard reproduction. Evolution 24:55-74. Trivers, R. L. 1976. Sexual selection and resource accruing abilities in Anolis garmani. Evolution 30:253-269. Uetz, P. 2006. The reptile database CD-ROM edition, October 2006, Heidelberg, Germany. Vitt, L. J., T. C. S. Avila-Pires, Z. P. A, and M. C. Esposito. 2002. Life in shade: the ecology of Anolis trachyderma (Squamata: Polychrotidae) in Amazonian Ecuador and Brazil, with comparisons to ecologically similar anoles. Copeia 2002:275-286. Vitt, L. J., T. C. S. Avila-Pires, P. A. Zani, S. S. Sartorius, and M. C. Esposito. 2003. Life above ground: ecology of Anolis fuscoauratus in the Amazon rain forest, and comparisons with its nearest relatives. Canadian Journal of Zoology 81:142-156. Vitt, L. J., and J. P. Caldwell. 1993. Ecological observations on cerrado lizards in Rondonia, Brazil. Journal of Herpetology 27:46-52. Vitt, L. J., and C. M. de Carvalho. 1995. Niche partitioning in a tropical wet season, lizards in the lavrado area of northern Brazil. Copeia 1995:305-329. Vitt, L. J., D. B. Shepard, G. H. C. Vieira, J. P. Caldwell, G. R. Colli, and D. O. Mesquita. 2008. Ecology of Anolis nitens brasiliensis in Cerrado Woodlands of Cantao. Copeia 2008:144-153. Vitt, L. J., and P. A. Zani. 1998. Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14:63-86. Williams, E. E. 1974. A case history in retrograde evolution: the onca lineage in anoline lizards. I. Anolis annectens new species, intermediate between the genera Anolis and Tropidodactylus. Breviora 421:1-21. Williams, E. E. 1983. Ecomorphs, faunas, island size, and diverse end points in island radiations of Anolis. in R. B. Huey, E. R. Pianka, and T. W. Schoener, eds. Lizard Ecology: Studies of a Model Organism. Harvard University Press, Cambridge. Williams, E. E. 1984. New or problematic Anolis from Colombia. 3. Two new semiaquatic anoles from Antioquia and Choco, Colombia. Breviora 478:1-22. Supplementary Appendix S3 Species that have been subject to morphometric analyses of ecomorphs. List of species included in Losos et al. (1998) courtesy of JB Losos. Species only in Losos et al. (1998) Species only in Beuttell and Losos (1999) Species in both papers A. ahli A. acutus A. aliniger A. allisoni A. aenus A. angusticeps A. allogus A. bimaculatus A. bahorucoensis A. alutaceus A. carolinensis A. brevirostris A. barahonae A. christophei A. chlorocyanus A. bremeri A. conspersus A. coelestinus A. guazuma A. cooki A. cristatellus A. homolechis A. darlingtoni A. cuvieri A. loysiana A. etheridgei A. cybotes A. luteogularis A. extremus A. distichus A. mestrei A. ferreus A. equestris A. ophiolepis A. fowleri A. evermanni A. paternus A. gingivinus A. garmani A. singularis A. griseus A. grahami A. vanidicus A. leachi A. gundlachi A. lividus A. insolitus A. longiceps A. krugi A. luciae A. lineatopus A. marmoratus A. longitibialis A. maynardi A. marcanoi A. monensis A. occultus A. pogus A. olssoni A. reconditus A. opalinus A. richardi A. poncensis A. roquet A. porcatus A. sabanus A. pulchellus A. schwartzi A. sagrei A. sheplani A. semilineatus A. trinitatis A. strahmi A. wattsi A. stratulus A. valencienni Literature cited Beuttell, K., and J. B. Losos. 1999. Ecological morphology of Caribbean anoles. Herpetological Monographs 13:1-28. Losos, J. B., T. R. Jackman, A. Larson, K. De Queiroz, and L. Rodriguez-Schettino. 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:2115-2118. Supplementary Appendix S4 Maximum likelihood reconstruction of Anolis ecomorphs. The ancestral nodes of the seven separate colonisations of small islands are marked as 1-7 and reinvasions of the mainland from the Greater Antilles are marked as 8 & 9. The insert shows the proportional likelihoods of ancestral ecomorphs for the ancestral nodes of the small island lineages. Only ecomorphs with a proportional likelihood >0.05 are shown. Supplementary Appendix S5 Effects of assuming a common mean Thomas et al’s (2006) method for comparing rates of phenotypic diversification differs from the non-censored approach of O’Meara et al. (2006) by allowing each different partition of the phylogeny to have a different phylogenetic mean. Revell (2008) questioned why branches that are united only by a different rate regime should have different means. We suggest that many hypotheses that infer different rate regimes imply different evolutionary regimes such that a difference in mean is also a likely outcome. This may seem trivial when the interest is in rates of trait evolution rather than their means, however, assuming a common mean can have serious consequences for the inferred differences in rates. As a simple example, we simulated the effects of different means on rates for a phylogeny divided into two groups. For convenience, we used Nicholson et al’s. (2005) Anolis phylogeny and divided branches into large island versus small island and mainland branches. We then simulated trait evolution in which the means of the two groups differed by varying amounts. Because the importance of differences in mean of any trait depends on the scale on which the trait is measured, we set the difference in means according to the number of expected standard deviations. Ricklefs (2006) recently showed that the expected variance for a trait across species under a Brownian model can be estimated by taking the mean of the off-diagonal elements of the variance-covariance matrix representation of the phylogeny. We used this measure to estimate the expected variance for the anole phylogeny and took the square root to calculate the expected standard deviation. We then used the function rmvnorm in the R library mvtnorm (Genz et al. 2008) to simulate trait evolution in which there was no difference in rates between groups but the mean of the first group was set at 0 and the mean of the second group was either 0, 0.5, 1, 2, 3, 4, 5, or 6 standard deviations larger. For each degree of difference in trait means we ran 1000 simulations. We then fit one set of models that allow different means and one set of models that force a common mean to each simulated trait. We examined type I error using a likelihood ratio test to compare the maximum likelihood model against the null equal rates model. In addition we recorded the parameter estimate in each case. The simulations (Fig 1.) show that where the difference in means is small (two or fewer standard deviations difference), neither the common mean nor the multi-mean model inferred a rate shift thus, type I errors are similar (and acceptably low) for the multi-mean and common mean tests across this range. Also, the parameter estimates are close to one for both the multi-mean and common mean tests when differences in means are small. However, as the magnitude of differences in means increases, the rate at which the common mean model infers rates shifts increases and the type I error rate is unacceptably high. In contrast, the multi-mean model is unaffected by the magnitude of the difference in simulated means. Similarly, under the common mean model, the rate-parameter estimates become increasingly different from one as the differences in mean become larger whereas the parameter estimates in the multi-mean model remains unaffected. Figure 1. Type I error rates (A) and parameter estimates (B) for a Brownian trait where the mean differs in different parts of the tree. References Genz, A., F. Bretz, T. Hothorn, T. Miwa, X. Mi, F. Leisch, and F. Scheipl. 2008. mvtnorm: Multivariate Normal and t Distributions. R package version 0.9-2. Nicholson, K. E., R. E. Glor, J. J. Kolbe, A. Larson, S. Blair Hedges, and J. Losos. 2005. Mainland colonization by island lizards. Journal of Biogeography 32:929-938. O'Meara, B. C., C. Ané, M. J. Sanderson, and P. C. Wainwright. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922-933. Revell, L. J. 2008. On the analysis of evolutionary change along single branches in a phylogeny. The American Naturalist 172:140-147. Ricklefs, R. E. 2006. Time, species, and the generation of trait variation in clades. Systematic Biology 55:151-159. Thomas, G. H., R. P. Freckleton, and T. Székely. 2006. Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds. Proceedings of the Royal Society of London Series B 273:16191624. Supplementary Appendix S6 – phylogeny with ecomorph/geographic setting as node labels #NEXUS [Phylogeny from: Nicholson, K. E., R. E. Glor, J. J. Kolbe, A. Larson, S. Blair Hedges, and J. Losos. 2005. Mainland colonization by island lizards. Journal of Biogeography 32:929-938.] [Downloaded from: http://biosgi.wustl.edu/~lososlab/anolis_mbg_2005/] begin taxa; dimensions ntax=165; taxlabels A_tropidog A_equestri A_placidus A_baleatus A_tropidon A_guamuhay A_biporcat A_poecilop A_garridoi A_distichu A_leachi A_clivicol A_humilis A_meridion A_polyrhac A_websteri A_ferreus A_crassulu A_breviros A_vanidicu A_polylepi A_capito A_marron A_zeus A_sminthus A_gundlach A_dolichoc A_sagrei A_uniformi A_imias A_aquaticu A_conspers A_cristate A_evermann A_altae A_altitudi A_lionotus A_krugi A_smaragdi A_etheridg A_olssoni A_oporinus A_pachypus A_ahli A_singular A_monticol A_armouri A_homolech A_henderso A_rubribar A_annecten A_onca A_barbatus A_guazuma A_laeviven A_oxylophu A_bartschi A_baracoae A_caroline A_pulchell A_alutaceu A_cupeyale A_noblei A_marcanoi A_bahoruco A_vermicul A_trachyde A_sheplani A_limifron A_intermed A_scriptus A_allisoni A_porcus A_paternus A_argillac A_lividus A_mestrei A_ernestwi A_eugenegr A_acutus A_ortonii A_ricordii A_oscellos A_barahona A_stratulu A_carpente A_bremeri A_christop A_confusus A_nubilus A_valencie A_macilent A_auratus A_cybotes A_haetianu A_oculatus A_wattsi A_luteogul A_opalinus A_insolitu A_nebuloid A_pandoens A_darlingt A_cooki A_isthmicu A_breslini A_cuvieri A_lemurinu A_bimacula A_longicep A_gingivin A_poncensi A_nitens A_recondit A_sericeus A_coelesti A_pumilis A_lineatop A_barbouri A_inexpect A_maynardi A_quadrioc A_monensis A_alfaroi A_alayoni A_longitib A_guafe A_whiteman A_strahmi A_fuscoaur A_semiline A_aliniger A_ophiolep A_grahami A_purpurgu A_bitectus A_pogus A_rejectus A_brunnneu A_sabanus A_jubar A_occultus A_quercoru A_garmani A_fowleri A_marmorat A_allogus A_lucius A_centrali A_schwartz A_angustic A_chlorocy A_desechen A_shrevei A_smallwoo A_porcatus A_loysiana A_cyanople A_chamaele A_loveridg A_cupreus A_argenteo A_caudalis A_woodi A_alumina ; end; begin trees; tree [&r] con_50_majrule = ((A_occultus:85.167845,((A_coelesti:58.072167,(A_chlorocy:34.907719,(A_aliniger: 19.402478,A_singular:19.402478)1:15.505241)1:23.164448)1:20.913282,(A_darlingt :69.543072,(A_monticol:62.340379,(A_bahoruco:38.836483,(A_dolichoc:16.979814, A_henderso:16.979814)2:21.856669)2:23.503897)2:7.202693)2:9.442377,(A_equestr i:9.671404,(A_luteogul:6.984718,(A_baracoae:5.382205,(A_noblei:1.687602,A_smal lwoo:1.687602)2:3.694603)2:1.602512)2:2.686686)2:69.314045,(A_bartschi:46.4094 93,A_vermicul:46.409493)2:32.575956)2:6.182396)2:6.948849,((A_marcanoi:51.462 757,((A_longitib:23.484257,A_strahmi:23.484257)1:15.788668,(A_breslini:28.50547 8,(A_whiteman:26.241261,((A_armouri:14.25956,A_shrevei:14.25956)1:7.05933,(A _cybotes:18.962348,A_haetianu:18.962348)1:2.356542)1:4.922372)1:2.264216)1:10. 767448)1:12.189831)1:33.4638,((((A_alutaceu:11.263887,A_inexpect:11.263887)2:3 1.07247,(A_vanidicu:35.407633,((A_alfaroi:20.416245,A_macilent:20.416245)2:12.6 31686,(A_clivicol:22.768465,(A_rejectus:18.037547,(A_cupeyale:4.36141,A_cyanop le:4.36141)2:13.676137)2:4.730918)2:10.279465)2:2.359702)2:6.928724)2:28.20928 5,(((A_alayoni:32.14993,(A_angustic:18.946972,A_paternus:18.946972)2:13.202958 )2:23.388897,(A_sheplani:14.811765,A_placidus:14.811766)2:40.727062)2:6.384934 ,(((A_garridoi:0.56475,A_guazuma:0.56475)2:50.360642,(A_loysiana:37.741894,(A_ pumilis:13.443447,(A_centrali:11.499654,A_argillac:11.499654)2:1.943794)2:24.298 446)2:13.183498)2:3.834091,((A_oporinus:16.311783,A_altitudi:16.311783)1:32.446 959,((A_caroline:17.248509,A_porcatus:17.248509)1:19.355642,((A_allisoni:17.911 995,A_smaragdi:17.911995)1:8.571143,(A_brunnneu:23.745879,(A_longicep:21.104 349,A_maynardi:21.104349)0:2.64153)0:2.73726)1:10.121013)1:12.154591)1:6.0007 41)2:7.164278)2:8.62188)2:11.171156,((((A_pogus:32.676182,(A_wattsi:13.405478, A_schwartz:13.405478)0:19.270704)0:19.767807,(A_leachi:32.457343,((A_bimacula :18.211987,A_gingivin:18.211987)0:10.233462,(A_oculatus:20.276694,(A_ferreus:1 2.366709,(A_lividus:11.075687,(A_nubilus:10.080339,(A_marmorat:8.118164,A_sa banus:8.118164)0:1.962175)0:0.995348)0:1.291022)0:7.909985)0:8.168755)0:4.0118 95)0:19.986645)0:18.411217,((A_distichu:33.675375,(A_websteri:23.447331,(A_bre viros:19.558374,(A_caudalis:12.032684,A_marron:12.032684)2:7.52569)2:3.888957) 2:10.228044)2:31.339455,((A_acutus:26.069079,(A_evermann:19.614502,A_stratulu :19.614502)1:6.454577)1:26.316453,((A_krugi:32.023689,A_pulchell:32.023689)2:1 4.184029,((A_gundlach:32.451484,A_poncensi:32.451484)1:10.336754,((A_monensi s:21.844737,A_cooki:21.844737)1:13.916855,(A_scriptus:33.145342,(A_cristate:16. 38016,(A_desechen:12.628035,A_ernestwi:12.628035)0:3.752126)1:16.765181)1:2.6 1625)1:7.026646)1:3.419481)1:6.177814)1:12.629297)1:5.840375)1:8.230574,(((A_i mias:43.381302,(A_rubribar:18.080283,(A_ahli:8.713256,A_allogus:8.713256)1:9.36 7027)1:25.301019)1:15.347195,((A_guafe:21.949519,(A_jubar:15.987089,(A_confus us:11.48692,A_homolech:11.48692)1:4.500168)1:5.96243)1:17.735279,(A_mestrei:2 6.741691,(A_ophiolep:20.072286,(A_sagrei:17.326956,(A_bremeri:7.271714,A_qua drioc:7.271714)1:10.055243)1:2.74533)1:6.669404)1:12.943108)1:19.043699)1:8.64 9016,(((A_lineatop:34.754433,A_recondit:34.754433)1:15.079204,(A_valencie:45.23 1942,((A_conspers:18.939305,A_grahami:18.939305)1:6.73591,(A_garmani:21.1613 17,A_opalinus:21.161317)1:4.513898)1:19.556727)1:4.601694)1:9.332218,(((A_ann ecten:18.835076,A_onca:18.835076)3:27.647264,(A_nitens:40.539112,A_meridion:4 0.539112)3:5.943227,A_auratus:46.48234)3:10.384131,((A_loveridg:34.175879,A_p urpurgu:34.175879)3:18.819437,(((A_nebuloid:23.211312,A_quercoru:23.211312)3: 25.787487,(A_bitectus:45.257381,(A_biporcat:33.884313,(A_woodi:16.409412,A_aq uaticu:16.409412)3:17.474901)3:11.373068)3:3.741419,(A_polyrhac:41.352073,A_u niformi:41.352073)3:7.646727,A_crassulu:48.998799)3:1.649719,(A_sminthus:44.80 7,((A_isthmicu:12.759526,A_sericeus:12.759526)3:26.709163,((A_ortonii:32.369411 ,(A_intermed:16.489409,A_laeviven:16.489409)3:15.880002)3:3.224796,(((A_cupre us:21.478969,A_polylepi:21.478969)3:7.878584,(A_altae:16.810402,(A_fuscoaur:13. 932759,A_pandoens:13.932759)3:2.877643)3:12.547151)3:3.305345,(((A_capito:21. 464239,A_tropidon:21.464239)3:7.810471,(A_humilis:24.59371,A_pachypus:24.593 71)3:4.681)3:1.575314,(A_oscellos:23.055949,(A_carpente:20.564469,((A_lemurinu: 17.467386,(A_limifron:7.430975,A_zeus:7.430975)3:10.036412)3:1.6924,((A_lionot us:12.203853,A_oxylophu:12.203853)3:2.589853,(A_tropidog:11.857214,(A_trachyd e:9.018625,A_poecilop:9.018625)3:2.838589)3:2.936491)3:4.366082)3:1.404681)3:2 .49148)3:7.794075)3:1.812874)3:2.931309)3:3.874481)3:5.338311)3:5.841519)3:2.3 46797)3:3.871155)3:2.299385)1:8.211659)1:11.708266)1:2.631018)2:3.209759,((A_ argenteo:54.710554,A_lucius:54.710554)2:23.263736,((A_barbatus:11.057573,(A_po rcus:6.959118,(A_chamaele:5.917888,A_guamuhay:5.917888)2:1.04123)2:4.098455) 2:54.992843,(A_cuvieri:54.869185,(A_christop:41.31477,(A_eugenegr:31.445243,(A _ricordii:10.104409,(A_baleatus:4.155331,A_barahona:4.155331)2:5.949078)2:21.34 0834)2:9.869528)2:13.554415)2:11.181231)2:11.923874)2:6.952267,(A_barbouri:77. 08065,((A_etheridg:50.203579,(A_fowleri:32.636205,A_insolitu:32.636205)2:17.567 374)2:21.743955,(A_olssoni:56.831733,(A_alumina:35.053007,A_semiline:35.05300 7)2:21.778726)2:15.115801)2:5.133117)2:7.845906)2:7.190137)2; end; Supplementary Appendix S7 The following tables contain full results for rates tests on male SVL (Tables S7-1 - S7-3), female SVL (Tables S7-4 - S76), and sexual size dimorphism in SVL (Tables S7-7 - S7-9). Each table contains 12 models (see main text for details) with maximum likelihood estimates for each parameter. Confidence limits are provided for each parameter except where the parameter was fixed in the model. Models are ranked by AICc and both delta AICc and Akaike weights are provided. The Akaike weights were used to calculate model averaged parameter estimates. In addition, the maximum likelihood of each model is provided, along with results of likelihood ratio tests against a model in which all rate parameters are forced to be equal. All other details are as per Table 1 in the main text. For each of male SVL, female SVL, and SSD, three sets of models are included. The first forces a single mean across each of the four categories (small islands, large island trunk crown and trunk ground ecomorphs, large island other ecomorphs, and mainland) with the full data set. The second allows different means but uses a reduced data set in which only taxa with size estimates based on 20 or more individuals are included. The third model set uses the full data set and allows different means, but the phylogeny was transformed according to the maximum likelihood estimate of kappa prior to analyses (see main text). Male SVL Table S7-1. Male SVL assuming a single mean Model Small islands Large island TC & TG Large island other Mainland deltaAIC wtAIC Max. likelihood M5 theta 1.000 0.415 1.000 1.000 0.000 0.376 120.373 M5 LCI 0.245 M5 UCI 0.743 M3 theta 1.000 0.383 1.000 0.807 1.504 0.177 120.672 M3 LCI 0.227 0.498 M3 UCI 0.684 1.364 M4 theta 1.000 0.451 1.212 1.000 1.554 0.173 120.647 M4 LCI 0.268 0.756 M4 UCI 0.802 1.953 M9 theta 1.000 0.418 1.011 1.011 2.102 0.131 120.373 M9 LCI 0.535 0.244 M9 UCI 2.025 0.741 M1 theta 1.000 0.413 1.108 0.872 3.556 0.064 120.711 M1 LCI 0.541 0.245 0.691 0.538 M1 UCI 2.047 0.734 1.786 1.474 M11 theta 1.000 1.000 1.449 1.000 5.975 0.019 117.385 M11 LCI 0.898 M11 UCI 2.354 All equal 1.000 1.000 1.000 1.000 6.203 0.017 116.233 M7 theta 1.000 0.651 1.055 0.651 6.508 0.015 118.170 M7 LCI 0.828 1.004 M7 UCI 3.155 2.627 M2 theta 1.000 1.000 1.723 1.404 6.722 0.013 118.063 M2 LCI 1.069 0.866 M2 UCI 2.793 2.375 M8 theta 1.000 0.814 0.814 0.814 7.897 0.007 116.424 M8 LCI 0.660 M8 UCI 2.530 M10 theta 1.000 1.000 1.000 1.035 8.262 0.006 116.242 M10 LCI 0.638 M10 UCI 1.751 M6 theta 1.000 0.798 0.798 0.858 9.923 0.003 116.463 M6 LCI 0.674 0.662 M6 UCI 2.580 1.819 Model average 1.000 0.455 1.062 0.958 P (k) ** (3) * (4) * (4) * (4) * (5) NS (3) (2) NS (4) NS (4) NS (3) NS (3) NS (4) Table S7-2. Male SVL with reduced data set (allowing multiple means) Model Small islands Large island TC & TG Large island other Mainland deltaAIC wtAIC Max. likelihood M5 theta 1.000 0.384 1.000 1.000 0.000 0.312 84.397 M5 LCI 0.208 M5 UCI 0.766 M3 theta 1.000 0.342 1.000 0.639 0.768 0.212 85.148 M3 LCI 0.187 0.344 M3 UCI 0.675 1.297 M9 theta 1.000 0.319 0.771 0.771 1.772 0.128 84.646 M9 LCI 0.670 0.223 M9 UCI 2.795 0.831 M4 theta 1.000 0.407 1.130 1.000 2.117 0.108 84.474 M4 LCI 0.221 0.644 M4 UCI 0.806 1.989 M7 theta 1.000 0.433 0.841 0.433 2.911 0.073 84.077 M7 LCI 1.189 1.101 M7 UCI 4.994 3.440 M1 theta 1.000 0.313 0.870 0.580 2.957 0.071 85.211 M1 LCI 0.516 0.170 0.495 0.312 M1 UCI 2.154 0.619 1.530 1.178 All equal 1.000 1.000 1.000 1.000 4.816 0.028 80.874 M8 theta 1.000 0.612 0.612 0.612 5.042 0.025 81.876 M8 LCI 0.837 M8 UCI 3.550 M11 theta 1.000 1.000 1.402 1.000 5.694 0.018 81.549 M11 LCI 0.793 M11 UCI 2.495 M10 theta 1.000 1.000 1.000 0.834 6.766 0.011 81.013 M10 LCI 0.448 M10 UCI 1.699 M6 theta 1.000 0.621 0.621 0.575 7.263 0.008 81.901 M6 LCI 0.824 0.497 M6 UCI 3.494 1.883 M2 theta 1.000 1.000 1.398 0.991 7.965 0.006 81.550 M2 LCI 0.791 0.533 M2 UCI 2.487 2.017 Model average 1.000 0.414 0.961 0.808 P (k) ** (6) * (7) * (7) * (7) * (7) * (7) (5) NS (6) NS (6) NS (6) NS (7) NS (7) Table S7-3. Male SVL after kappa transformation (allowing multiple means) Model Small islands Large island TC & TG Large island other Mainland deltaAIC wtAIC Max. likelihood M5 theta 1.000 0.411 1.000 1.000 0.000 0.390 121.754 M5 LCI 0.242 M5 UCI 0.738 M4 theta 1.000 0.446 1.213 1.000 1.636 0.172 122.028 M4 LCI 0.265 0.754 M4 UCI 0.795 1.958 M3 theta 1.000 0.381 1.000 0.818 1.659 0.170 122.017 M3 LCI 0.226 0.505 M3 UCI 0.681 1.382 M9 theta 1.000 0.421 1.031 1.031 2.178 0.131 121.757 M9 LCI 0.525 0.241 M9 UCI 1.985 0.733 M1 theta 1.000 0.415 1.128 0.896 3.767 0.059 122.070 M1 LCI 0.541 0.247 0.701 0.553 M1 UCI 2.046 0.740 1.821 1.512 M11 theta 1.000 1.000 1.441 1.000 6.139 0.018 118.684 M11 LCI 0.889 M11 UCI 2.349 All equal 1.000 1.000 1.000 1.000 6.181 0.018 117.584 M2 theta 1.000 1.000 1.741 1.437 6.779 0.013 119.457 M2 LCI 1.076 0.887 M2 UCI 2.831 2.428 M7 theta 1.000 0.665 1.065 0.665 6.914 0.012 119.389 M7 LCI 0.810 0.990 M7 UCI 3.093 2.608 M8 theta 1.000 0.827 0.827 0.827 8.013 0.007 117.747 M8 LCI 0.649 M8 UCI 2.494 M10 theta 1.000 1.000 1.000 1.054 8.296 0.006 117.606 M10 LCI 0.650 M10 UCI 1.782 M6 theta 1.000 0.807 0.807 0.882 10.082 0.003 117.805 M6 LCI 0.666 0.674 M6 UCI 2.556 1.847 Model average 1.000 0.453 1.065 0.967 P (k) ** (6) * (7) * (7) * (7) * (8) NS (6) (5) NS (7) NS (7) NS (6) NS (6) NS (7) Female SVL Table S7-4. Female SVL assuming a single mean Model Small islands Large island TC & TG Large island other Mainland deltaAIC wtAIC Max. likelihood M4 theta 1.000 0.424 1.460 1.000 0.000 0.265 147.964 M4 LCI 0.247 0.916 M4 UCI 0.770 2.340 M5 theta 1.000 0.351 1.000 1.000 0.036 0.260 146.895 M5 LCI 0.203 M5 UCI 0.646 M9 theta 1.000 0.482 1.434 1.434 1.201 0.145 147.364 M9 LCI 0.363 0.194 M9 UCI 1.477 0.618 M3 theta 1.000 0.320 1.000 0.785 1.377 0.133 147.276 M3 LCI 0.186 0.485 M3 UCI 0.584 1.326 M1 theta 1.000 0.471 1.616 1.156 2.000 0.098 148.029 M1 LCI 0.520 0.274 1.014 0.714 M1 UCI 2.119 0.858 2.590 1.952 M2 theta 1.000 1.000 2.414 1.772 3.035 0.058 146.447 M2 LCI 1.509 1.094 M2 UCI 3.883 2.992 M11 theta 1.000 1.000 1.778 1.000 4.823 0.024 144.502 M11 LCI 1.109 M11 UCI 2.868 M7 theta 1.000 0.887 1.620 0.887 6.822 0.009 144.553 M7 LCI 0.586 1.140 M7 UCI 2.402 2.947 All equal 1.000 1.000 1.000 1.000 8.455 0.004 141.648 M8 theta 1.000 1.221 1.221 1.221 10.231 0.002 141.798 M8 LCI 0.425 M8 UCI 1.746 M10 theta 1.000 1.000 1.000 1.047 10.498 0.001 141.664 M10 LCI 0.647 M10 UCI 1.768 M6 theta 1.000 1.214 1.214 1.238 12.328 0.001 141.800 M6 LCI 0.428 0.630 M6 UCI 1.756 1.722 Model average 1.000 0.460 1.352 1.094 P (k) ** (4) ** (3) ** (4) ** (4) ** (5) ** (4) * (3) NS (4) (2) NS (3) NS (3) NS (4) Table S7-5. Female SVL with reduced data set (allowing multiple means) Model Small islands Large island TC & TG Large island other Mainland deltaAIC wtAIC Max. likelihood M7 theta 1.000 0.504 1.933 0.504 0.000 0.291 91.171 M7 LCI 0.995 0.445 2.112 0.574 M7 UCI 4.377 1.855 6.918 2.749 M11 theta 1.000 1.000 2.878 1.000 0.584 0.218 89.726 M11 LCI 1.571 M11 UCI 5.228 M4 theta 1.000 0.571 2.452 1.000 0.968 0.180 90.687 M4 LCI 0.296 1.353 M4 UCI 1.216 4.409 M1 theta 1.000 0.452 1.949 0.575 2.082 0.103 91.306 M1 LCI 0.502 0.235 1.076 0.286 M1 UCI 2.201 0.958 3.503 1.320 M3 theta 1.000 0.280 1.000 0.346 2.210 0.097 90.066 M3 LCI 0.144 0.172 M3 UCI 0.609 0.794 M2 theta 1.000 1.000 2.731 0.838 2.717 0.075 89.812 M2 LCI 1.489 0.416 M2 UCI 4.967 1.927 M5 theta 1.000 0.340 1.000 1.000 5.569 0.018 87.234 M5 LCI 0.170 M5 UCI 0.769 M9 theta 1.000 0.473 1.562 1.562 6.660 0.010 87.841 M9 LCI 0.321 0.154 M9 UCI 1.411 0.672 M10 theta 1.000 1.000 1.000 0.464 8.638 0.004 85.700 M10 LCI 0.230 M10 UCI 1.070 All equal 1.000 1.000 1.000 1.000 9.677 0.002 84.052 M6 theta 1.000 1.309 1.309 0.581 10.485 0.002 85.928 M6 LCI 0.378 0.220 M6 UCI 1.715 1.024 M8 theta 1.000 1.180 1.180 1.180 11.751 0.001 84.143 M8 LCI 0.420 M8 UCI 1.899 Model average 1.000 0.636 2.175 0.740 P (k) *** (7) *** (6) ** (7) ** (8) ** (7) ** (7) * (6) * (7) NS (6) (5) NS (7) NS (6) Table S7-6. Female SVL after kappa transformation (allowing multiple means) Model Small islands Large island TC & TG Large island other Mainland deltaAIC wtAIC Max. likelihood M4 theta 1.000 0.412 1.521 1.000 0.000 0.288 149.509 M4 LCI 0.245 0.954 M4 UCI 0.732 2.440 M5 theta 1.000 0.337 1.000 1.000 0.440 0.231 148.197 M5 LCI 0.198 M5 UCI 0.609 M9 theta 1.000 0.493 1.579 1.579 1.088 0.167 148.965 M9 LCI 0.338 0.184 M9 UCI 1.311 0.562 M1 theta 1.000 0.486 1.796 1.266 1.855 0.114 149.688 M1 LCI 0.534 0.289 1.126 0.782 M1 UCI 2.069 0.864 2.881 2.139 M3 theta 1.000 0.310 1.000 0.793 1.921 0.110 148.549 M3 LCI 0.183 0.490 M3 UCI 0.556 1.340 M2 theta 1.000 1.000 2.649 1.907 2.997 0.064 148.010 M2 LCI 1.652 1.178 M2 UCI 4.269 3.220 M11 theta 1.000 1.000 1.855 1.000 5.737 0.016 145.548 M11 LCI 1.154 M11 UCI 3.002 M7 theta 1.000 0.902 1.712 0.902 7.841 0.006 145.589 M7 LCI 0.585 1.180 M7 UCI 2.319 3.069 All equal 1.000 1.000 1.000 1.000 10.076 0.002 142.301 M8 theta 1.000 1.239 1.239 1.239 11.880 0.001 142.477 M8 LCI 0.423 M8 UCI 1.702 M10 theta 1.000 1.000 1.000 1.058 12.183 0.001 142.325 M10 LCI 0.654 M10 UCI 1.787 M6 theta 1.000 1.228 1.228 1.264 14.052 0.000 142.483 M6 LCI 0.427 0.636 M6 UCI 1.715 1.738 Model average 1.000 0.458 1.462 1.162 P (k) *** (7) *** (6) ** (7) ** (8) ** (7) ** (7) * (6) * (7) (5) NS (6) NS (6) NS (7) Sexual size dimorphism in SVL Table S7-7. SSD SVL assuming a single mean Model Small islands Large island TC & TG Large island other Mainland deltaAIC wtAIC Max. likelihood M9 theta 1.000 0.533 0.274 0.274 0.000 0.474 251.129 M9 LCI 1.933 1.145 M9 UCI 7.626 3.399 M1 theta 1.000 0.533 0.288 0.252 1.931 0.181 251.230 M1 LCI 0.530 0.314 0.182 0.152 M1 UCI 2.091 0.931 0.464 0.438 M2 theta 1.000 1.000 0.416 0.365 2.368 0.145 249.946 M2 LCI 0.263 0.221 M2 UCI 0.670 0.630 M8 theta 1.000 0.342 0.342 0.342 3.637 0.077 248.259 M8 LCI 1.549 M8 UCI 6.085 M6 theta 1.000 0.378 0.378 0.256 3.898 0.068 249.181 M6 LCI 1.403 0.406 M6 UCI 5.525 1.184 M7 theta 1.000 0.384 0.292 0.384 4.567 0.048 248.846 M7 LCI 1.381 0.477 M7 UCI 5.431 1.226 M11 theta 1.000 1.000 0.572 1.000 10.433 0.003 244.861 M11 LCI 0.359 M11 UCI 0.924 M10 theta 1.000 1.000 1.000 0.531 10.691 0.002 244.732 M10 LCI 0.319 M10 UCI 0.926 M4 theta 1.000 1.056 0.584 1.000 12.505 0.001 244.877 M4 LCI 0.619 0.367 M4 UCI 1.856 0.943 M3 theta 1.000 1.158 1.000 0.555 12.535 0.001 244.862 M3 LCI 0.684 0.335 M3 UCI 2.017 0.966 All equal 1.000 1.000 1.000 1.000 13.525 0.001 242.276 M5 theta 1.000 1.342 1.000 1.000 14.451 0.000 242.852 M5 LCI 0.789 M5 UCI 2.349 Model average 1.000 0.572 0.314 0.297 P (k) *** (4) *** (5) *** (4) *** (3) ** (4) ** (4) * (3) * (3) NS (4) NS (4) (2) NS (3) Table S7-8. SSD SVL with reduced data set (allowing multiple means) Model Small islands Large island TC & TG Large island other Mainland deltaAIC wtAIC Max. likelihood M8 theta 1.000 0.236 0.236 0.236 0.000 0.350 157.580 M8 LCI 2.127 M8 UCI 9.301 M6 theta 1.000 0.254 0.254 0.140 0.652 0.252 158.413 M6 LCI 1.977 0.259 M6 UCI 8.650 1.397 M9 theta 1.000 0.302 0.210 0.210 1.303 0.182 158.088 M9 LCI 2.395 0.742 M9 UCI 10.465 2.956 M7 theta 1.000 0.240 0.234 0.240 2.312 0.110 157.583 M7 LCI 2.096 0.538 M7 UCI 9.163 1.772 M1 theta 1.000 0.297 0.232 0.142 2.602 0.095 158.623 M1 LCI 0.503 0.154 0.128 0.066 M1 UCI 2.200 0.608 0.422 0.359 M2 theta 1.000 1.000 0.384 0.247 7.580 0.008 154.949 M2 LCI 0.216 0.115 M2 UCI 0.697 0.630 M4 theta 1.000 0.482 0.365 1.000 11.597 0.001 152.941 M4 LCI 0.248 0.202 M4 UCI 0.990 0.664 M11 theta 1.000 1.000 0.465 1.000 12.557 0.001 151.302 M11 LCI 0.260 M11 UCI 0.845 M10 theta 1.000 1.000 1.000 0.353 14.139 0.000 150.511 M10 LCI 0.165 M10 UCI 0.897 M3 theta 1.000 0.642 1.000 0.311 14.942 0.000 151.268 M3 LCI 0.338 0.146 M3 UCI 1.288 0.790 All equal 1.000 1.000 1.000 1.000 16.535 0.000 148.179 M5 theta 1.000 0.750 1.000 1.000 18.127 0.000 148.517 M5 LCI 0.393 M5 UCI 1.512 Model average 1.000 0.266 0.237 0.200 P (k) *** (6) *** (7) *** (7) *** (7) *** (8) ** (7) ** (7) * (6) * (6) * (7) (5) NS (6) Table S7-9. SSD SVL after kappa transformation (allowing multiple means) Model Small islands Large island TC & TG Large island other Mainland deltaAIC wtAIC Max. likelihood M9 theta 1.000 0.515 0.280 0.280 0.000 0.470 257.721 M9 LCI 1.917 1.098 M9 UCI 7.363 3.176 M1 theta 1.000 0.515 0.285 0.273 2.196 0.157 257.731 M1 LCI 0.537 0.308 0.180 0.165 M1 UCI 2.064 0.890 0.459 0.473 M8 theta 1.000 0.349 0.349 0.349 2.829 0.114 255.212 M8 LCI 1.543 M8 UCI 5.900 M2 theta 1.000 1.000 0.418 0.402 3.034 0.103 256.204 M2 LCI 0.265 0.243 M2 UCI 0.673 0.695 M7 theta 1.000 0.394 0.290 0.394 3.546 0.080 255.948 M7 LCI 1.366 0.463 M7 UCI 5.225 1.186 M6 theta 1.000 0.375 0.375 0.278 3.882 0.067 255.780 M6 LCI 1.433 0.446 M6 UCI 5.489 1.287 M11 theta 1.000 1.000 0.558 1.000 9.317 0.004 251.969 M11 LCI 0.352 M11 UCI 0.899 M10 theta 1.000 1.000 1.000 0.579 11.261 0.002 250.997 M10 LCI 0.349 M10 UCI 1.007 M4 theta 1.000 0.972 0.552 1.000 11.496 0.001 251.973 M4 LCI 0.583 0.348 M4 UCI 1.676 0.889 All equal 1.000 1.000 1.000 1.000 12.855 0.001 249.120 M3 theta 1.000 1.093 1.000 0.596 13.348 0.001 251.047 M3 LCI 0.658 0.359 M3 UCI 1.879 1.035 M5 theta 1.000 1.247 1.000 1.000 14.314 0.000 249.470 M5 LCI 0.750 M5 UCI 2.146 Model average 1.000 0.531 0.314 0.314 P (k) *** (7) *** (8) *** (6) *** (7) ** (7) ** (7) * (6) . (6) . (7) NS (7) NS (6) Supplementary Appendix S8 – source code for rates analyses in R library(mvtnorm) library(MASS) library(ape) ### Sets up the variance-covariance matrices. ### Input is a phylogeny in ape format with node labels corresponding to group (e.g. "small island", "mainland" etc). ### Requires the discrete states assigned for each branch in the same order as edge lengths in the phy format. States should be numeric but can be any value. ### The function returns a list of matrices. The matrices are ordered in the rank order of the states of the discrete trait. multiThetaMat <- function(phy, discrete, dat, clades="ancestral") { switch(clades, "ancestral" = { # Get the tip labels in alphabetical order leaves <- c(1:length(phy$tip.label)) a <- data.frame(leaves, row.names=phy$tip.label) anms <- rownames(a) asnms <- sort(anms, index.return = TRUE) a <- a[asnms$x, ] # Get the discrete data in alphatical order b <- data.frame(discrete, row.names=rownames(dat)) bnms <- rownames(b) bsnms <- sort(bnms, index.return = TRUE) b <- b[bsnms$x, ] if(sum(ifelse(asnms$x == bsnms$x, 0, 1)) > 0){ stop("Taxon names in phylogeny do not match those in data frame") } leaves.order <- data.frame(tip.index = asnms$ix, data.index = bsnms$ix, anc.state = b, row.names = asnms$x) leaves.anc.state <- as.numeric(leaves.order$anc.state) # Makes data frame of node numbers that correspond to edge index with ancestral state for internal branches first.node.number <- length(phy$tip.label)+2 branches <- c(first.node.number:max(phy$edge)) branches.anc.state <as.numeric(phy$node.label[c(2:length(phy$node.label))]) branch.recon <- data.frame(node = branches, anc.state = branches.anc.state) # Put together node and tip indices and ancestral states node.ancestor <- data.frame(edge.index = c(branch.recon$node, leaves.order$tip.index), anc.state = c(branches.anc.state, leaves.anc.state)) edge.ind <- sort(node.ancestor$edge.index, index.return = TRUE) node.ancestor <- node.ancestor[edge.ind$ix, ] # Put tree edge in node order and then put it all together and order according to the tree edge index tree.edge <- sort(phy$edge[,2], index.return = TRUE) tree.edge.dat <- data.frame(node.ancestor, tree.edge = tree.edge$x, tree.edge.index = tree.edge$ix) tree.edge.dat <- tree.edge.dat[order(tree.edge.dat$tree.edge.index),] ancestor <- as.numeric(as.factor(tree.edge.dat$anc.state)) nlevels <- unique(ancestor) ThetaMat <- vector(mode="list", length = length(nlevels)) for(i in nlevels) { x.anc <- ifelse(ancestor == i, 1, 0) state.edge <- x.anc * phy$edge.length state.phy <- list(edge=phy$edge, edge.length=state.edge, Nnode=phy$Nnode, tip.label=phy$tip.label) class(state.phy) <- "phylo" state.matrix <- vcv.phylo(state.phy) ThetaMat[[i]] <- state.matrix } }, "monophyletic" = { phy.mat <- vcv.phylo(phy) nms <- rownames(phy.mat) if(length(nms) == 0) stop("Need to supply row names for the Variance matrix") snms <- sort(nms, index.return = TRUE) phy.mat <- phy.mat[snms$ix, snms$ix] disc <- data.frame(discrete, row.names=rownames(dat)) disc.nms <- rownames(disc) if(length(disc.nms) == 0) stop("Need to supply row names for the data") disc.snms <- sort(disc.nms, index.return = TRUE) disc <- disc[disc.snms$ix, ] if(sum(ifelse(snms$x == disc.snms$x, 0, 1)) > 0){ stop("Taxon names in phylogeny do not match those in data frame") } ancestor <- as.numeric(as.factor(disc)) nlevels <- unique(ancestor) ThetaMat <- vector(mode="list", length = length(nlevels)) for(i in nlevels) { x.anc <- ifelse(discrete == i, 1, 0) state.matrix <- x.anc * phy.mat ThetaMat[[i]] <- state.matrix } } ) new.discrete <- vector(mode="integer", length=1) new.discrete <- data.frame(new.discrete) ThetaMat <- list(ThetaMat=ThetaMat, states=new.discrete) class(ThetaMat) <- "theta.mat" return(ThetaMat) } ### Internal function to set up design matrix. make.anc <- function(y, discrete.trait, data=NULL, common.mean=FALSE) { if(is.factor(discrete.trait) == "FALSE"){ stop("The discrete trait must be a factor") } m <- model.frame(y ~ discrete.trait, data) x <- model.matrix(y ~ discrete.trait, m) return(x) } ### Loads the traits load.traits <- function(y, phy.mat, discrete.trait, data) { dat <- data.frame(discrete.trait, y, row.names = rownames(data)) nms <- rownames(dat) snms <- sort(nms, index.return = TRUE) dat <- dat[snms$x, ] y <- dat$y if(length(phy.mat$states[,1])==1){ x <- dat$discrete.trait } else { new.discrete <- phy.mat$states nms <- rownames(new.discrete) snms <- sort(nms, index.return = TRUE) new.discrete <- new.discrete[snms$x, ] x <- new.discrete } idx <- which( is.na(dat$y) == FALSE) Vmat <- vector(mode="list", length = length(phy.mat)) phy.mat <- phy.mat$ThetaMat for(i in 1:length(phy.mat)) { Vmatrix <- phy.mat[[i]] nms <- rownames(Vmatrix) snms <- sort(nms, index.return = TRUE) Vmatrix <- Vmatrix[snms$ix, snms$ix] Vmatrix <- Vmatrix[idx, idx] Vmat[[i]] <- Vmatrix } x <- as.matrix(x) y <- y[idx] x <- x[idx, ] traits <- list(y = y, x = x, Vmat = Vmat) class(traits) <- "theta.phyo" return(traits) } # Puts together a single variance covariance matrix from the # individual parts and theta. Requires a "theta.phylo" object and the number of states # of the discrete trait form.V <- function(traits, theta="all.one") { V <- traits$Vmat if(theta[1] == "all.one") c(rep(1,length(traits$Vmat))) } else { theta <- theta } { theta <- nV <- length(theta) if(length(theta) != length(traits$Vmat)){ stop("The number of theta's specified does not correspond to the number of levels in the explantory variable") } v1 <- V[[1]] thetaMats <- vector(mode="list", length = nV) retMat <- matrix(0, nrow = dim(v1)[1], ncol = dim(v1)[2]) for(i in 1:nV) { thetaMats[[i]] <- theta[i] * V[[i]] retMat <- retMat + thetaMats[[i]] } retMat <- retMat return(retMat) } # Estimates the mean of a given trait (accounting for phylogeny). est.mean <- function(traits, theta="all.one", common.mean=FALSE) { if(theta[1] == "all.one") c(rep(1,length(traits$Vmat))) } else { theta <- theta } { theta <- if(length(theta) != length(traits$Vmat)){ stop("The number of theta's specified does not correspond to the number of levels in the explantory variable") } y <- traits$y x <- as.factor(traits$x) V <- form.V(traits, theta) x <- make.anc(y, x) if(common.mean==FALSE) {x <- x} else { x <- rep(1, length(x[,1]))} iV <- solve(V) xVix <- crossprod(x, iV %*% x) xViy <- crossprod(x, iV %*% y) mu <- solve(xVix) %*% xViy return(mu) } # Estimates the variance of a given trait (accounting for phylogeny) est.var <- function(traits, theta="all.one", common.mean=FALSE) { if(theta[1] == "all.one") c(rep(1,length(traits$Vmat))) } else { theta <- theta } { theta <- if(length(theta) != length(traits$Vmat)){ stop("The number of theta's specified does not correspond to the number of levels in the explantory variable") } y <- traits$y x <- as.factor(traits$x) if (common.mean==FALSE) {k <- nlevels(x)} else {k <- 1} V <- form.V(traits, theta) x <- make.anc(y, x) if(common.mean==FALSE) { x <- x} else { x <- rep(1, length(x[,1]))} mu <- est.mean(traits, theta, common.mean=common.mean) iV <- solve(V) e <- y - x %*% mu s2 <- crossprod(e, iV %*% e) n <- length(y) phylo.var <- ( s2 / (n - k) ) return(phylo.var) } # Full ML estimation for given x and V mv.lik <- function(traits, theta="all.one", common.mean=FALSE) { if(theta[1] == "all.one") { theta <c(rep(1,length(traits$Vmat))) } else { theta <- theta } logDetFun <- function(mat) { svdMat <- La.svd(mat) d <- svdMat$d n <- length(d) logDet <- sum(log(d)) return(logDet) } y <- traits$y x <- as.factor(traits$x) V <- form.V(traits, theta) x <- make.anc(y, x) logDetV <- logDetFun(V) mu <- est.mean(traits, theta, common.mean) s2 <- est.var(traits, theta, common.mean) n <- length(x[,1]) ll <- -n / 2.0 * log( 2 * pi) - n / 2.0 * log(s2) - logDetV / 2.0 - (n - 1)/2.0 max.lik.theta <- ( list(ll = ll, mu = mu, s2 = s2) ) return(max.lik.theta) } # Constructor function for estimating max likelihood of models with parameters fixed to a particular value make.mv.lik <- function(traits, fixed, common.mean=FALSE) { op <- fixed function(theta){ op[!fixed] <- theta logDetFun <- function(mat) { svdMat <- La.svd(mat) d <- svdMat$d n <- length(d) logDet <- sum(log(d)) return(logDet) } y <- traits$y x <- as.factor(traits$x) if (common.mean==FALSE) {k <- nlevels(x)} else {k <- 1} V <- traits$Vmat v1 <- V[[1]] nV <- length(op) thetaMats <- vector(mode="list", length = nV) vmat <- matrix(0, nrow = dim(v1)[1], ncol = dim(v1)[2]) for(i in 1:nV) { thetaMats[[i]] <- op[i] * V[[i]] vmat <- vmat + thetaMats[[i]] } x <- make.anc(y, x) if(common.mean==FALSE) { x <- x} else { x <- rep(1, length(x[,1]))} logDetV <- logDetFun(vmat) iV <- solve(vmat) xVix <- crossprod(x, iV %*% x) xViy <- crossprod(x, iV %*% y) mu <- solve(xVix) %*% xViy e <- y - x %*% mu s2 <- crossprod(e, iV %*% e) n <- length(y) phylo.var <- ( s2 / (n - k) ) n <- length(y) ll <- -n / 2.0 * log( 2 * pi) - n / 2.0 * log(phylo.var) logDetV / 2.0 - (n - 1)/2.0 ypred <- x%*%mu max.lik.theta <- ( list(ll = ll, mu = mu, phylo.var = phylo.var) ) return(-1 * max.lik.theta$ll) }} # Estimates the ML optim.var.param <- function(traits, theta="all.one", fixed = "est.thetas", thetaMIN = 0.001, thetaMAX = 50, common.mean=FALSE) { if(theta[1] == "all.one") c(rep(1,length(which(fixed==FALSE)))) } else { theta <- theta } { theta <- if(fixed[1] == "est.thetas") { op <c(rep(FALSE,length(traits$Vmat) - 1), TRUE) } else { op <- fixed } mvl <- make.mv.lik(traits, op, common.mean=common.mean) vo <- try(optim(theta, mvl, method = "L-BFGS-B", lower = thetaMIN, upper = thetaMAX)) MLTheta <- vo$par fixed[which(fixed==FALSE)] <- MLTheta MLTheta <- fixed ML <- -vo$value convergence <- vo$convergence n <- length(traits$y) if(length(op)!=length(which(op==FALSE))) { if(common.mean==TRUE) {k <- 2 + length(which(op==FALSE)) } else { k <(length(which(op==FALSE)) +1 + length(op)) } } else { if(common.mean==TRUE) {k <- 1 + length(which(op==FALSE)) } else { k <(length(which(op==FALSE)) + length(op)) } } aic <- -2 * ML + 2 * k aicc <- -2 * ML + 2 * k + ((2*k*(k+1))/(n-k-1)) max.lik.theta <- list(MLTheta = MLTheta, Max.lik = ML, aic = aic, aicc = aicc, convergence=convergence, n.parameters = k) return(max.lik.theta) } # Estimate confidence intervals for one of thetas while fixing others at given value theta.CI <- function(traits, MLtheta, fixed, thetaMIN = 0.001, thetaMAX=50, common.mean=FALSE) { MLtheta <- as.numeric(format(MLtheta)) ML <- mv.lik(traits, MLtheta, common.mean=common.mean)$ll fixed.thetas <- data.frame(MLtheta, fixed) use.theta.ind <- which(fixed.thetas$fixed==FALSE) use.theta <- fixed.thetas$MLtheta[use.theta.ind] var.fun <- function(vary.theta) { fixed.thetas$MLtheta[use.theta.ind] <- vary.theta test.theta <- fixed.thetas$MLtheta ll <- mv.lik(traits, test.theta, common.mean=common.mean)$ll return( ll - ML + 1.92) } if(var.fun(thetaMIN) < 0) { Lci <- uniroot(var.fun, interval = c(thetaMIN, use.theta))$root } if(var.fun(thetaMAX) < 0) { Uci <- uniroot(var.fun, interval = c(use.theta, thetaMAX))$root } return(c(Lci=Lci, Uci=Uci)) } # Estimate confidence intervals for all thetas while fixing others at given value in turn all.theta.CI <- function(traits, MLtheta, fixed, thetaMIN = 0.001, thetaMAX=50, common.mean=FALSE) { n.theta <- length(MLtheta) all.CIs <- matrix(nrow=n.theta, ncol=2, dimnames=list(c(1:n.theta), c("Lci", "Uci"))) for(i in 1:n.theta) { fix.now <- c(rep(TRUE, n.theta)) fix.now[i] <- FALSE if(fixed[i] == FALSE) { CI <- theta.CI(traits, MLtheta, fix.now, common.mean=common.mean) all.CIs[i,1] <- CI[1] all.CIs[i,2] <- CI[2] } else { all.CIs[i,1] <- NA all.CIs[i,2] <- NA } } return(all.CIs) } #Estimates the ML and CIs, with option of a report ML.fun <- function(traits, theta="all.one", fixed = "est.thetas", pretty = TRUE, thetaMIN = 0.001, thetaMAX = 50, common.mean=FALSE) { if(theta[1] == "all.one") c(rep(1,length(which(fixed==FALSE)))) } else { theta <- theta } { theta <- if(fixed[1] == "est.thetas") { op <c(rep(FALSE,length(traits$Vmat) - 1), TRUE) } else { op <- fixed } ovp <- optim.var.param(traits, theta, fixed, thetaMIN, thetaMAX, common.mean=common.mean) max.lik.theta <- ovp$MLTheta max.lik <- ovp$Max.lik lik1 <- mv.lik(traits, rep(1,length(traits$Vmat)), common.mean=common.mean)$ll D <- 2 * (max.lik - lik1) if (length(op) == length(which(op==FALSE))) { k2 <- length(op) - 1 } else { k2 <- length(which(op==FALSE)) } if(length(op)!=length(which(op==FALSE))) { if(common.mean==TRUE) {k <- 2 + length(which(op==FALSE)) } else { k <(length(which(op==FALSE)) +1 + length(op)) } } else { if(common.mean==TRUE) {k <- 1 + length(which(op==FALSE)) } else { k <(length(which(op==FALSE)) + length(op)) } } pval <- 1- pchisq(D, k2) n <- length(traits$y) CIs.theta <- all.theta.CI(traits, max.lik.theta, fixed=rep("FALSE", length(traits$Vmat)), common.mean=common.mean) aic <- -2 * max.lik + 2 * k aicc <- -2 * max.lik + 2 * k + ((2*k*(k+1))/(n-k-1)) if(common.mean==TRUE) { aic.theta1 <- -2 * lik1 + 2 * 2 aicc.theta1 <- -2 * lik1 + 2 * 2 + ((2*2*(2+1))/(n-2-1)) } else { aic.theta1 <- -2 * lik1 + 2 * (1 + length(op)) aicc.theta1 <- -2 * lik1 + 2 * (1 + length(op)) + ((2*(1 + length(op))*((1 + length(op))+1))/(n-(1 + length(op))-1)) } if(pretty == TRUE) { cat("____________________________\n") cat("Maximum likelihood estimation, rates model:\n\n") cat("ML estimate of theta: ", max.lik.theta, "\n") cat("Lower confidence intervals for theta:", CIs.theta[,1], "\n") cat("Upper confidence intervals for theta:", CIs.theta[,2], "\n") cat("Number of parameters: ", k, "\n") cat("Maximised log likelihood: ", max.lik, "\n") cat("Log likelihood (theta 1): ", lik1, "\n") cat("LR statistic (test vs theta = 1):", D) cat(" P = ", pval ) cat(" df = ", k2, " \n") cat(" AIC = ", aic, " \n") cat(" AICc = ", aicc, " \n") cat(" Theta 1 AIC = ", aic.theta1, " \n") cat(" Theta 1 AICc = ", aicc.theta1, " \n") cat("____________________________\n") } if(pretty == FALSE) { max.lik.theta.list <- list(MLTheta = max.lik.theta, LCI = CIs.theta[,1], UCI = CIs.theta[,2], nParam = k, Max.lik = max.lik, Lik1 = lik1, LR = D, P = pval, df = k2, AIC = aic, AICc=aicc, AIC.theta1=aic.theta1, AICc.theta1=aicc.theta1) return(max.lik.theta.list) } } # Generate some random data dummy.data <- function(traits, theta="all.one", group.means="all.equal") { if(theta[1] == "all.one") { theta <- c(rep(1,length(traits$Vmat))) } else { theta <- theta } V <- form.V(traits, theta=theta) expect.sd <- sqrt(mean(V[upper.tri(V)])) if (group.means[1]=="all.equal") {ydum <- as.matrix(t(rmvnorm(1, sigma = (V) ))) } else { x.means <- unique(traits$x) n.means <- length(x.means) samp.means <- rep(NA, length(traits$x)) ydum <- vector(mode="list", length=length(group.means)) for (i in 1:n.means) { samp.means[which(traits$x == (i-1))] <rep(0+(expect.sd*group.means[i]), length(which(traits$x == (i-1)))) } ydum <- as.matrix(t(rmvnorm(1, mean=samp.means, sigma = } return(ydum) } (V) ))) Supplementary Appendix S9 – example of rates analyses The example below is a simple analysis of male snout vent length source("Thomas_et_al_Anoles_supplement_S8.R") First read in phylogeny and data. Note that the rownames of the data frame and the tip labels of the phylogeny should be the same but they need not be in the same order (ordering is done internally in the load.traits function below Read in phylogeny. Phylogeny should be in nexus format with node labels corresponding to inferred ancestral states for each branch. tree <- read.nexus("Thomas_et_al_Anoles_supplement_S6.nex") Read in data to be analysed main.dat <- read.table("Thomas_et_al_Anoles_supplement_S1.dat", sep="\t", header=TRUE) Subset data frame down to relevant columns and use first column as row names (corresponding to tip labels in phylogeny). main.dat <- data.frame(geo_ecomorph = main.dat$geo_ecomorph, Male_SVL = main.dat$Male_SVL, row.names=main.dat[,1]) Now need to convert the phylogeny into multiple variance-covariance matrices and set up the data for analysis Set up matrices. Requires a tree, specification of the data to be used to define matrices and the data frame tree.mat <- multiThetaMat(tree, main.dat$geo_ecomorph, main.dat) Now put all the data together. This produces a list of vcv matrices, response variable (male svl) and the groups to be compared male.full <- load.traits(log10(main.dat$Male_SVL), tree.mat, main.dat$geo_ecomorph, main.dat) Now some analyses First, a model with a different rate in each of the four groups. The 'fixed' command is used to determine whether a particular rate is to be constrained or not. Use '1' to fix a group and 'FALSE' to show that the parameter is not fixed and should be estimated. The values should be entered in the same order as the ranking of the groups. That is, group 0 (small islands) takes position one in the fixed vector, group 1 (large island trunk crown and trunk ground) takes position 2 and so on. The default is to allow each group to take a different mean. ML.fun(male.full, fixed=c(1,FALSE,FALSE, FALSE), pretty=TRUE) A different model, force small islands, large island other, and mainland to be 1 and only estimate large island trunk crown and trunk ground ML.fun(male.full, fixed=c(1,FALSE,1, 1), pretty=TRUE) Run the same two models, but this time assuming a common mean across all four groups ML.fun(male.full, fixed=c(1,FALSE,FALSE, FALSE), pretty=TRUE, common.mean=TRUE) ML.fun(male.full, fixed=c(1,FALSE,1, 1), pretty=TRUE, common.mean=TRUE) The output from the last model should look like this: ____________________________ Maximum likelihood estimation, rates model: ML estimate of theta: 1 0.4145383 1 1 Lower confidence intervals for theta: 0.5357232 0.2446358 0.7154475 0.4946122 Upper confidence intervals for theta: 2.026233 0.7430008 1.95334 1.451399 Number of parameters: 3 Maximised log likelihood: 120.3727 Log likelihood (theta 1): 116.2331 LR statistic (test vs theta = 1): 8.279331 P = 0.00400989 df = 1 AIC = -234.7455 AICc = -234.5936 Theta 1 AIC = -228.4662 Theta 1 AICc = -228.3907 ____________________________ The estimates of relative rate (theta) are returned in the same order as in the input, as are approximate confidence intervals. Note that CIs are estimated based on the ML model - that is, CIs are calculated for each parameter in turn while the other parameters are held at their ML values for that model. The number of parameters is the number of means estimated (one in this case) and the number of different rates allowed (two) The ML for the model is reported along with the log likelihood for the model where rates are assumed to be all equal. The likelihood ratio statistic is a comparison of the ML of the model against the equal rates model. AIC and AICc are returned for the ML model and the equal rate model. This is a function for generating dummy data. Traits can be simulated for a given phylogeny and group definition. Both rates and means of the groups can be simulated. Means for different groups are generated in relation to the number of expected standard deviations. dummy.data(male.full, theta=c(1,1,1,1), group.means=c(0,0,0,0)) dummy.data(male.full, theta=c(1,2,2,1), group.means=c(0,0,0,0)) dummy.data(male.full, theta=c(1,1,1,1), group.means=c(0,1,2,3)) Supplementary Appendix S10 Parameter estimates (with 2.5 and 97.5 percentiles in parentheses) and type I error rates from 10,000 simulations per model. Small island 1 1 1 1 1 0.973 (0.426-1.926) 0.960 (0.427-1.859) 0.972 (0.421-1.903) 1 ML estimate ! Large island Large island trunk-ground other trunk-crown 1.006 1.031 (0.457-2.418) (0.505-2.380) 1 1.014 (0.592-1.717) 0.981 1 (0.541-1.715) 0.972 0.998 (0.532-1.745) (0.591-1.658) 0.971 1 (0.553-1.612) 1 1 Mainland Type I error 1.034 (0.479-2.468) 1.023 (0.555-1.810) 0.999 (0.567-1.712) 1 0.056 1 0.051 0.053 0.057 0.053 0.052 1 1 1.009 (0.580-1.655) 1 0.977 (0.554-1.653) 1 1 1 0.056 1 0.051 1 1 0.974 (0.428-1.958) 1 1.000 (0.633-1.575) 1.002 (0.614-1.621) 1.002 (0.586-1.627) 1 1 0.053 0.054 0.048
© Copyright 2025 Paperzz