Log - UWO Applied Math

Mathematica 10 Integration Test Results
Integrands involving log functions
IntegrationTest@"2 Exponential Functions\\u Ha+b logHc Hd He+f xL^pL^qLL^n"D;
Testing Mathematica on 251 integration problems...
Problem ð14: Mathematica is able to integrate expression!!!:
9Hg + h xLm Ha + b Log@c Hd He + f xLp Lq DL2 , x, 0, 0=
IntAHg + h xLm Ha + b Log@c Hd He + f xLp Lq DL2 , xE
Hg + h xLm
a2 Hg + h xL
h H1 + mL2
a2 m Hg + h xL
h H1 + mL2
+
+
b2 p2 q2 Hg + h xL Log@e + f xD2
-
h+hm
2 a b p q Hg + h xL Jf Hg + h xL Hypergeometric2F1B1, 2 + m, 3 + m,
f Hg+h xL
f g-e h
h H- f g + e hL H1 + mL2 H2 + mL
2 a b m p q Hg + h xL Jf Hg + h xL Hypergeometric2F1B1, 2 + m, 3 + m,
F + Hf g - e hL H2 + mL Log@e + f xDN
f Hg+h xL
f g-e h
h H- f g + e hL H1 + mL2 H2 + mL
2 b2 p2 q2 Hg + h xL Jf Hg + h xL Hypergeometric2F1B1, 2 + m, 3 + m,
2 b2 g p2 q2 J
2 b2 e p2 q2 J
f Hg+h xL
h He+f xL
f Hg+h xL
h He+f xL
N
-m
N
-m
f Hg+h xL
f g-e h
h H- f g + e hL H1 + mL2 H2 + mL
F + Hf g - e hL H2 + mL Log@e + f xDN
F + Hf g - e hL H2 + mL Log@e + f xDN
JHypergeometricPFQB8- m, - m, - m<, 81 - m, 1 - m<,
-f g+e h
h He+f xL
h m2 H1 + mL
J- HypergeometricPFQB8- m, - m, - m<, 81 - m, 1 - m<,
2 b2 p q2 Hg + h xL Jf Hg + h xL Hypergeometric2F1B1, 2 + m, 3 + m,
f g-e h
+
+
F - m Hypergeometric2F1B- m, - m, 1 - m,
-f g+e h
h He+f xL
f m2 H1 + mL
f Hg+h xL
-
F + m Hypergeometric2F1B- m, - m, 1 - m,
+
+
F Log@e + f xDN
-f g+e h
h He+f xL
f Hg+h xL
f g-e h
+
F + Hf g - e hL H2 + mL Log@e + f xDN Hp Log@e + f xD - Log@d He + f xLp DL
h H- f g + e hL H1 + mL2 H2 + mL
+
-
+
F Log@e + f xDN
F + Hf g - e hL H2 + mL Log@e + f xDN Hp Log@e + f xD - Log@d He + f xLp DL
h H- f g + e hL H1 + mL2 H2 + mL
2 b2 m p q2 Hg + h xL Jf Hg + h xL Hypergeometric2F1B1, 2 + m, 3 + m,
-f g+e h
h He+f xL
+
+
2
2.2 Logarithm Functions.nb
2 a b q Hg + h xL H- p Log@e + f xD + Log@d He + f xLp DL
h H1 + mL2
b2 q2 Hg + h xL H- p Log@e + f xD + Log@d He + f xLp DL2
h H1 + mL2
+
+
2 a b m q Hg + h xL H- p Log@e + f xD + Log@d He + f xLp DL
b2 m q2 Hg + h xL H- p Log@e + f xD + Log@d He + f xLp DL2
2 a b Hg + h xL Hq Log@d He + f xLp D - Log@c Hd He + f xLp Lq DL
1
h H1 + mL2
h H- f g + e hL H1 + mL H2 + mL
2
h H1 + mL2
-
h H1 + mL2
1
h H- f g + e hL H1 + mL2 H2 + mL
f Hg + h xL Hypergeometric2F1B1, 2 + m, 3 + m,
f Hg + h xL
fg-eh
h H1 + mL2
f Hg + h xL
fg-eh
2 b2 m p q Hg + h xL
b2 Hg + h xL H- q Log@d He + f xLp D + Log@c Hd He + f xLp Lq DL2
h H1 + mL2
F + Hf g - e hL H2 + mL Log@e + f xD
+
2 b2 m q Hg + h xL Hp Log@e + f xD - Log@d He + f xLp DL Hq Log@d He + f xLp D - Log@c Hd He + f xLp Lq DL
h H1 + mL2
+
F + Hf g - e hL H2 + mL Log@e + f xD Hq Log@d He + f xLp D - Log@c Hd He + f xLp Lq DL +
2 b2 q Hg + h xL Hp Log@e + f xD - Log@d He + f xLp DL Hq Log@d He + f xLp D - Log@c Hd He + f xLp Lq DL
h H1 + mL2
-
2 a b m Hg + h xL Hq Log@d He + f xLp D - Log@c Hd He + f xLp Lq DL
2 b2 p q Hg + h xL f Hg + h xL Hypergeometric2F1B1, 2 + m, 3 + m,
Hq Log@d He + f xLp D - Log@c Hd He + f xLp Lq DL +
+
+
+
b2 m Hg + h xL H- q Log@d He + f xLp D + Log@c Hd He + f xLp Lq DL2
h H1 + mL2
Problem ð19: Valid but suboptimal antiderivative:
:
Ha + b Log@c Hd He + f xLp Lq DL2
, x, 3, 0>
g+hx
Ha + b Log@c Hd He + f xLp Lq DL2 LogB
h
1
h
f Hg+h xL
f g-e h
F
+
2 b p q Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2, h
h He+f xL
F
f g-e h
2 b2 p2 q2 PolyLogB3, h
h He+f xL
F
f g-e h
a2 Log@g + h xD - 2 a b p q Log@e + f xD Log@g + h xD + b2 p2 q2 Log@e + f xD2 Log@g + h xD +
2 a b Log@c Hd He + f xLp Lq D Log@g + h xD - 2 b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD + b2 Log@c Hd He + f xLp Lq D2 Log@g + h xD +
f Hg + h xL
f Hg + h xL
f Hg + h xL
2 a b p q Log@e + f xD LogB
F - b2 p2 q2 Log@e + f xD2 LogB
F + 2 b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
F+
fg-eh
fg-eh
fg-eh
2 b p q Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2,
h He + f xL
-f g + e h
F - 2 b2 p2 q2 PolyLogB3,
Problem ð23: Mathematica is able to integrate expression!!!:
h He + f xL
-f g + e h
F
2.2 Logarithm Functions.nb
9Hg + h xLm Ha + b Log@c Hd He + f xLp Lq DL3 , x, 0, 0=
IntAHg + h xLm Ha + b Log@c Hd He + f xLp Lq DL3 , xE
a3 Hg + h xL1+m
h H1 + mL2
3 a2 b p q -
+
a3 m Hg + h xL1+m
h H1 + mL2
+ Hg + h xLm
b3 g p3 q3
h H1 + mL
f Hg+h xL2+m Hypergeometric2F1 B1,2+m,3+m,H-f g+e hL H2+mL
f Hg+h xL
3
bmpq -
1
f h H1 + mL
f Hg+h xL2+m Hypergeometric2F1 B1,2+m,3+m,H-f g+e hL H2+mL
h H1 + mL2
f g - e h + h He + f xL
3 a b2 p2 q2
2
h
h
h H1 + mL2
a2
F
fg
e-
F
fg
h
h
m
1+
f
f g - e h + h He + f xL
h He + f xL
+h e-e
fg-eh
1
f h H1 + mL
3 a b2 m p2 q2
2
f g - e h + h He + f xL
1+
h He + f xL
-m
fg-eh
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, - m<, 82, 2<,
f g - e h + h He + f xL
m
+h e-e
fg-eh
1
f h H1 + mL
3 b3 p3 q3
2
f g - e h + h He + f xL
m
1+
h He + f xL
-m
fg-eh
m
+h e-e
fg-eh
3 b3 e p3 q3 1 +
f Ig -
eh
M
f
h He + f xL
-m
eh
g-
+
f
-f g + e h
h He + f xL
f
m
f g - e h + h He + f xL
-f g + e h
Log@e + f xD2 +
fg-eh
m
F Log@e + f xD +
+ He + f xL
f g - e h + h He + f xL
h He + f xL
-f g + e h
m
+ He + f xL
f g - e h + h He + f xL
m
Log@e + f xD2 +
2 HypergeometricPFQB8- m, - m, - m, - m<, 81 - m, 1 - m, 1 - m<, -
+
-f g + e h
Log@e + f xD2 -
fg-eh
m3
h He + f xL
m
fg-eh
F Log@e + f xD +
F-
m
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, 1, - m<, 82, 2, 2<,
f g - e h + h He + f xL
fg-eh
+ He + f xL
h He + f xL
fg-eh
f
f g - e h + h He + f xL
m
F Log@e + f xD +
h He + f xL
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, 1, - m<, 82, 2, 2<,
f g - e h + h He + f xL
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, - m<, 82, 2<,
f g -1 +
-f g + e h
f g - e h + h He + f xL
f
f g -1 +
h He + f xL
fg-eh
m
+
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, 1, - m<, 82, 2, 2<,
-m
fg-eh
m
+
+ Hg + h xL1+m Log@e + f xD
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, - m<, 82, 2<,
f g -1 +
Log@e + f xD3 +
h+hm
+ Hg + h xL1+m Log@e + f xD
f Hg+h xL
e-
b3 h p3 q3 x
+
f Jg-
eh
f
N
h He+f xL
F
h He + f xL
-f g + e h
F-
1
f H1 + mL
-
-
F-
3
4
2.2 Logarithm Functions.nb
2 HypergeometricPFQB8- m, - m, - m<, 81 - m, 1 - m<, m2
1
3
h H1 + mL
3
3
3b gp q
1+
f Ig -
eh
M
f
-m
eh
h He + f xL
g-
+
f
3 a2 b q Hg + h xL1+m H- p Log@e + f xD + Log@d He + f xLp DL
2
h H1 + mL2
2
6ab pq
1
h H1 + mL2
1
-
+
F Log@e + f xD
f Jg-
eh
f
N
h He+f xL
1+
f
f g - e h + h He + f xL
f Hg+h xL
Je-
h He + f xL
-m
fg-eh
m
+h e-e
fg-eh
H- p Log@e + f xD + Log@d He + f xLp DL +
fg
h
Nh
F
f h H1 + mL2
f Jg-
eh
f
N
h He+f xL
F Log@e + f xD2
+
m
3 b3 m p2 q3
f Jg-
eh
f
N
h He+f xL
f Jg-
f Hg+h xL
Je-
fg
h
Nh
F
N
F
-
F Log@e + f xD2
+
+
+ Hg + h xL1+m Log@e + f xD H- p Log@e + f xD + Log@d He + f xLp DL +
-f g + e h
m
F Log@e + f xD +
+ He + f xL
f g - e h + h He + f xL
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, - m<, 82, 2<,
f
-
+ Hg + h xL1+m Log@e + f xD H- p Log@e + f xD + Log@d He + f xLp DL +
h He + f xL
f g - e h + h He + f xL
fg-eh
m
1+
f
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, 1, - m<, 82, 2, 2<,
eh
h He+f xL
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, 1, - m<, 82, 2, 2<,
f g - e h + h He + f xL
fg-eh
1
Hypergeometric2F1B- m, - m, 1 - m, -
h H1 + mL2
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, - m<, 82, 2<,
f g -1 +
m
3 a2 b m q Hg + h xL1+m H- p Log@e + f xD + Log@d He + f xLp DL
H- f g + e hL H2 + mL
m
+
F Log@e + f xD
f Hg + h xL2+m Hypergeometric2F1B1, 2 + m, 3 + m, -
f g - e h + h He + f xL
Hypergeometric2F1B- m, - m, 1 - m, -
m3
H- f g + e hL H2 + mL
3 b3 p2 q3
N
2 HypergeometricPFQB8- m, - m, - m, - m<, 81 - m, 1 - m, 1 - m<, -
m
f Hg + h xL2+m Hypergeometric2F1B1, 2 + m, 3 + m, -
6 a b2 m p q2 -
f h H1 + mL2
f
f
m2
h H1 + mL2
eh
h He+f xL
h He + f xL
2 HypergeometricPFQB8- m, - m, - m<, 81 - m, 1 - m<, -
1
f Jg-
h He + f xL
-f g + e h
h He + f xL
-f g + e h
F-
F Log@e + f xD +
h He + f xL
fg-eh
-m
m
Log@e + f xD2
h He + f xL
-f g + e h
F-
2.2 Logarithm Functions.nb
f g -1 +
f g - e h + h He + f xL
f g - e h + h He + f xL
m
+h e-e
fg-eh
fg-eh
H- p Log@e + f xD + Log@d He + f xLp DL +
h H1 + mL2
H- f g + e hL H2 + mL
h H1 + mL2
3 b3 m p q3 -
h H1 + mL2
h H1 + mL2
f Hg+h xL
Je-
f Hg + h xL2+m Hypergeometric2F1B1, 2 + m, 3 + m, H- f g + e hL H2 + mL
b3 q3 Hg + h xL1+m H- p Log@e + f xD + Log@d He + f xLp DL3
h H1 + mL2
h H1 + mL
2
fg
h
Nh
F
f Hg+h xL
Je-
fg
h
Nh
F
+ Hg + h xL1+m Log@e + f xD H- p Log@e + f xD + Log@d He + f xLp DL2 +
h H1 + mL2
q H-p Log@e+f xD+Log@d He+f xLp DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
F +
1
q H- p Log@e + f xD + Log@d He + f xLp DL
h H1 + mL2
3 a2 b m Hg + h xL1+m - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
2
6ab pq -
p DL
q-
Log@d He+f xLp D
f Hg + h xL2+m Hypergeometric2F1B1, 2 + m, 3 + m, -
Log@d He + f xLp D q -
H- f g + e hL H2 + mL
f Hg+h xL
Je-
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xL D
p
+
1
+
Hd He + f xLp L
q-
Log@e + f xD2
fg-eh
+ Hg + h xL1+m Log@e + f xD H- p Log@e + f xD + Log@d He + f xLp DL2 +
3 a2 b Hg + h xL1+m - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q p DL
m
+
b3 m q3 Hg + h xL1+m H- p Log@e + f xD + Log@d He + f xLp DL3
LogBc ãq H-p Log@e+f xD+Log@d He+f xL
f g - e h + h He + f xL
1
+
f Hg + h xL2+m Hypergeometric2F1B1, 2 + m, 3 + m, -
1
+ He + f xL
3 a b2 q2 Hg + h xL1+m H- p Log@e + f xD + Log@d He + f xLp DL2
3 a b2 m q2 Hg + h xL1+m H- p Log@e + f xD + Log@d He + f xLp DL2
3 b3 p q3 -
m
fg
h
Nh
F +
F
1
Log@d He + f xLp D
+
q H- p Log@e + f xD + Log@d He + f xLp DL
h H1 + mL2
Log@d He + f xLp D
+ Hg + h xL1+m Log@e + f xD
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
+
- q H- p Log@e + f xD + Log@d He + f xLp DL p DL
Hd He + f xLp L
q-
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
F +
1
h H1 + mL2
5
6
2.2 Logarithm Functions.nb
2
6ab mpq -
f Hg + h xL2+m Hypergeometric2F1B1, 2 + m, 3 + m, -
Log@d He + f xLp D q 1
f h H1 + mL2
3 b3 p2 q2
H- f g + e hL H2 + mL
f Hg+h xL
Je-
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
f g - e h + h He + f xL
f
m
1+
h He + f xL
f g - e h + h He + f xL
+h e-e
fg-eh
1
f h H1 + mL
3 b3 m p2 q2
2
Hd He + f xLp L
q-
f g - e h + h He + f xL
m
1+
f
f g - e h + h He + f xL
-m
fg-eh
+h e-e
fg-eh
fg-eh
- q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
1
h H1 + mL2
h H1 + mL2
Hd He + f xLp L
q-
q-
+ He + f xL
F +
h He + f xL
-f g + e h
f g - e h + h He + f xL
Log@d He + f xLp D
m
+ He + f xL
h He + f xL
-f g + e h
F +
F-
+
f g - e h + h He + f xL
h He + f xL
-f g + e h
m
Log@e + f xD2
fg-eh
Log@d He + f xLp D
+
6 a b2 m q Hg + h xL1+m H- p Log@e + f xD + Log@d He + f xLp DL - q H- p Log@e + f xD + Log@d He + f xLp DL -
q-
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
Log@d He + f xLp D
F +
Log@e + f xD2
q-
Log@d He + f xLp D q -
Log@d He+f xLp D
m
F Log@e + f xD +
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
q H-p Log@e+f xD+Log@d He+f xLp DL
fg-eh
q H- p Log@e + f xD + Log@d He + f xLp DL
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
m
F Log@e + f xD +
6 a b2 q Hg + h xL1+m H- p Log@e + f xD + Log@d He + f xLp DL - q H- p Log@e + f xD + Log@d He + f xLp DL -
Log@d He + f xLp D q 1
p DL
Hd He + f xLp L
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, 1, - m<, 82, 2, 2<,
f g - e h + h He + f xL
m
p DL
- q H- p Log@e + f xD + Log@d He + f xLp DL -
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He+f xLp D
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, - m<, 82, 2<,
f g -1 +
+ Hg + h xL1+m Log@e + f xD
-f g + e h
q H-p Log@e+f xD+Log@d He+f xLp DL
h He + f xL
F
h He + f xL
f g - e h + h He + f xL
m
- q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q p DL
Nh
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, 1, - m<, 82, 2, 2<,
-m
fg-eh
fg-eh
LogBc ãq H-p Log@e+f xD+Log@d He+f xL
h
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
2 h H1 + mL He + f xL HypergeometricPFQB81, 1, - m<, 82, 2<,
f g -1 +
fg
p DL
p DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F +
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F +
Log@d He+f xLp D
Log@d He+f xLp D
F-
2.2 Logarithm Functions.nb
1
h H1 + mL2
3
2
6b pq
-
f Hg + h xL2+m Hypergeometric2F1B1, 2 + m, 3 + m, H- f g + e hL H2 + mL
f Hg+h xL
Je-
fg
h
Nh
F
+ Hg + h xL1+m Log@e + f xD
H- p Log@e + f xD + Log@d He + f xLp DL - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q 1
h H1 + mL2
3
2
6b mpq
-
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
f Hg + h xL2+m Hypergeometric2F1B1, 2 + m, 3 + m, H- f g + e hL H2 + mL
f Hg+h xL
Je-
fg
h
Nh
F
1
h H1 + mL2
h H1 + mL2
h H1 + mL2
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F +
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F +
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F +
q-
3 b3 m q2 Hg + h xL1+m H- p Log@e + f xD + Log@d He + f xLp DL2 - q H- p Log@e + f xD + Log@d He + f xLp DL -
q-
Log@d He + f xLp D
Log@d He + f xLp D
3 a b2 Hg + h xL1+m - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q -
LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
q-
Log@d He+f xLp D
F
2
LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
q-
Log@d He+f xLp D
F
2
h H1 + mL2
f Hg + h xL2+m Hypergeometric2F1B1, 2 + m, 3 + m, H- f g + e hL H2 + mL
f Hg+h xL
Je-
fg
h
Nh
F
1
+
Log@d He+f xLp D
p DL
p DL
Log@d He+f xLp D
Log@d He+f xLp D
Log@d He+f xLp D
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
1
+
3 a b2 m Hg + h xL1+m - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q -
3 b3 p q -
p DL
q-
Log@d He + f xLp D q 1
F +
q-
3 b3 q2 Hg + h xL1+m H- p Log@e + f xD + Log@d He + f xLp DL2 - q H- p Log@e + f xD + Log@d He + f xLp DL -
Log@d He + f xLp D q 1
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
q H-p Log@e+f xD+Log@d He+f xLp DL
Hd He + f xLp L
+ Hg + h xL1+m Log@e + f xD
H- p Log@e + f xD + Log@d He + f xLp DL - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q -
p DL
q H- p Log@e + f xD + Log@d He + f xLp DL
h H1 + mL2
Log@d He + f xLp D
+ Hg + h xL1+m Log@e + f xD
+
+
- q H- p Log@e + f xD + Log@d He + f xLp DL 2
+
+
7
8
2.2 Logarithm Functions.nb
Log@d He + f xLp D q 1
h H1 + mL2
3
3b mpq -
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
f Hg + h xL2+m Hypergeometric2F1B1, 2 + m, 3 + m, H- f g + e hL H2 + mL
- q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
1
h H1 + mL2
h H1 + mL2
h H1 + mL2
Hd He + f xLp L
q-
Je-
fg
h
Nh
F
q H-p Log@e+f xD+Log@d He+f xLp DL
F
2
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F
2
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F
2
Hd He + f xLp L
q-
q H- p Log@e + f xD + Log@d He + f xLp DL
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
F
2
Log@d He + f xLp D
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
Log@d He + f xLp D
b3 Hg + h xL1+m - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q -
LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
q-
Log@d He+f xLp D
F
3
F
3
1
+
h H1 + mL2
b3 m Hg + h xL1+m - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
q-
Log@d He+f xLp D
+
p DL
6 a b2 p2 q2 x - 6 b3 p3 q3 x +
6 b3 p2 q2 He + f xL Log@c Hd He + f xLp Lq D
f
3 b p q He + f xL Ha + b Log@c Hd He + f xLp Lq DL2
f
+
-
He + f xL Ha + b Log@c Hd He + f xLp Lq DL3
f
p DL
q-
q-
Log@d He+f xLp D
Log@d He+f xLp D
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
q H- p Log@e + f xD + Log@d He + f xLp DL
Problem ð27: Valid but suboptimal antiderivative:
9Ha + b Log@c Hd He + f xLp Lq DL3 , x, 4, 0=
+
+
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
Log@d He+f xLp D
+ Hg + h xL1+m Log@e + f xD
3 b3 m q Hg + h xL1+m H- p Log@e + f xD + Log@d He + f xLp DL - q H- p Log@e + f xD + Log@d He + f xLp DL -
Log@d He + f xLp D q -
1
p DL
f Hg+h xL
p DL
3 b3 q Hg + h xL1+m H- p Log@e + f xD + Log@d He + f xLp DL - q H- p Log@e + f xD + Log@d He + f xLp DL -
Log@d He + f xLp D q -
1
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
Log@d He + f xLp D
+
+
+
+
2.2 Logarithm Functions.nb
1
f
Ib3 e p3 q3 Log@e + f xD3 - 3 b2 e p2 q2 Log@e + f xD2 Ha - b p q + b Log@c Hd He + f xLp Lq DL +
3 b e p q Log@e + f xD Ia2 - 2 a b p q + 2 b2 p2 q2 + 2 b Ha - b p qL Log@c Hd He + f xLp Lq D + b2 Log@c Hd He + f xLp Lq D2 M + f x Ia3 - 3 a2 b p q + 6 a b2 p2 q2 6 b3 p3 q3 + 3 b Ia2 - 2 a b p q + 2 b2 p2 q2 M Log@c Hd He + f xLp Lq D + 3 b2 Ha - b p qL Log@c Hd He + f xLp Lq D2 + b3 Log@c Hd He + f xLp Lq D3 MM
Problem ð28: Valid but suboptimal antiderivative:
:
Ha + b Log@c Hd He + f xLp Lq DL3
, x, 4, 0>
g+hx
Ha + b Log@c Hd He + f xLp Lq DL3 LogB
f Hg+h xL
f g-e h
h
F
+
3 b p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2, -
6 b2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3, h
1
h
h He+f xL
F
f g-e h
h
6 b3 p3 q3 PolyLogB4, +
h
h He+f xL
F
f g-e h
h He+f xL
F
f g-e h
a3 Log@g + h xD - 3 a2 b p q Log@e + f xD Log@g + h xD + 3 a b2 p2 q2 Log@e + f xD2 Log@g + h xD b3 p3 q3 Log@e + f xD3 Log@g + h xD + 3 a2 b Log@c Hd He + f xLp Lq D Log@g + h xD - 6 a b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD +
3 b3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@g + h xD + 3 a b2 Log@c Hd He + f xLp Lq D2 Log@g + h xD 3 b3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@g + h xD + b3 Log@c Hd He + f xLp Lq D3 Log@g + h xD +
f Hg + h xL
f Hg + h xL
f Hg + h xL
3 a2 b p q Log@e + f xD LogB
F - 3 a b2 p2 q2 Log@e + f xD2 LogB
F + b3 p3 q3 Log@e + f xD3 LogB
F+
fg-eh
fg-eh
fg-eh
6 a b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
3 b3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
6 b2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3,
F - 3 b3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D LogB
F + 3 b p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2,
h He + f xL
-f g + e h
F + 6 b3 p3 q3 PolyLogB4,
h He + f xL
-f g + e h
Problem ð29: Valid but suboptimal antiderivative:
:
-
Ha + b Log@c Hd He + f xLp Lq DL3
Hg + h xL2
, x, 4, 0>
He + f xL Ha + b Log@c Hd He + f xLp Lq DL3
Hf g - e hL Hg + h xL
-
3 b f p q Ha + b Log@c Hd He + f xLp Lq DL2 LogB
6 b2 f p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2, h Hf g - e hL
h Hf g - e hL
h He+f xL
F
f g-e h
f Hg+h xL
f g-e h
6 b3 f p3 q3 PolyLogB3, -
+
h Hf g - e hL
F
-
h He+f xL
F
f g-e h
F
f Hg + h xL
fg-eh
h He + f xL
-f g + e h
F+
F-
9
10
2.2 Logarithm Functions.nb
1
h
3 b f p q Log@e + f xD Ha - b p q Log@e + f xD + b Log@c Hd He + f xLp Lq DL2
fg-eh
Ha - b p q Log@e + f xD + b Log@c Hd He + f xLp Lq DL3
-
g+hx
1
Hf g - e hL Hg + h xL
Hf g - e hL Hg + h xL
3 b p q Log@e + f xD Ha - b p q Log@e + f xD + b Log@c Hd He + f xLp Lq DL2
g+hx
3 b f p q Ha - b p q Log@e + f xD + b Log@c Hd He + f xLp Lq DL2 Log@g + h xD
3 b2 p2 q2 H- a + b p q Log@e + f xD - b Log@c Hd He + f xLp Lq DL
f Hg + h xL
fg-eh
F + 2 f Hg + h xL PolyLogB2,
b3 p3 q3 Log@e + f xD2 h He + f xL Log@e + f xD - 3 f Hg + h xL LogB
6 f Hg + h xL Log@e + f xD PolyLogB2,
h He + f xL
-f g + e h
+
fg-eh
- Log@e + f xD h He + f xL Log@e + f xD - 2 f Hg + h xL LogB
1
-
F + 6 f Hg + h xL PolyLogB3,
f Hg + h xL
fg-eh
h He + f xL
-f g + e h
F
h He + f xL
F -
-f g + e h
F +
Problem ð33: Valid but suboptimal antiderivative:
9Ha + b Log@c Hd He + f xLp Lq DL4 , x, 5, 0=
- 24 a b3 p3 q3 x + 24 b4 p4 q4 x -
24 b4 p3 q3 He + f xL Log@c Hd He + f xLp Lq D
4 b p q He + f xL Ha + b Log@c Hd He + f xLp Lq DL3
f
1
f
f
+
+
12 b2 p2 q2 He + f xL Ha + b Log@c Hd He + f xLp Lq DL2
He + f xL Ha + b Log@c Hd He + f xLp Lq DL4
-
f
f
I- b4 e p4 q4 Log@e + f xD4 + 4 b3 e p3 q3 Log@e + f xD3 Ha - b p q + b Log@c Hd He + f xLp Lq DL -
6 b2 e p2 q2 Log@e + f xD2 Ia2 - 2 a b p q + 2 b2 p2 q2 + 2 b Ha - b p qL Log@c Hd He + f xLp Lq D + b2 Log@c Hd He + f xLp Lq D2 M +
4 b e p q Log@e + f xD Ia3 - 3 a2 b p q + 6 a b2 p2 q2 - 6 b3 p3 q3 +
3 b Ia2 - 2 a b p q + 2 b2 p2 q2 M Log@c Hd He + f xLp Lq D + 3 b2 Ha - b p qL Log@c Hd He + f xLp Lq D2 + b3 Log@c Hd He + f xLp Lq D3 M +
f x Ia4 - 4 a3 b p q + 12 a2 b2 p2 q2 - 24 a b3 p3 q3 + 24 b4 p4 q4 + 4 b Ia3 - 3 a2 b p q + 6 a b2 p2 q2 - 6 b3 p3 q3 M Log@c Hd He + f xLp Lq D +
6 b2 Ia2 - 2 a b p q + 2 b2 p2 q2 M Log@c Hd He + f xLp Lq D2 + 4 b3 Ha - b p qL Log@c Hd He + f xLp Lq D3 + b4 Log@c Hd He + f xLp Lq D4 MM
Problem ð34: Valid but suboptimal antiderivative:
:
Ha + b Log@c Hd He + f xLp Lq DL4
g+hx
, x, 5, 0>
-
2.2 Logarithm Functions.nb
Ha + b Log@c Hd He + f xLp Lq DL4 LogB
f Hg+h xL
f g-e h
h
F
+
4 b p q Ha + b Log@c Hd He + f xLp Lq DL3 PolyLogB2, -
12 b2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB3, h
24 b3 p3 q3 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB4, h
1
h
h He+f xL
F
f g-e h
h He+f xL
F
f g-e h
-
+
24 b4 p4 q4 PolyLogB5, -
h
h He+f xL
F
f g-e h
a4 Log@g + h xD - 4 a3 b p q Log@e + f xD Log@g + h xD + 6 a2 b2 p2 q2 Log@e + f xD2 Log@g + h xD - 4 a b3 p3 q3 Log@e + f xD3 Log@g + h xD +
b4 p4 q4 Log@e + f xD4 Log@g + h xD + 4 a3 b Log@c Hd He + f xLp Lq D Log@g + h xD - 12 a2 b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD +
12 a b3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@g + h xD - 4 b4 p3 q3 Log@e + f xD3 Log@c Hd He + f xLp Lq D Log@g + h xD +
6 a2 b2 Log@c Hd He + f xLp Lq D2 Log@g + h xD - 12 a b3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@g + h xD +
6 b4 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D2 Log@g + h xD + 4 a b3 Log@c Hd He + f xLp Lq D3 Log@g + h xD f Hg + h xL
4 b4 p q Log@e + f xD Log@c Hd He + f xLp Lq D3 Log@g + h xD + b4 Log@c Hd He + f xLp Lq D4 Log@g + h xD + 4 a3 b p q Log@e + f xD LogB
Ffg-eh
6 a2 b2 p2 q2 Log@e + f xD2 LogB
f Hg + h xL
fg-eh
F + 4 a b3 p3 q3 Log@e + f xD3 LogB
12 a2 b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
4 b4 p3 q3 Log@e + f xD3 Log@c Hd He + f xLp Lq D LogB
4 b p q Ha + b Log@c Hd He + f xLp Lq DL3 PolyLogB2,
24 a b3 p3 q3 PolyLogB4,
h He + f xL
-f g + e h
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
6 b4 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D2 LogB
fg-eh
h He + f xL
-f g + e h
Ha + b Log@c Hd He + f xLp Lq DL4
Hg + h xL2
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
F - 12 a b3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D LogB
F + 4 b4 p q Log@e + f xD Log@c Hd He + f xLp Lq D3 LogB
h He + f xL
-f g + e h
F+
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
F - 12 b2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB3,
F + 24 b4 p3 q3 Log@c Hd He + f xLp Lq D PolyLogB4,
, x, 5, 0>
F - b4 p4 q4 Log@e + f xD4 LogB
F + 12 a b3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
f Hg + h xL
Problem ð35: Valid but suboptimal antiderivative:
:
h
h He+f xL
F
f g-e h
F-
F+
h He + f xL
-f g + e h
F - 24 b4 p4 q4 PolyLogB5,
F+
F+
h He + f xL
-f g + e h
F
11
12
2.2 Logarithm Functions.nb
He + f xL Ha + b Log@c Hd He + f xLp Lq DL4
Hf g - e hL Hg + h xL
-
4 b f p q Ha + b Log@c Hd He + f xLp Lq DL3 LogB
12 b2 f p2 q2 Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2, h Hf g - e hL
24 b3 f p3 q3 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3, 1
h H- f g + e hL Hg + h xL
h Hf g - e hL
h Hf g - e hL
h He+f xL
F
f g-e h
h He+f xL
F
f g-e h
f Hg+h xL
f g-e h
F
-
+
24 b4 f p4 q4 PolyLogB4, h Hf g - e hL
-
h He+f xL
F
f g-e h
a4 f g - a4 e h - 4 a3 b f g p q Log@e + f xD - 4 a3 b f h p q x Log@e + f xD + 6 a2 b2 f g p2 q2 Log@e + f xD2 + 6 a2 b2 f h p2 q2 x Log@e + f xD2 4 a b3 f g p3 q3 Log@e + f xD3 - 4 a b3 f h p3 q3 x Log@e + f xD3 + b4 f g p4 q4 Log@e + f xD4 + b4 f h p4 q4 x Log@e + f xD4 + 4 a3 b f g Log@c Hd He + f xLp Lq D 4 a3 b e h Log@c Hd He + f xLp Lq D - 12 a2 b2 f g p q Log@e + f xD Log@c Hd He + f xLp Lq D - 12 a2 b2 f h p q x Log@e + f xD Log@c Hd He + f xLp Lq D +
12 a b3 f g p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D + 12 a b3 f h p2 q2 x Log@e + f xD2 Log@c Hd He + f xLp Lq D 4 b4 f g p3 q3 Log@e + f xD3 Log@c Hd He + f xLp Lq D - 4 b4 f h p3 q3 x Log@e + f xD3 Log@c Hd He + f xLp Lq D + 6 a2 b2 f g Log@c Hd He + f xLp Lq D2 6 a2 b2 e h Log@c Hd He + f xLp Lq D2 - 12 a b3 f g p q Log@e + f xD Log@c Hd He + f xLp Lq D2 - 12 a b3 f h p q x Log@e + f xD Log@c Hd He + f xLp Lq D2 +
6 b4 f g p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D2 + 6 b4 f h p2 q2 x Log@e + f xD2 Log@c Hd He + f xLp Lq D2 +
4 a b3 f g Log@c Hd He + f xLp Lq D3 - 4 a b3 e h Log@c Hd He + f xLp Lq D3 - 4 b4 f g p q Log@e + f xD Log@c Hd He + f xLp Lq D3 4 b4 f h p q x Log@e + f xD Log@c Hd He + f xLp Lq D3 + b4 f g Log@c Hd He + f xLp Lq D4 - b4 e h Log@c Hd He + f xLp Lq D4 +
f Hg + h xL
f Hg + h xL
f Hg + h xL
4 a3 b f g p q LogB
F + 4 a3 b f h p q x LogB
F + 12 a2 b2 f g p q Log@c Hd He + f xLp Lq D LogB
F+
fg-eh
fg-eh
fg-eh
12 a2 b2 f h p q x Log@c Hd He + f xLp Lq D LogB
12 a b3 f h p q x Log@c Hd He + f xLp Lq D2 LogB
4 b4 f h p q x Log@c Hd He + f xLp Lq D3 LogB
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
F + 12 a b3 f g p q Log@c Hd He + f xLp Lq D2 LogB
F + 4 b4 f g p q Log@c Hd He + f xLp Lq D3 LogB
h He + f xL
-f g + e h
:
g Hd+e xL
e f-d g
f+gx
F
, x, 1, 0>
h He + f xL
-f g + e h
F + 24 b4 f h p4 q4 x PolyLogB4,
Problem ð42: Valid but suboptimal antiderivative:
LogB-
fg-eh
f Hg + h xL
fg-eh
F+
F+
F + 12 b2 f p2 q2 Hg + h xL Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2,
24 b3 f p3 q3 Hg + h xL Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3,
24 b4 f g p4 q4 PolyLogB4,
f Hg + h xL
F+
h He + f xL
-f g + e h
F
h He + f xL
-f g + e h
F-
2.2 Logarithm Functions.nb
PolyLogB2,
-
e Hf+g xL
e f-d g
g
g Hd+e xL
LogB
-e f+d g
F LogB
F
e Hf+g xL
e f-d g
g
g Hd+e xL
F + PolyLogB2,
-e f+d g
F
Problem ð55: Valid but suboptimal antiderivative:
:
Hg + h xL3
Ha + b Log@c Hd He + f xLp Lq DL2
Hf g - e hL3 He + f xL Hc Hd He + f xLp Lq L
a
-
ã
, x, 12, 0>
bpq
-
1
pq
ExpIntegralEiB
a+b Log@c Hd He+f xLp Lq D
bpq
b2 f4 p2 q2
-
6ã
2a
bpq
h Hf g - e hL2 He + f xL2 Hc Hd He + f xLp Lq L
-
2
pq
ExpIntegralEiB
F
+
2 Ha+b Log@c Hd He+f xLp Lq DL
F
3 Ha+b Log@c Hd He+f xLp Lq DL
F
bpq
b2 f4 p2 q2
-
9ã
3a
bpq
h2 Hf g - e hL He + f xL3 Hc Hd He + f xLp Lq L
-
3
pq
ExpIntegralEiB
bpq
b2 f4 p2 q2
-
4ã
4a
bpq
h3 He + f xL4 Hc Hd He + f xLp Lq L
-
4
pq
ExpIntegralEiB
4 Ha+b Log@c Hd He+f xLp Lq DL
bpq
b2 f4 p2 q2
F
-
1
b2 f4 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL
-
ã
4a
bpq
Hc Hd He + f xLp Lq L
-
4
pq
+
+
He + f xL Hg + h xL3
b f p q Ha + b Log@c Hd He + f xLp Lq DL
- b e ã b p q f3 g3 p q Hc Hd He + f xLp Lq L p q - b ã b p q f4 g3 p q x Hc Hd He + f xLp Lq L p q - 3 b e ã b p q f3 g2 h p q x Hc Hd He + f xLp Lq L p q 4a
4
4a
4
4a
4
3 b ã b p q f4 g2 h p q x2 Hc Hd He + f xLp Lq L p q - 3 b e ã b p q f3 g h2 p q x2 Hc Hd He + f xLp Lq L p q - 3 b ã b p q f4 g h2 p q x3 Hc Hd He + f xLp Lq L p q 4a
4
4a
4
4a
4
b e ã b p q f3 h3 p q x3 Hc Hd He + f xLp Lq L p q - b ã b p q f4 h3 p q x4 Hc Hd He + f xLp Lq L p q + a ã b p q f3 g3 He + f xL Hc Hd He + f xLp Lq L p q
4a
4
ExpIntegralEiB
4a
a + b Log@c Hd He + f xLp Lq D
bpq
4
3
a + b Log@c Hd He + f xL L D
p q
ExpIntegralEiB
bpq
3a
3
a + b Log@c Hd He + f xLp Lq D
bpq
2
a + b Log@c Hd He + f xLp Lq D
bpq
F - a e3 ã b p q h3 He + f xL Hc Hd He + f xLp Lq L p q
3a
F + 6 a ã b p q f2 g2 h He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
12 a e ã b p q f g h2 He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
3
F - 3 a e ã b p q f2 g2 h He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3 a e2 ã b p q f g h2 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3a
2
2 Ha + b Log@c Hd He + f xLp Lq DL
bpq
+
F+
3
F+
2 Ha + b Log@c Hd He + f xLp Lq DL
bpq
F-
13
14
2.2 Logarithm Functions.nb
6 a e2 ã b p q h3 He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
2
2 Ha + b Log@c Hd He + f xLp Lq DL
bpq
9 a ã b p q f g h2 He + f xL3 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
a
1
3 Ha + b Log@c Hd He + f xL L DL
p q
ExpIntegralEiB
bpq
3a
3
3 Ha + b Log@c Hd He + f xLp Lq DL
bpq
F + 4 a h3 He + f xL4 ExpIntegralEiB
b ã b p q f3 g3 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
a + b Log@c Hd He + f xLp Lq D
bpq
3 b e ã b p q f2 g2 h He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3
3 b e2 ã b p q f g h2 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3
b e3 ã b p q h3 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3
2
2a
bpq
2a
2
a
1
9 b e ã b p q h3 He + f xL3 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
a
1
4 b h3 He + f xL4 ExpIntegralEiB
bpq
Problem ð56: Valid but suboptimal antiderivative:
:
Hg + h xL2
Ha + b Log@c Hd He + f xLp Lq DL2
, x, 10, 0>
F Log@c Hd He + f xLp Lq D +
bpq
F Log@c Hd He + f xLp Lq D -
2 Ha + b Log@c Hd He + f xLp Lq DL
bpq
bpq
bpq
3 Ha + b Log@c Hd He + f xLp Lq DL
bpq
F Log@c Hd He + f xLp Lq D
F Log@c Hd He + f xLp Lq D +
F Log@c Hd He + f xLp Lq D +
3 Ha + b Log@c Hd He + f xLp Lq DL
4 Ha + b Log@c Hd He + f xLp Lq DL
F+
F Log@c Hd He + f xLp Lq D -
2 Ha + b Log@c Hd He + f xLp Lq DL
9 b ã b p q f g h2 He + f xL3 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
1
F Log@c Hd He + f xLp Lq D +
2 Ha + b Log@c Hd He + f xLp Lq DL
2
6 b e2 ã b p q h3 He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
F Log@c Hd He + f xLp Lq D -
a + b Log@c Hd He + f xLp Lq D
12 b e ã b p q f g h2 He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
a
bpq
bpq
bpq
F - 9 a e ã b p q h3 He + f xL3 Hc Hd He + f xLp Lq L p q
4 Ha + b Log@c Hd He + f xLp Lq DL
a + b Log@c Hd He + f xLp Lq D
a + b Log@c Hd He + f xLp Lq D
6 b ã b p q f2 g2 h He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
F+
F Log@c Hd He + f xLp Lq D -
F Log@c Hd He + f xLp Lq D +
2.2 Logarithm Functions.nb
Hf g - e hL2 He + f xL Hc Hd He + f xLp Lq L
a
-
ã
-
bpq
1
pq
ExpIntegralEiB
a+b Log@c Hd He+f xLp Lq D
bpq
b2 f3 p2 q2
-
4ã
2a
bpq
h Hf g - e hL He + f xL2 Hc Hd He + f xLp Lq L
-
2
pq
ExpIntegralEiB
F
+
2 Ha+b Log@c Hd He+f xLp Lq DL
bpq
b2 f3 p2 q2
-
3ã
3a
bpq
h2 He + f xL3 Hc Hd He + f xLp Lq L
-
3
pq
ExpIntegralEiB
3 Ha+b Log@c Hd He+f xLp Lq DL
bpq
b2 f3 p2 q2
F
-
1
b2 f3 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL
-
ã
3a
bpq
Hc Hd He + f xLp Lq L
-
3
pq
F
+
He + f xL Hg + h xL2
b f p q Ha + b Log@c Hd He + f xLp Lq DL
- b e ã b p q f2 g2 p q Hc Hd He + f xLp Lq L p q - b ã b p q f3 g2 p q x Hc Hd He + f xLp Lq L p q - 2 b e ã b p q f2 g h p q x Hc Hd He + f xLp Lq L p q 3a
3
3a
3
3a
3
2 b ã b p q f3 g h p q x2 Hc Hd He + f xLp Lq L p q - b e ã b p q f2 h2 p q x2 Hc Hd He + f xLp Lq L p q - b ã b p q f3 h2 p q x3 Hc Hd He + f xLp Lq L p q +
3a
3
3a
3
a ã b p q f2 g2 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
2
a + b Log@c Hd He + f xL L D
p q
ExpIntegralEiB
bpq
a + b Log@c Hd He + f xLp Lq D
bpq
1
2 Ha + b Log@c Hd He + f xL L DL
p q
ExpIntegralEiB
bpq
2
bpq
a + b Log@c Hd He + f xLp Lq D
bpq
2
b e2 ã b p q h2 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
2
bpq
1
4 b e ã b p q h2 He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
a
3 b h2 He + f xL3 ExpIntegralEiB
1
bpq
F Log@c Hd He + f xLp Lq D +
2 Ha + b Log@c Hd He + f xLp Lq DL
bpq
F Log@c Hd He + f xLp Lq D
F+
1
F+
F Log@c Hd He + f xLp Lq D +
2 Ha + b Log@c Hd He + f xLp Lq DL
3 Ha + b Log@c Hd He + f xLp Lq DL
a
F Log@c Hd He + f xLp Lq D -
bpq
bpq
F - 4 a e ã b p q h2 He + f xL2 Hc Hd He + f xLp Lq L p q
bpq
bpq
2
a + b Log@c Hd He + f xLp Lq D
3 Ha + b Log@c Hd He + f xLp Lq DL
a + b Log@c Hd He + f xLp Lq D
a + b Log@c Hd He + f xLp Lq D
4 b ã b p q f g h He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
a
2a
2 Ha + b Log@c Hd He + f xLp Lq DL
2 b e ã b p q f g h He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
F - 2 a e ã b p q f g h He + f xL Hc Hd He + f xLp Lq L p q
2
F + 3 a h2 He + f xL3 ExpIntegralEiB
b ã b p q f2 g2 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
3
F + a e2 ã b p q h2 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
4 a ã b p q f g h He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
a
3a
F Log@c Hd He + f xLp Lq D -
F Log@c Hd He + f xLp Lq D +
15
16
2.2 Logarithm Functions.nb
Problem ð62: Valid but suboptimal antiderivative:
:
Hg + h xL3
Ha + b Log@c Hd He + f xLp Lq DL3
-
ã
, x, 23, 0>
Hf g - e hL3 He + f xL Hc Hd He + f xLp Lq L
a
bpq
-
1
ExpIntegralEiB
pq
a+b Log@c Hd He+f xLp Lq D
bpq
2 b3 f4 p3 q3
-
6ã
2a
bpq
h Hf g - e hL2 He + f xL2 Hc Hd He + f xLp Lq L
-
2
ExpIntegralEiB
pq
F
+
2 Ha+b Log@c Hd He+f xLp Lq DL
bpq
b3 f4 p3 q3
-
27 ã
3a
bpq
h2 Hf g - e hL He + f xL3 Hc Hd He + f xLp Lq L
-
3
pq
ExpIntegralEiB
3 Ha+b Log@c Hd He+f xLp Lq DL
bpq
2 b3 f4 p3 q3
-
8ã
4a
bpq
h3 He + f xL4 Hc Hd He + f xLp Lq L
-
4
ExpIntegralEiB
pq
4 Ha+b Log@c Hd He+f xLp Lq DL
bpq
b3 f4 p3 q3
3 Hf g - e hL He + f xL Hg + h xL2
2 b2 f2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL
-
1
2 b3 f4 p3 q3 Ha + b Log@c Hd He + f xLp Lq DL2
-
ã
2 He + f xL Hg + h xL3
F
-
b2 f p2 q2 Ha + b Log@c Hd He + f xLp Lq DL
4a
bpq
Hc Hd He + f xLp Lq L
-
F
+
F
+
He + f xL Hg + h xL3
2 b f p q Ha + b Log@c Hd He + f xLp Lq DL2
+
4
pq
- a b e ã b p q f3 g3 p q Hc Hd He + f xLp Lq L p q - 3 a b e2 ã b p q f2 g2 h p q Hc Hd He + f xLp Lq L p q - b2 e ã b p q f3 g3 p2 q2 Hc Hd He + f xLp Lq L p q 4a
4
4a
4
4a
4
a b ã b p q f4 g3 p q x Hc Hd He + f xLp Lq L p q - 9 a b e ã b p q f3 g2 h p q x Hc Hd He + f xLp Lq L p q - 6 a b e2 ã b p q f2 g h2 p q x Hc Hd He + f xLp Lq L p q 4a
4
4a
4
4a
4
b2 ã b p q f4 g3 p2 q2 x Hc Hd He + f xLp Lq L p q - 3 b2 e ã b p q f3 g2 h p2 q2 x Hc Hd He + f xLp Lq L p q - 6 a b ã b p q f4 g2 h p q x2 Hc Hd He + f xLp Lq L p q 4a
4
4a
4
4a
4
15 a b e ã b p q f3 g h2 p q x2 Hc Hd He + f xLp Lq L p q - 3 a b e2 ã b p q f2 h3 p q x2 Hc Hd He + f xLp Lq L p q - 3 b2 ã b p q f4 g2 h p2 q2 x2 Hc Hd He + f xLp Lq L p q 4a
4
4a
4
4a
4
3 b2 e ã b p q f3 g h2 p2 q2 x2 Hc Hd He + f xLp Lq L p q - 9 a b ã b p q f4 g h2 p q x3 Hc Hd He + f xLp Lq L p q - 7 a b e ã b p q f3 h3 p q x3 Hc Hd He + f xLp Lq L p q 4a
4
4a
4
4a
3 b2 ã b p q f4 g h2 p2 q2 x3 Hc Hd He + f xLp Lq L p q - b2 e ã b p q f3 h3 p2 q2 x3 Hc Hd He + f xLp Lq L p q - 4 a b ã b p q f4 h3 p q x4 Hc Hd He + f xLp Lq L p q 4a
4
4a
4
4a
b2 ã b p q f4 h3 p2 q2 x4 Hc Hd He + f xLp Lq L p q + a2 ã b p q f3 g3 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
4a
4
3a
3
3 a2 e ã b p q f2 g2 h He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3
3 a2 e2 ã b p q f g h2 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3
a2 e3 ã b p q h3 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3
a + b Log@c Hd He + f xLp Lq D
bpq
a + b Log@c Hd He + f xLp Lq D
bpq
a + b Log@c Hd He + f xLp Lq D
bpq
F+
F+
F-
-
4
a + b Log@c Hd He + f xLp Lq D
bpq
F-
4
2.2 Logarithm Functions.nb
12 a2 ã b p q f2 g2 h He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
2
2 Ha + b Log@c Hd He + f xLp Lq DL
bpq
24 a2 e ã b p q f g h2 He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
2
12 a2 e2 ã b p q h3 He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
2
a
1
27 a2 e ã b p q h3 He + f xL3 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
a
1
16 a2 h3 He + f xL4 ExpIntegralEiB
2 Ha + b Log@c Hd He + f xLp Lq DL
bpq
2 Ha + b Log@c Hd He + f xLp Lq DL
27 a2 ã b p q f g h2 He + f xL3 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
F-
bpq
F+
3 Ha + b Log@c Hd He + f xLp Lq DL
bpq
3 Ha + b Log@c Hd He + f xLp Lq DL
4 Ha + b Log@c Hd He + f xLp Lq DL
bpq
bpq
F+
F-
F+
F - b2 e ã b p q f3 g3 p q Hc Hd He + f xLp Lq L p q Log@c Hd He + f xLp Lq D 4a
4
3 b2 e2 ã b p q f2 g2 h p q Hc Hd He + f xLp Lq L p q Log@c Hd He + f xLp Lq D - b2 ã b p q f4 g3 p q x Hc Hd He + f xLp Lq L p q Log@c Hd He + f xLp Lq D 4a
4
4a
4
9 b2 e ã b p q f3 g2 h p q x Hc Hd He + f xLp Lq L p q Log@c Hd He + f xLp Lq D - 6 b2 e2 ã b p q f2 g h2 p q x Hc Hd He + f xLp Lq L p q Log@c Hd He + f xLp Lq D 4a
4
4a
4
6 b2 ã b p q f4 g2 h p q x2 Hc Hd He + f xLp Lq L p q Log@c Hd He + f xLp Lq D - 15 b2 e ã b p q f3 g h2 p q x2 Hc Hd He + f xLp Lq L p q Log@c Hd He + f xLp Lq D 4a
4
4a
4
3 b2 e2 ã b p q f2 h3 p q x2 Hc Hd He + f xLp Lq L p q Log@c Hd He + f xLp Lq D - 9 b2 ã b p q f4 g h2 p q x3 Hc Hd He + f xLp Lq L p q Log@c Hd He + f xLp Lq D 4a
4
4a
4
7 b2 e ã b p q f3 h3 p q x3 Hc Hd He + f xLp Lq L p q Log@c Hd He + f xLp Lq D - 4 b2 ã b p q f4 h3 p q x4 Hc Hd He + f xLp Lq L p q Log@c Hd He + f xLp Lq D +
4a
4
4a
2 a b ã b p q f3 g3 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3
a + b Log@c Hd He + f xLp Lq D
bpq
6 a b e ã b p q f2 g2 h He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3
6 a b e2 ã b p q f g h2 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3
2 a b e3 ã b p q h3 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3
bpq
a + b Log@c Hd He + f xLp Lq D
bpq
a + b Log@c Hd He + f xLp Lq D
bpq
2
2
24 a b e2 ã b p q h3 He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
2
1
F Log@c Hd He + f xLp Lq D -
F Log@c Hd He + f xLp Lq D +
bpq
F Log@c Hd He + f xLp Lq D -
2 Ha + b Log@c Hd He + f xLp Lq DL
bpq
2 Ha + b Log@c Hd He + f xLp Lq DL
54 a b ã b p q f g h2 He + f xL3 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
a
F Log@c Hd He + f xLp Lq D +
2 Ha + b Log@c Hd He + f xLp Lq DL
48 a b e ã b p q f g h2 He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
F Log@c Hd He + f xLp Lq D -
a + b Log@c Hd He + f xLp Lq D
24 a b ã b p q f2 g2 h He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
4
bpq
F Log@c Hd He + f xLp Lq D +
3 Ha + b Log@c Hd He + f xLp Lq DL
bpq
F Log@c Hd He + f xLp Lq D +
F Log@c Hd He + f xLp Lq D +
17
18
2.2 Logarithm Functions.nb
54 a b e ã b p q h3 He + f xL3 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
a
1
32 a b h3 He + f xL4 ExpIntegralEiB
4 Ha + b Log@c Hd He + f xLp Lq DL
bpq
b2 ã b p q f3 g3 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3 Ha + b Log@c Hd He + f xLp Lq DL
3
bpq
3
3 b2 e2 ã b p q f g h2 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3
b2 e3 ã b p q h3 He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
3
bpq
a + b Log@c Hd He + f xLp Lq D
bpq
a + b Log@c Hd He + f xLp Lq D
bpq
2
2
12 b2 e2 ã b p q h3 He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
2
1
27 b2 e ã b p q h3 He + f xL3 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
a
16 b2 h3 He + f xL4 ExpIntegralEiB
1
Problem ð69: Unable to integrate:
:Hg + h xL4
a + b Log@c Hd He + f xLp Lq D , x, 12, 0>
F Log@c Hd He + f xLp Lq D2 +
bpq
F Log@c Hd He + f xLp Lq D2 -
2 Ha + b Log@c Hd He + f xLp Lq DL
bpq
bpq
bpq
3 Ha + b Log@c Hd He + f xLp Lq DL
bpq
F Log@c Hd He + f xLp Lq D2
F Log@c Hd He + f xLp Lq D2 +
F Log@c Hd He + f xLp Lq D2 +
3 Ha + b Log@c Hd He + f xLp Lq DL
4 Ha + b Log@c Hd He + f xLp Lq DL
bpq
F Log@c Hd He + f xLp Lq D2 -
2 Ha + b Log@c Hd He + f xLp Lq DL
27 b2 ã b p q f g h2 He + f xL3 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
a
F Log@c Hd He + f xLp Lq D2 +
2 Ha + b Log@c Hd He + f xLp Lq DL
24 b2 e ã b p q f g h2 He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
F Log@c Hd He + f xLp Lq D +
F Log@c Hd He + f xLp Lq D2 -
a + b Log@c Hd He + f xLp Lq D
12 b2 ã b p q f2 g2 h He + f xL2 Hc Hd He + f xLp Lq L p q ExpIntegralEiB
2a
F Log@c Hd He + f xLp Lq D +
a + b Log@c Hd He + f xLp Lq D
3 b2 e ã b p q f2 g2 h He + f xL Hc Hd He + f xLp Lq L p q ExpIntegralEiB
3a
bpq
F Log@c Hd He + f xLp Lq D2 -
F Log@c Hd He + f xLp Lq D2 +
2.2 Logarithm Functions.nb
-
b ã
a
bpq
-
-
b ã
-
b ã
-
b ã
-
b ã
4a
bpq
2a
bpq
3a
bpq
Hf g - e hL4
p
Π
5
1
ErfiB
pq
a+b Log@c Hd He+f xLp Lq D
b
q He + f xL4 Hc Hd He + f xLp Lq L
4
-
Π
ErfiB
pq
p
q
2
-
pq
p
4
p
Π
3
b
q He + f xL3 Hc Hd He + f xLp Lq L
-
F
p
-
q
3
pq
a+b Log@c Hd He+f xLp Lq D
3
ErfiB
b
p
q
f5
q He + f xL5 Hc Hd He + f xLp Lq L
-
a + b Log@c Hd He + f xLp Lq D
f5
a + b Log@c Hd He + f xLp Lq D
f5
a + b Log@c Hd He + f xLp Lq D â x
Problem ð70: Unable to integrate:
:Hg + h xL3
q
f5
2 h Hf g - e hL3 He + f xL2
à Hg + h xL
-
a+b Log@c Hd He+f xLp Lq D
2
ErfiB
5
pq
ErfiB
5
a+b Log@c Hd He+f xLp Lq D
b
p
q
10 f5
h3 Hf g - e hL He + f xL4
F
a+b Log@c Hd He+f xLp Lq D
2
b
q He + f xL2 Hc Hd He + f xLp Lq L
Π
2
p
h2 Hf g - e hL2
p
-
4 f5
h Hf g - e hL3
h4
q He + f xL Hc Hd He + f xLp Lq L
Π
2 f5
h3 Hf g - e hL
5a
bpq
p
a + b Log@c Hd He + f xLp Lq D , x, 10, 0>
+
+
2 h2 Hf g - e hL2 He + f xL3
h4 He + f xL5
F
+
-
F
-
Hf g - e hL4 He + f xL
a + b Log@c Hd He + f xLp Lq D
f5
a + b Log@c Hd He + f xLp Lq D
5 f5
F
a + b Log@c Hd He + f xLp Lq D
f5
+
+
19
20
2.2 Logarithm Functions.nb
-
b ã
a
bpq
-
-
b ã
Hf g - e hL3
4a
bpq
h3
p
Π
p
q He + f xL Hc Hd He + f xLp Lq L
-
Π
1
ErfiB
pq
a+b Log@c Hd He+f xLp Lq D
b
p
q
2 f4
q He + f xL4 Hc Hd He + f xLp Lq L
4
-
pq
ErfiB
a+b Log@c Hd He+f xLp Lq D
2
b
p
q
16 f4
3
-
b ã
-
b ã
2a
bpq
3a
bpq
h Hf g - e hL2
h2 Hf g - e hL He + f xL3
à Hg + h xL
q He + f xL2 Hc Hd He + f xLp Lq L
-
Π
3
p
q He + f xL3 Hc Hd He + f xLp Lq L
-
a+b Log@c Hd He+f xLp Lq D
2
ErfiB
-
b
p
F
q
3
pq
a+b Log@c Hd He+f xLp Lq D
3
ErfiB
b
p
q
2 f4
a + b Log@c Hd He + f xLp Lq D
+
f4
a + b Log@c Hd He + f xLp Lq D
3 h Hf g - e hL2 He + f xL2
+
f4
a + b Log@c Hd He + f xLp Lq D â x
3
2
pq
-
4 f4
h2 Hf g - e hL
Hf g - e hL3 He + f xL
Π
2
p
F
F
h3 He + f xL4
F
-
+
a + b Log@c Hd He + f xLp Lq D
+
2 f4
a + b Log@c Hd He + f xLp Lq D
4 f4
Problem ð71: Unable to integrate:
:Hg + h xL2
-
b ã
a
bpq
-
-
b ã
-
b ã
2a
bpq
a + b Log@c Hd He + f xLp Lq D , x, 8, 0>
Hf g - e hL2
h Hf g - e hL
3a
bpq
h2
p
Π
3
p
q He + f xL Hc Hd He + f xLp Lq L
Π
-
1
pq
ErfiB
a+b Log@c Hd He+f xLp Lq D
b
q
2 f3
p
Π
2
q He + f xL2 Hc Hd He + f xLp Lq L
-
2
pq
ErfiB
2
F
-
a+b Log@c Hd He+f xLp Lq D
b
p
q
2 f3
q He + f xL3 Hc Hd He + f xLp Lq L
-
3
pq
ErfiB
3
a+b Log@c Hd He+f xLp Lq D
b
p
6 f3
h Hf g - e hL He + f xL2
p
a + b Log@c Hd He + f xLp Lq D
f3
+
h2 He + f xL3
q
F
+
-
Hf g - e hL2 He + f xL
a + b Log@c Hd He + f xLp Lq D
3 f3
F
a + b Log@c Hd He + f xLp Lq D
f3
+
2.2 Logarithm Functions.nb
à Hg + h xL
a + b Log@c Hd He + f xLp Lq D â x
2
Problem ð72: Unable to integrate:
:Hg + h xL
-
b ã
a
bpq
-
-
b ã
a + b Log@c Hd He + f xLp Lq D , x, 6, 0>
Hf g - e hL
2a
bpq
h
Π
2
p
p
Π
q He + f xL Hc Hd He + f xLp Lq L
-
1
pq
ErfiB
a+b Log@c Hd He+f xLp Lq D
b
p
q
2 f2
q He + f xL2 Hc Hd He + f xLp Lq L
-
2
pq
ErfiB
a+b Log@c Hd He+f xLp Lq D
2
b
p
q
4 f2
Hf g - e hL He + f xL
à Hg + h xL
a + b Log@c Hd He + f xLp Lq D
+
f2
a + b Log@c Hd He + f xLp Lq D â x
h He + f xL2
F
F
-
+
a + b Log@c Hd He + f xLp Lq D
2 f2
Problem ð73: Unable to integrate:
:
-
a + b Log@c Hd He + f xLp Lq D , x, 2, 0>
-
b ã
a
bpq
p
Π
q He + f xL Hc Hd He + f xLp Lq L
-
1
pq
2f
à
a + b Log@c Hd He + f xLp Lq D â x
Problem ð80: Unable to integrate:
9Hg + h xL3 Ha + b Log@c Hd He + f xLp Lq DL32 , x, 14, 0=
ErfiB
a+b Log@c Hd He+f xLp Lq D
b
p
q
F
+
He + f xL
a + b Log@c Hd He + f xLp Lq D
f
21
22
2.2 Logarithm Functions.nb
-
3 b32 ã
a
bpq
-
3 b32 ã
Hf g - e hL3 p32
4a
bpq
h3 p32
Π q32 He + f xL Hc Hd He + f xLp Lq L
-
a+b Log@c Hd He+f xLp Lq D
1
ErfiB
pq
b
p
q
4 f4
Π q32 He + f xL4 Hc Hd He + f xLp Lq L
-
4
pq
ErfiB
a+b Log@c Hd He+f xLp Lq D
2
b
p
q
128 f4
-
9 b32 ã
-
b32 ã
2a
bpq
3a
bpq
h Hf g - e hL2 p32
h2 Hf g - e hL p32
Π
2
q32 He + f xL2 Hc Hd He + f xLp Lq L
-
2
pq
2
ErfiB
F
+
a+b Log@c Hd He+f xLp Lq D
b
p
q
q32 He + f xL3 Hc Hd He + f xLp Lq L
-
3
pq
ErfiB
a+b Log@c Hd He+f xLp Lq D
3
b
p
q
4 f4
a + b Log@c Hd He + f xLp Lq D
2 f4
b h2 Hf g - e hL p q He + f xL3
+
16 f4
Π
3
3 b Hf g - e hL3 p q He + f xL
F
a + b Log@c Hd He + f xLp Lq D
2 f4
Hf g - e hL3 He + f xL Ha + b Log@c Hd He + f xLp Lq DL32
f4
+
h2 Hf g - e hL He + f xL3 Ha + b Log@c Hd He + f xLp Lq DL32
f4
32
3
p q
âx
à Hg + h xL Ha + b Log@c Hd He + f xL L DL
Problem ð81: Unable to integrate:
9Hg + h xL2 Ha + b Log@c Hd He + f xLp Lq DL32 , x, 11, 0=
-
9 b h Hf g - e hL2 p q He + f xL2
8 f4
-
3 b h3 p q He + f xL4
F
F
+
-
a + b Log@c Hd He + f xLp Lq D
a + b Log@c Hd He + f xLp Lq D
+
32 f4
3 h Hf g - e hL2 He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL32
2 f4
+
h3 He + f xL4 Ha + b Log@c Hd He + f xLp Lq DL32
4 f4
+
-
2.2 Logarithm Functions.nb
-
3 b32 ã
a
bpq
-
3 b32 ã
-
b32 ã
Hf g - e hL2 p32
2a
bpq
-
h2 p32
Π
2
ErfiB
b
q32 He + f xL2 Hc Hd He + f xLp Lq L
-
p
2
pq
-
3 b Hf g - e hL2 p q He + f xL
+
a+b Log@c Hd He+f xLp Lq D
2
ErfiB
b
p
3
pq
ErfiB
3
a+b Log@c Hd He+f xLp Lq D
b
p
q
F
q
12 f3
a + b Log@c Hd He + f xLp Lq D
-
2 f3
b h2 p q He + f xL3
F
q
8 f3
q32 He + f xL3 Hc Hd He + f xLp Lq L
Π
3
a+b Log@c Hd He+f xLp Lq D
1
pq
4 f3
h Hf g - e hL p32
3a
bpq
Π q32 He + f xL Hc Hd He + f xLp Lq L
a + b Log@c Hd He + f xLp Lq D
+
6 f3
F
+
-
3 b h Hf g - e hL p q He + f xL2
a + b Log@c Hd He + f xLp Lq D
-
4 f3
Hf g - e hL2 He + f xL Ha + b Log@c Hd He + f xLp Lq DL32
h Hf g - e hL He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL32
23
+
f3
+
f3
h2 He + f xL3 Ha + b Log@c Hd He + f xLp Lq DL32
3 f3
32
2
p q
âx
à Hg + h xL Ha + b Log@c Hd He + f xL L DL
Problem ð82: Unable to integrate:
9Hg + h xL Ha + b Log@c Hd He + f xLp Lq DL32 , x, 8, 0=
-
3 b32 ã
a
bpq
-
3 b32 ã
Hf g - e hL p32
2a
bpq
h p32
Π
2
Π q32 He + f xL Hc Hd He + f xLp Lq L
-
1
pq
ErfiB
a+b Log@c Hd He+f xLp Lq D
b
q32 He + f xL2 Hc Hd He + f xLp Lq L
-
a + b Log@c Hd He + f xLp Lq D
8 f2
32
p q
âx
à Hg + h xL Ha + b Log@c Hd He + f xL L DL
Problem ð83: Unable to integrate:
q
4 f2
2
pq
ErfiB
2
a+b Log@c Hd He+f xLp Lq D
b
p
16 f2
3 b h p q He + f xL2
p
+
q
F
F
-
+
3 b Hf g - e hL p q He + f xL
Hf g - e hL He + f xL Ha + b Log@c Hd He + f xLp Lq DL32
f2
+
a + b Log@c Hd He + f xLp Lq D
2 f2
h He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL32
2 f2
-
24
2.2 Logarithm Functions.nb
9Ha + b Log@c Hd He + f xLp Lq DL32 , x, 3, 0=
-
3 b32 ã
a
bpq
p32
Π q32 He + f xL Hc Hd He + f xLp Lq L
-
1
pq
ErfiB
a+b Log@c Hd He+f xLp Lq D
b
p
4f
3 b p q He + f xL
a + b Log@c Hd He + f xLp Lq D
2f
32
p q
âx
à Ha + b Log@c Hd He + f xL L DL
+
q
F
-
He + f xL Ha + b Log@c Hd He + f xLp Lq DL32
Problem ð89: Unable to integrate:
9Hg + h xL3 Ha + b Log@c Hd He + f xLp Lq DL52 , x, 18, 0=
f
2.2 Logarithm Functions.nb
-
15 b52 ã
a
bpq
-
-
15 b52 ã
Hf g - e hL3 p52
4a
bpq
h3 p52
Π q52 He + f xL Hc Hd He + f xLp Lq L
-
1
ErfiB
pq
a+b Log@c Hd He+f xLp Lq D
b
p
q
8 f4
Π q52 He + f xL4 Hc Hd He + f xLp Lq L
-
4
pq
ErfiB
a+b Log@c Hd He+f xLp Lq D
2
b
p
q
1024 f4
-
45 b52 ã
-
5 b52 ã
2a
bpq
3a
bpq
h Hf g - e hL2 p52
h2 Hf g - e hL p52
Π
2
q52 He + f xL2 Hc Hd He + f xLp Lq L
-
2
pq
-
-
a+b Log@c Hd He+f xLp Lq D
2
ErfiB
F
F
b
p
q
64 f4
q52 He + f xL3 Hc Hd He + f xLp Lq L
-
Π
3
3
pq
ErfiB
3
a+b Log@c Hd He+f xLp Lq D
b
p
q
24 f4
15 b2 Hf g - e hL3 p2 q2 He + f xL
4 f4
5 b2 h2 Hf g - e hL p2 q2 He + f xL3
a + b Log@c Hd He + f xLp Lq D
12 f4
a + b Log@c Hd He + f xLp Lq D
5 b Hf g - e hL3 p q He + f xL Ha + b Log@c Hd He + f xLp Lq DL32
2 f4
-
5 b h2 Hf g - e hL p q He + f xL3 Ha + b Log@c Hd He + f xLp Lq DL32
6 f4
Hf g - e hL3 He + f xL Ha + b Log@c Hd He + f xLp Lq DL52
f4
+
h2 Hf g - e hL He + f xL3 Ha + b Log@c Hd He + f xLp Lq DL52
f4
52
3
p q
âx
à Hg + h xL Ha + b Log@c Hd He + f xL L DL
Problem ð90: Unable to integrate:
9Hg + h xL2 Ha + b Log@c Hd He + f xLp Lq DL52 , x, 14, 0=
45 b2 h Hf g - e hL2 p2 q2 He + f xL2
+
32 f4
+
15 b2 h3 p2 q2 He + f xL4
F
F
-
+
a + b Log@c Hd He + f xLp Lq D
a + b Log@c Hd He + f xLp Lq D
15 b h Hf g - e hL2 p q He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL32
8 f4
-
5 b h3 p q He + f xL4 Ha + b Log@c Hd He + f xLp Lq DL32
32 f4
3 h Hf g - e hL2 He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL52
2 f4
+
-
256 f4
h3 He + f xL4 Ha + b Log@c Hd He + f xLp Lq DL52
4 f4
+
+
-
+
25
26
2.2 Logarithm Functions.nb
-
15 b52 ã
a
bpq
-
-
15 b52 ã
-
5 b52 ã
2a
bpq
Hf g - e hL2 p52
-
h2 p52
Π
3
a+b Log@c Hd He+f xLp Lq D
1
pq
ErfiB
b
p
q
8 f3
h Hf g - e hL p52
3a
bpq
Π q52 He + f xL Hc Hd He + f xLp Lq L
q52 He + f xL2 Hc Hd He + f xLp Lq L
-
Π
2
2
pq
ErfiB
-
3
pq
ErfiB
b
3
p
a+b Log@c Hd He+f xLp Lq D
b
p
q
72 f3
15 b2 Hf g - e hL2 p2 q2 He + f xL
4 f3
15 b2 h Hf g - e hL p2 q2 He + f xL2
a + b Log@c Hd He + f xLp Lq D
16 f3
q
2 f3
5 b h2 p q He + f xL3 Ha + b Log@c Hd He + f xLp Lq DL32
18 f3
+
52
2
p q
âx
à Hg + h xL Ha + b Log@c Hd He + f xL L DL
Problem ð91: Unable to integrate:
9Hg + h xL Ha + b Log@c Hd He + f xLp Lq DL52 , x, 10, 0=
-
+
+
5 b2 h2 p2 q2 He + f xL3
a + b Log@c Hd He + f xLp Lq D
5 b h Hf g - e hL p q He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL32
4 f3
f3
+
-
36 f3
Hf g - e hL2 He + f xL Ha + b Log@c Hd He + f xLp Lq DL52
h Hf g - e hL He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL52
f3
-
F
F
+
a + b Log@c Hd He + f xLp Lq D
5 b Hf g - e hL2 p q He + f xL Ha + b Log@c Hd He + f xLp Lq DL32
-
a+b Log@c Hd He+f xLp Lq D
2
32 f3
q52 He + f xL3 Hc Hd He + f xLp Lq L
F
h2 He + f xL3 Ha + b Log@c Hd He + f xLp Lq DL52
3 f3
+
-
2.2 Logarithm Functions.nb
-
15 b52 ã
a
bpq
-
-
15 b52 ã
Hf g - e hL p52
2a
bpq
Π
2
h p52
Π q52 He + f xL Hc Hd He + f xLp Lq L
-
1
pq
ErfiB
a+b Log@c Hd He+f xLp Lq D
b
p
q
8 f2
q52 He + f xL2 Hc Hd He + f xLp Lq L
-
2
ErfiB
pq
a+b Log@c Hd He+f xLp Lq D
2
b
p
q
64 f2
15 b2 Hf g - e hL p2 q2 He + f xL
4 f2
a + b Log@c Hd He + f xLp Lq D
5 b Hf g - e hL p q He + f xL Ha + b Log@c Hd He + f xLp Lq DL32
2 f2
Hf g - e hL He + f xL Ha + b Log@c Hd He + f xLp Lq DL52
+
f2
-
+
15 b2 h p2 q2 He + f xL2
F
F
-
+
a + b Log@c Hd He + f xLp Lq D
-
32 f2
5 b h p q He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL32
+
8 f2
h He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL52
2 f2
52
p q
âx
à Hg + h xL Ha + b Log@c Hd He + f xL L DL
Problem ð92: Unable to integrate:
9Ha + b Log@c Hd He + f xLp Lq DL52 , x, 4, 0=
-
15 b52 ã
-
a
bpq
p52
Π q52 He + f xL Hc Hd He + f xLp Lq L
-
1
pq
ErfiB
a+b Log@c Hd He+f xLp Lq D
b
p
q
8f
15 b2 p2 q2 He + f xL
a + b Log@c Hd He + f xLp Lq D
4f
52
p q
âx
à Ha + b Log@c Hd He + f xL L DL
-
Hg + h xL3
Ha + b Log@c Hd He + f xLp Lq DL32
, x, 12, 0>
+
5 b p q He + f xL Ha + b Log@c Hd He + f xLp Lq DL32
Problem ð105: Valid but suboptimal antiderivative:
:
F
2f
+
He + f xL Ha + b Log@c Hd He + f xLp Lq DL52
f
27
28
2.2 Logarithm Functions.nb
-
2ã
a
bpq
-
4ã
Hf g - e hL3
4a
bpq
h3
Π He + f xL Hc Hd He + f xLp Lq L
-
a+b Log@c Hd He+f xLp Lq D
1
ErfiB
pq
b
p
q
b32 f4 p32 q32
Π He + f xL4 Hc Hd He + f xLp Lq L
-
4
pq
ErfiB
2
a+b Log@c Hd He+f xLp Lq D
b
p
q
b32 f4 p32 q32
-
6ã
-
6ã
2a
bpq
3a
bpq
h Hf g - e hL2
2 Π He + f xL2 Hc Hd He + f xLp Lq L
h2 Hf g - e hL
3 Π He + f xL3 Hc Hd He + f xLp Lq L
-
2
pq
ErfiB
2
F
F
+
+
a+b Log@c Hd He+f xLp Lq D
F
a+b Log@c Hd He+f xLp Lq D
F
b
p
q
b32 f4 p32 q32
-
b32 f4 p32 q32
3
pq
ErfiB
3
b
p
q
+
bfpq
2 He + f xL Hg + h xL3
a + b Log@c Hd He + f xLp Lq D
2.2 Logarithm Functions.nb
1
a + b Log@c Hd He + f xLp Lq D
b32 f4 p32 q32
4a
b e ã b p q f3 g3
-
-
4a
b ã b p q f4 g2 h
3
b ã b p q f4 g h2
p
4a
3a
ã
3
3
f g
bpq
-
4
p
Π He + f xL Hc Hd He + f xL L L
4a
b e ã b p q f3 g h2
3
pq
ErfiB
3a
b
2
p
b
F
q
2a
2a
3 e2 ã b p q h3
a
2 Π He + f xL2 Hc Hd He + f xLp Lq L p q ErfiB
2
a
3 e ã b p q h3
1
p
F
a + b Log@c Hd He + f xLp Lq D -
a + b Log@c Hd He + f xLp Lq D +
3
q
p
p
q
a + b Log@c Hd He + f xLp Lq D
b
p
p
F
q
a + b Log@c Hd He + f xLp Lq D
b
F
q
a + b Log@c Hd He + f xLp Lq D
b
3
F
a + b Log@c Hd He + f xLp Lq D +
a + b Log@c Hd He + f xLp Lq D
b
2
3 Π He + f xL3 Hc Hd He + f xLp Lq L p q ErfiB
3 Π He + f xL3 Hc Hd He + f xLp Lq L p q ErfiB
q
F
a + b Log@c Hd He + f xLp Lq D
2
2
2 Π He + f xL2 Hc Hd He + f xLp Lq L p q ErfiB
p
b
1
3 ã b p q f g h2
q
q x4 Hc Hd He + f xLp Lq L p q +
4
p
a + b Log@c Hd He + f xLp Lq D +
2
2
6 e ã b p q f g h2
p
4a
b ã b p q f4 h3
a + b Log@c Hd He + f xLp Lq D -
q
a + b Log@c Hd He + f xLp Lq D
2 Π He + f xL2 Hc Hd He + f xLp Lq L p q ErfiB
2a
3 ã b p q f2 g2 h
p
b
a + b Log@c Hd He + f xLp Lq D
b
F
a + b Log@c Hd He + f xLp Lq D
3
3
q
b
Π He + f xL Hc Hd He + f xLp Lq L p q ErfiB
Π He + f xL Hc Hd He + f xLp Lq L p q ErfiB
p
a + b Log@c Hd He + f xLp Lq D
Π He + f xL Hc Hd He + f xLp Lq L p q ErfiB
Π He + f xL4 ErfiB
4
a + b Log@c Hd He + f xLp Lq D
4
p
4
q x3 Hc Hd He + f xLp Lq L p q -
p
q x Hc Hd He + f xLp Lq L p q -
4a
b e ã b p q f3 g2 h
q x2 Hc Hd He + f xLp Lq L p q -
p
4a
b e ã b p q f3 h3
3
3 e2 ã b p q f g h2
e3 ã b p q h3
4
p
4
q x3 Hc Hd He + f xLp Lq L p q -
4
pq
q x Hc Hd He + f xLp Lq L p q - 3
4a
b ã b p q f4 g3
q x2 Hc Hd He + f xLp Lq L p q - 3
p q
3a
2 h3
Hc Hd He + f xLp Lq L
4
3 e ã b p q f2 g2 h
3a
4a
bpq
q Hc Hd He + f xLp Lq L p q -
p
3
2ã
29
q
F
F
F
a + b Log@c Hd He + f xLp Lq D a + b Log@c Hd He + f xLp Lq D +
a + b Log@c Hd He + f xLp Lq D +
a + b Log@c Hd He + f xLp Lq D -
a + b Log@c Hd He + f xLp Lq D
30
2.2 Logarithm Functions.nb
Problem ð111: Valid but suboptimal antiderivative:
:
Hg + h xL3
Ha + b Log@c Hd He + f xLp Lq DL52
-
4ã
a
bpq
-
32 ã
Hf g - e hL3
4a
bpq
h3
, x, 23, 0>
Π He + f xL Hc Hd He + f xLp Lq L
-
1
pq
ErfiB
a+b Log@c Hd He+f xLp Lq D
b
p
q
3 b52 f4 p52 q52
Π He + f xL4 Hc Hd He + f xLp Lq L
-
4
pq
ErfiB
a+b Log@c Hd He+f xLp Lq D
2
b
p
q
3 b52 f4 p52 q52
-
8ã
h Hf g - e hL2
2a
bpq
-
12 ã
3a
bpq
h2 Hf g - e hL
2 Π He + f xL2 Hc Hd He + f xLp Lq L
-
+
a+b Log@c Hd He+f xLp Lq D
2
b
3 Π He + f xL3 Hc Hd He + f xLp Lq L
-
p
q
3
pq
ErfiB
3
+
b
p
q
4 Hf g - e hL He + f xL Hg + h xL2
b2 f2 p2 q2
a + b Log@c Hd He + f xLp Lq D
Result of integration not displayed since its leaf count is 10139
Problem ð112: Valid but suboptimal antiderivative:
Hg + h xL2
Ha + b Log@c Hd He + f xLp Lq DL52
, x, 17, 0>
F
a+b Log@c Hd He+f xLp Lq D
b52 f4 p52 q52
3 b f p q Ha + b Log@c Hd He + f xLp Lq DL32
:
ErfiB
+
b52 f4 p52 q52
2 He + f xL Hg + h xL3
* * *
2
pq
F
F
+
F
-
16 He + f xL Hg + h xL3
3 b2 f p2 q2
* * *
a + b Log@c Hd He + f xLp Lq D
2.2 Logarithm Functions.nb
-
4ã
a
bpq
-
16 ã
-
4ã
Hf g - e hL2
2a
bpq
-
h2
a+b Log@c Hd He+f xLp Lq D
1
pq
ErfiB
b
p
2 Π He + f xL2 Hc Hd He + f xLp Lq L
-
2
pq
b
p
q
3 b52 f3 p52 q52
3 Π He + f xL3 Hc Hd He + f xLp Lq L
-
8 Hf g - e hL He + f xL Hg + h xL
* * *
+
a+b Log@c Hd He+f xLp Lq D
2
ErfiB
3
pq
a+b Log@c Hd He+f xLp Lq D
3
ErfiB
b
p
q
b52 f3 p52 q52
3 b2 f2 p2 q2
F
q
3 b52 f3 p52 q52
h Hf g - e hL
3a
bpq
Π He + f xL Hc Hd He + f xLp Lq L
-
4 He + f xL Hg + h xL2
-
a + b Log@c Hd He + f xLp Lq D
F
+
2 He + f xL Hg + h xL2
3 b f p q Ha + b Log@c Hd He + f xLp Lq DL32
a + b Log@c Hd He + f xLp Lq D
b2 f p2 q2
F
Result of integration not displayed since its leaf count is 6106
+
* * *
Problem ð123: Valid but suboptimal antiderivative:
9Hg + h xL32 Ha + b Log@c Hd He + f xLp Lq DL2 , x, 13, 0=
368
b2
Hf g - e hL
2
p2
q2
g+hx
128
b2
+
75 f2 h
Hf g - e hL
p2
q2
225 f h
8 b2 Hf g - e hL52 p2 q2 ArcTanhB
f
g+h x
f g-e h
5 f52 h
F
2
-
Hg + h xL
32
8 b Hf g - e hL2 p q
8 b Hf g - e hL p q Hg + h xL32 Ha + b Log@c Hd He + f xLp Lq DL
-
15 f h
8 b Hf g - e hL52 p q ArcTanhB
f
g+h x
f g-e h
5 f52 h
16 b2 Hf g - e hL52 p2 q2 ArcTanhB
5 f52 h
f
16
f g-e h
F LogB
2
1-
f
g+h x
f g-e h
p2
+
q2
Hg + h xL
52
125 h
-
368 b2 Hf g - e hL52 p2 q2 ArcTanhB
75 f52 h
g + h x Ha + b Log@c Hd He + f xLp Lq DL
-
5 f2 h
8 b p q Hg + h xL52 Ha + b Log@c Hd He + f xLp Lq DL
+
25 h
F Ha + b Log@c Hd He + f xLp Lq DL
g+h x
b2
F
+
+
2 Hg + h xL52 Ha + b Log@c Hd He + f xLp Lq DL2
+
5h
8 b2 Hf g - e hL52 p2 q2 PolyLogB2, 5 f52 h
f g-e h+ f
f g-e h
g+h x
f g-e h- f
f g-e h
g+h x
F
f
g+h x
f g-e h
F
-
31
32
2.2 Logarithm Functions.nb
1
3fh
1+
f g - e h + h He + f xL
2 b2 g p2 q2
h He+f xL
f g-e h
f
3 h He + f xL HypergeometricPFQB:fg
1+
h He + f xL
1
2
, 1, 1>, 82, 2<,
Log@e + f xD2 - e h
1+
fg-eh
1
15 f2 h
1+
h He + f xL
fg-eh
2 b2 p2 q2
h He+f xL
f g-e h
f g - e h + h He + f xL
f
10 e h2 He + f xL HypergeometricPFQB:15 e h2 He + f xL HypergeometricPFQB:4 f2 g2
3 h He + f xL HypergeometricPFQB:-
f g - e h + h He + f xL
3
2
1
2
4 h2 He + f xL2
-f g + e h
2
, 1, 1, 1>, 82, 2, 2<,
Log@e + f xD2 + h He + f xL
, 1, 1, 1>, 82, 2, 2<,
, 1, 1, 1>, 82, 2, 2<,
Log@e + f xD - 8 e f g h
1+
h He + f xL
fg-eh
f g - e h + h He + f xL
fg-eh
-f g + e h
F-
h He + f xL
-f g + e h
h He + f xL
-f g + e h
Log@e + f xD2 -
fg-eh
3
2
, 1, 1, 1>, 82, 2, 2<,
-f g + e h
F-
F - 4 f2 g2 Log@e + f xD + 8 e f g h Log@e + f xD - 4 e2 h2 Log@e + f xD +
f g - e h + h He + f xL
Log@e + f xD - 8 e h2 He + f xL
h He + f xL
F+
f g - e h + h He + f xL
Log@e + f xD + 4 e2 h2
fg-eh
f g - e h + h He + f xL
h He + f xL
F Log@e + f xD - f g Log@e + f xD2 + e h Log@e + f xD2 +
10 f g h He + f xL HypergeometricPFQB:-
fg-eh
8 f g h He + f xL
h He + f xL
1
Log@e + f xD +
fg-eh
f g - e h + h He + f xL
Log@e + f xD +
fg-eh
Log@e + f xD - 15 e h2 He + f xL HypergeometricPFQB:-
2 f2 g2 Log@e + f xD2 - e f g h Log@e + f xD2 + 3 e2 h2 Log@e + f xD2 + 2 f2 g2
1
2
, 1, 1>, 82, 2<,
f g - e h + h He + f xL
h He + f xL
-f g + e h
F Log@e + f xD -
Log@e + f xD2 +
fg-eh
efgh
f g - e h + h He + f xL
Log@e + f xD2 - 3 e2 h2
fg-eh
6 e h2 He + f xL
f g - e h + h He + f xL
fg-eh
f g - e h + h He + f xL
fg-eh
Log@e + f xD2 - 3 h2 He + f xL2
Log@e + f xD2 - f g h He + f xL
f g - e h + h He + f xL
Log@e + f xD2 +
fg-eh
+
f g - e h + h He + f xL
fg-eh
Log@e + f xD2 +
2.2 Logarithm Functions.nb
10 h H- f g + e hL He + f xL HypergeometricPFQB:6 Hf g - e hL32 ArcTanhB
1
4bgpq
9f
f
f g-e h+h He+f xL
f
f g-e h
f h
3
2
F
, 1, 1>, 82, 2<,
h He + f xL
-f g + e h
f g - e h + h He + f xL
+
f
F H1 + Log@e + f xDL +
Hf g - e hL H- 8 + 3 Log@e + f xDL
h
a + b q H- p Log@e + f xD + Log@d He + f xLp DL + b - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q -
1
4bpq 225
f2
h
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
30 Hf g - e hL32 H2 f g + 3 e hL ArcTanhB
f
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
f g-e h+h He+f xL
f
f g-e h
f
F
+
p DL
+ He + f xL H- 2 + 3 Log@e + f xDL
Hd He + f xLp L
q-
q H-p Log@e+f xD+Log@d He+f xLp DL
F
q H-p Log@e+f xD+Log@d He+f xLp DL
F
Log@d He+f xLp D
+
f g - e h + h He + f xL
f
I2 f2 g2 H31 - 15 Log@e + f xDL + f g h He H76 - 15 Log@e + f xDL + He + f xL H- 16 + 15 Log@e + f xDLL +
3 h2 I3 He + f xL2 H- 2 + 5 Log@e + f xDL + e2 H- 46 + 15 Log@e + f xDL - 2 e He + f xL H- 11 + 15 Log@e + f xDLMM
a + b q H- p Log@e + f xD + Log@d He + f xLp DL + b - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q 1
g+hx
5h
4
5
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q-
2 g2 a + b q H- p Log@e + f xD + Log@d He + f xLp DL + b - q H- p Log@e + f xD + Log@d He + f xLp DL -
Log@d He + f xLp D q -
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
g x a + b q H- p Log@e + f xD + Log@d He + f xLp DL + b - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D
+
Log@d He+f xLp D
q-
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
2
+
+
F
2
+
33
34
2.2 Logarithm Functions.nb
q2
5
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
Log@d He + f xLp D
p DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
q-
Log@d He+f xLp D
h x2 a + b q H- p Log@e + f xD + Log@d He + f xLp DL + b - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D
q-
Log@d He + f xLp D
p DL
q-
Log@d He+f xLp D
F
2
F
2
+
Problem ð124: Valid but suboptimal antiderivative:
:
g + h x Ha + b Log@c Hd He + f xLp Lq DL2 , x, 14, 0>
64
b2
Hf g - e hL
p2
q2
g+hx
16
b2
p2
+
9fh
8 b Hf g - e hL p q
q2
Hg + h xL
64 b2 Hf g - e hL32 p2 q2 ArcTanhB
32
-
27 h
9
g + h x Ha + b Log@c Hd He + f xLp Lq DL
-
3fh
8 b Hf g - e hL32 p q ArcTanhB
f
g+h x
f g-e h
3 f32 h
16 b2 Hf g - e hL32 p2 q2 ArcTanhB
3 f32 h
f
g+h x
F LogB
2
1-
f
g+h x
f g-e h
g+h x
f g-e h
h
F
-
8 b2 Hf g - e hL32 p2 q2 ArcTanhB
8 b p q Hg + h xL32 Ha + b Log@c Hd He + f xLp Lq DL
3
f32
+
9h
F Ha + b Log@c Hd He + f xLp Lq DL
f g-e h
f32
f
F
+
+
2 Hg + h xL32 Ha + b Log@c Hd He + f xLp Lq DL2
+
3h
8 b2 Hf g - e hL32 p2 q2 PolyLogB2, 3 f32 h
f g-e h+ f
f g-e h
g+h x
f g-e h- f
f g-e h
g+h x
F
h
f
g+h x
f g-e h
F
2
-
2.2 Logarithm Functions.nb
1
1
3 b2 p2 q2
2
3 h He + f xL HypergeometricPFQB:-
g+hx
f Hg+h xL
9h
f
f g-e h
- 3 h He + f xL HypergeometricPFQB:1
f32
2 b p q 6 Hf g - e hL32 ArcTanhB
f
1
2
, 1, 1>, 82, 2<,
g+hx
fg-eh
F+
1
2
, 1, 1, 1>, 82, 2, 2<,
h He + f xL
-f g + e h
F+ eh+f hx
h He + f xL
-f g + e h
f Hg + h xL
F + Log@e + f xD
+ g -1 +
fg-eh
f Hg + h xL
fg-eh
g + h x H6 e h - 2 f H4 g + h xL + 3 f Hg + h xL Log@e + f xDL
f
H- a + b p q Log@e + f xD - b Log@c Hd He + f xLp Lq DL + 3 Hg + h xL32 Ha - b p q Log@e + f xD + b Log@c Hd He + f xLp Lq DL2
Problem ð125: Valid but suboptimal antiderivative:
:
Ha + b Log@c Hd He + f xLp Lq DL2
, x, 12, 0>
g+hx
16 b2 p2 q2
16 b2
g+hx
f g - e h p2 q2 ArcTanhB
f
g+h x
f g-e h
h
8 b2
f h
f
f g - e h p2 q2 ArcTanhB
g+h x
f g-e h
f h
8b
f g - e h p q ArcTanhB
f
g+h x
f g-e h
f h
16 b2
f g - e h p2 q2 ArcTanhB
f
2
-
g + h x Ha + b Log@c Hd He + f xLp Lq DL
8bpq
-
g+h x
F LogB
+
h
F Ha + b Log@c Hd He + f xLp Lq DL
f g-e h
f h
F
F
2
1-
f
g+h x
f g-e h
F
8 b2
2
+
g + h x Ha + b Log@c Hd He + f xLp Lq DL2
+
h
f g - e h p2 q2 PolyLogB2, -
+
f h
35
f g-e h+ f
f g-e h
g+h x
f g-e h- f
f g-e h
g+h x
F
Log@e + f xD
-
36
2.2 Logarithm Functions.nb
f
1
fh
2 a2 f g - 4 a b f g p q + a2 f h x - 4 a b f h p q x + 4 a b
f
fg-eh pq
g+hx
g + h x ArcTanhB
g+hx
fg-eh
f Hg + h xL
b2 h p2 q2 He + f xL
fg-eh
1
h He + f xL
HypergeometricPFQB: , 1, 1, 1>, 82, 2, 2<,
F + 4 b2 f g p2 q2 Log@e + f xD +
2
-f g + e h
f
4 b2 f h p2 q2 x Log@e + f xD - 4 b2
f g - e h p2 q2
f
g+hx
g + h x ArcTanhB
fg-eh
f Hg + h xL
b2 h p2 q2 He + f xL
b2 f g p2 q2
fg-eh
f Hg + h xL
F+
F Log@e + f xD -
1
h He + f xL
HypergeometricPFQB: , 1, 1>, 82, 2<,
F Log@e + f xD 2
-f g + e h
Log@e + f xD2 + b2 e h p2 q2
fg-eh
f Hg + h xL
fg-eh
Log@e + f xD2 + 2 a b f g Log@c Hd He + f xLp Lq D -
4 b2 f g p q Log@c Hd He + f xLp Lq D + 2 a b f h x Log@c Hd He + f xLp Lq D - 4 b2 f h p q x Log@c Hd He + f xLp Lq D +
f
4 b2
f
fg-eh pq
g+hx
g + h x ArcTanhB
fg-eh
F Log@c Hd He + f xLp Lq D + b2 f g Log@c Hd He + f xLp Lq D2 + b2 f h x Log@c Hd He + f xLp Lq D2
Problem ð126: Valid but suboptimal antiderivative:
:
Ha + b Log@c Hd He + f xLp Lq DL2
8 b2
Hg + h xL32
f p2 q2 ArcTanhB
f
, x, 9, 0>
g+h x
f g-e h
h
16 b2
fg-eh
f p2 q2 ArcTanhB
f
F
g+h x
f g-e h
h
2
fg-eh
8b
f p q ArcTanhB
f
g+h x
f g-e h
h
F LogB
2
1-
f
g+h x
f g-e h
F
8 b2
F Ha + b Log@c Hd He + f xLp Lq DL
fg-eh
f p2 q2 PolyLogB2, -
2 Ha + b Log@c Hd He + f xLp Lq DL2
h
f g-e h+ f
f g-e h
g+h x
f g-e h- f
f g-e h
g+h x
h
-
fg-eh
F
g+hx
-
2.2 Logarithm Functions.nb
1
h
2 1“ K
f g - e h Hg + h xLO2 b p q 2
f Hg + h xL ArcTanhB
H- a + b p q Log@e + f xD - b Log@c Hd He + f xLp Lq DL -
1 “ KHf g - e hL
g + h x Ob2 p2 q2 h He + f xL
Hf g - e hL Log@e + f xD
g+hx
fg-eh
F+
fg-eh
g + h x Log@e + f xD
Ha - b p q Log@e + f xD + b Log@c Hd He + f xLp Lq DL2
f Hg + h xL
+
g+hx
3
HypergeometricPFQB:1, 1, 1,
fg-eh
f Hg + h xL
-1 +
f
2
Log@e + f xD - 4
fg-eh
f Hg + h xL
>, 82, 2, 2<,
1
LogB
fg-eh
1+
2
f Hg + h xL
fg-eh
h He + f xL
-f g + e h
F
Problem ð127: Valid but suboptimal antiderivative:
:
Ha + b Log@c Hd He + f xLp Lq DL2
Hg + h xL52
f
16 b2 f32 p2 q2 ArcTanhB
, x, 11, 0>
g+h x
f g-e h
3 h Hf g - e hL32
8 b f32 p q ArcTanhB
f
g+h x
f g-e h
F
8 b2 f32 p2 q2 ArcTanhB
f
3 h Hf g - e hL32
F Ha + b Log@c Hd He + f xLp Lq DL
g+h x
f g-e h
3 h Hf g - e hL32
g+h x
f g-e h
+
3 h Hf g - e hL32
16 b2 f32 p2 q2 ArcTanhB
f
F LogB
2
1-
f
g+h x
f g-e h
F
-
F
2
+
8 b f p q Ha + b Log@c Hd He + f xLp Lq DL
2 Ha + b Log@c Hd He + f xLp Lq DL2
3 h Hg + h xL32
8 b2 f32 p2 q2 PolyLogB2, -
3 h Hf g - e hL
g+hx
-
f g-e h+ f
f g-e h
g+h x
f g-e h- f
f g-e h
g+h x
3 h Hf g - e hL32
F
-
F+
37
38
2.2 Logarithm Functions.nb
f
2 ArcTanhB
1
f g-e h+h He+f xL
F
f
f g-e h
4 b f32 p q -
Hf g - e hL32
3h
f
+
f g-e h+h He+f xL
f
Hh H2 He + f xL + e H- 2 + Log@e + f xDLL - f g H- 2 + Log@e + f xDLL
Hf g - e hL Hf g + f h xL2
a + b q H- p Log@e + f xD + Log@d He + f xLp DL + b - q H- p Log@e + f xD + Log@d He + f xLp DL 1
Log@d He + f xLp D q -
3 h Hg + h xL32
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
Log@d He + f xLp D
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F
q-
2 a + b q H- p Log@e + f xD + Log@d He + f xLp DL + b - q H- p Log@e + f xD + Log@d He + f xLp DL -
Log@d He + f xLp D q -
Log@d He + f xLp D
1
f g-e h+h He+f xL
3 h Hf g - e hL2 Hf g + f h xL
f
5
HypergeometricPFQB:1, 1, 1,
2
4 f g - 4 e h + 4 h He + f xL - 4 f g
2 b2 f p2 q2 3 h He + f xL Hf g + f h xL
>, 82, 2, 2<,
h He + f xL
-f g + e h
f g - e h + h He + f xL
+4eh
f g - e h + h He + f xL
fg-eh
Log@e + f xD - e h
f g - e h + h He + f xL
fg-eh
Log@e + f xD - 4 Hf g - e hL
Problem ð128: Valid but suboptimal antiderivative:
Ha + b Log@c Hd He + f xLp Lq DL2
Hg + h xL72
, x, 12, 0>
q-
Log@d He+f xLp D
Log@d He+f xLp D
fg-eh
f g - e h + h He + f xL
fg-eh
h He + f xL
p DL
f g - e h + h He + f xL
F + Hf g - e hL Log@e + f xD
fg-eh
f g Log@e + f xD + e h Log@e + f xD + f g
:
p DL
- 4 h He + f xL
f g - e h + h He + f xL
fg-eh
f g - e h + h He + f xL
Log@e + f xD +
fg-eh
f g - e h + h He + f xL
fg-eh
32
1
LogB
1+
2
1+
h He + f xL
fg-eh
F
-
-
2
+
2.2 Logarithm Functions.nb
16
-
b2
f2
p2
15 h Hf g - e hL2
64 b2 f52 p2 q2 ArcTanhB
q2
F
g+h x
f g-e h
15 h Hf g - e hL52
+
g+hx
8 b f p q Ha + b Log@c Hd He + f xL L DL
p q
15 h Hf g - e hL Hg + h xL32
2 Ha + b Log@c Hd He + f xL L DL
p q
5 h Hg + h xL52
f
8b
+
f2
8 b2 f52 p2 q2 ArcTanhB
f
g+h x
2
5 h Hf g - e hL52
F LogB
1-
2
+
f
g+h x
f g-e h
g+h x
f g-e h
F
F Ha + b Log@c Hd He + f xLp Lq DL
5 h Hf g - e hL52
-
2
f
F
8 b f52 p q ArcTanhB
g+hx
f g-e h
-
5 h Hf g - e hL52
p q Ha + b Log@c Hd He + f xL L DL
16 b2 f52 p2 q2 ArcTanhB
g+h x
f g-e h
+
p q
5 h Hf g - e hL2
f
8 b2 f52 p2 q2 PolyLogB2, -
f g-e h+ f
f g-e h
g+h x
f g-e h- f
f g-e h
g+h x
5 h Hf g - e hL52
F
-
39
40
2.2 Logarithm Functions.nb
1
f g-e h+h He+f xL
5 h Hf g - e hL3 Hf g + f h xL2
f
f g - e h + h He + f xL
2 b2 f2 p2 q2 5 h He + f xL Hf g + f h xL2
5 h He + f xL Hf g + f h xL2
Hf g - e hL f2 g2 - 1 +
h2 - 2 e He + f xL
f g - e h + h He + f xL
f g - e h + h He + f xL
f g - e h + h He + f xL
fg-eh
f g-e h+h He+f xL
f
f g-e h
52
4bf
pq -
Hf g - e hL
52
15 h
2
7
HypergeometricPFQB:1, 1,
fg-eh
f
1
fg-eh
fg-eh
6 ArcTanhB
7
HypergeometricPFQB:1, 1, 1,
F
2
f g - e h + h He + f xL
- 2 f g h - He + f xL
+ He + f xL2
f g - e h + h He + f xL
+ e2 - 1 +
fg-eh
Hf g - e hL Hf g + f h xL
2
h He + f xL
-f g + e h
+ e -1 +
fg-eh
1
+
>, 82, 2<,
>, 82, 2, 2<,
3
f
h He + f xL
-f g + e h
F-
F Log@e + f xD +
f g - e h + h He + f xL
+
fg-eh
f g - e h + h He + f xL
Log@e + f xD2 +
fg-eh
f g - e h + h He + f xL
f
Ih2 I- 14 e He + f xL + 6 He + f xL2 + e2 H8 - 3 Log@e + f xDLM + f2 g2 H8 - 3 Log@e + f xDL + 2 f g h H7 He + f xL + e H- 8 + 3 Log@e + f xDLLM
a + b q H- p Log@e + f xD + Log@d He + f xLp DL + b - q H- p Log@e + f xD + Log@d He + f xLp DL 1
Log@d He + f xLp D q -
5 h Hg + h xL52
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
Log@d He + f xLp D
p DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F
q-
2 a + b q H- p Log@e + f xD + Log@d He + f xLp DL + b - q H- p Log@e + f xD + Log@d He + f xLp DL -
Log@d He + f xLp D q -
Log@d He + f xLp D
p DL
q-
Log@d He+f xLp D
Log@d He+f xLp D
-
2
2.2 Logarithm Functions.nb
41
Problem ð129: Valid but suboptimal antiderivative:
:
Ha + b Log@c Hd He + f xLp Lq DL2
Hg + h xL92
16
-
b2
f2
p2
, x, 13, 0>
q2
105 h Hf g - e hL2 Hg + h xL32
f
8 b2 f72 p2 q2 ArcTanhB
128
-
F
2
g+h x
+
p q Ha + b Log@c Hd He + f xL L DL
f
g+h x
f g-e h
1
7 h Hf g - e hL72
7 h Hf g - e hL4 Hg + h xL72
g+hx
8 b f72 p q ArcTanhB
f
g+h x
f g-e h
2
1-
f
g+h x
f g-e h
f Hg + h xL
F
1
105 h
g+h x
f g-e h
4 b f72 p q -
Hf g - e hL72
F
f Hg + h xL
2
f Hg + h xL
6 f Hg+h xL
f g-e h
Ha - b p q Log@e + f xD + b Log@c Hd He + f xLp Lq DL -
2 Ha - b p q Log@e + f xD + b Log@c Hd He + f xLp Lq DL2
7 h Hg + h xL72
+
-
f g-e h+ f
f g-e h
g+h x
f g-e h- f
f g-e h
g+h x
7 h Hg + h xL72
9
+ 3 g h2 x2
2
h He + f xL
-f g + e h
f Hg + h xL
Hf g-e hL2
+
30 f3 Hg+h xL3
Hf g-e hL3
f72 Hg + h xL72
>, 82, 2, 2<,
h He + f xL
-f g + e h
F-
F Log@e + f xD + Hf g - e hL
+ h3 x3
fg-eh
10 f2 Hg+h xL2
-
F
HypergeometricPFQB:1, 1, 1,
>, 82, 2<,
+
2 Ha + b Log@c Hd He + f xLp Lq DL2
fg-eh
9
+
21 h Hf g - e hL2 Hg + h xL32
7 h Hf g - e hL72
-
fg-eh
f
8 b f2 p q Ha + b Log@c Hd He + f xLp Lq DL
+
8 b2 f72 p2 q2 PolyLogB2, -
fg-eh
30 ArcTanhB
+
F Ha + b Log@c Hd He + f xLp Lq DL
HypergeometricPFQB:1, 1,
3 e f2 g2 h - 3 e2 f g h2 + e3 h3 + f3 3 g2 h x
F
7 h Hf g - e hL72
-
2 b2 p2 q2 7 f3 h He + f xL Hg + h xL3
7 f3 h He + f xL Hg + h xL3
105 h Hf g - e hL72
+
35 h Hf g - e hL Hg + h xL52
F LogB
g+h x
f g-e h
g+hx
16 b2 f72 p2 q2 ArcTanhB
f
368 b2 f72 p2 q2 ArcTanhB
q2
8 b f p q Ha + b Log@c Hd He + f xLp Lq DL
p q
7 h Hf g - e hL3
p2
105 h Hf g - e hL
7 h Hf g - e hL72
8b
f3
3
f g-e h
f3
b2
- 15 Log@e + f xD
f Hg + h xL
fg-eh
+ g3 - 1 +
f Hg + h xL
fg-eh
Log@e + f xD2 +
42
2.2 Logarithm Functions.nb
Problem ð142: Mathematica is able to integrate expression!!!:
:
Hi + j xLp Ha + b Log@c He + f xLDL
, x, 0, 0>
de+dfx
IntB
Hi + j xLp Ha + b Log@c He + f xLDL
, xF
de+dfx
1
d
Hi + j xL
p
-
a Hi + j xL Hypergeometric2F1B1, 1 + p, 2 + p,
Hf i - e jL H1 + pL
- HypergeometricPFQB8- p, - p, - p<, 81 - p, 1 - p<,
f Hi+j xL
f i-e j
F
-f i + e j
j He + f xL
+ 1 ‘ If p2 Mb
f Hi + j xL
-p
j He + f xL
F + p Hypergeometric2F1B- p, - p, 1 - p,
-f i + e j
j He + f xL
F Log@c He + f xLD
Problem ð151: Mathematica is able to integrate expression!!!:
:
Hi + j xLp Ha + b Log@c He + f xLDL2
, x, 0, 0>
de+dfx
IntB
Hi + j xLp Ha + b Log@c He + f xLDL2
, xF
de+dfx
1
d
Hi + j xL
p
-
a2 Hi + j xL Hypergeometric2F1B1, 1 + p, 2 + p,
Hf i - e jL H1 + pL
- HypergeometricPFQB8- p, - p, - p<, 81 - p, 1 - p<,
1
b2
f p3
f Hi + j xL
-p
j He + f xL
f Hi+j xL
f i-e j
-f i + e j
j He + f xL
Problem ð156: Valid but suboptimal antiderivative:
Ha + b Log@c He + f xLDL2
de+dfx
Ha + b Log@c He + f xLDL3
3bdf
1
2ab
+
f p2
f Hi + j xL
, x, 1, 0>
-p
j He + f xL
F + p Hypergeometric2F1B- p, - p, 1 - p,
2 HypergeometricPFQB8- p, - p, - p, - p<, 81 - p, 1 - p, 1 - p<,
- 2 HypergeometricPFQB8- p, - p, - p<, 81 - p, 1 - p<,
:
F
-f i + e j
j He + f xL
-f i + e j
j He + f xL
-f i + e j
j He + f xL
F Log@c He + f xLD +
F + p Log@c He + f xLD
F + p Hypergeometric2F1B- p, - p, 1 - p,
-f i + e j
j He + f xL
F Log@c He + f xLD
2.2 Logarithm Functions.nb
a2 Log@c He + f xLD
+
df
a b Log@c He + f xLD2
+
df
b2 Log@c He + f xLD3
3df
Problem ð169: Valid but suboptimal antiderivative:
:
Hf + g xL52 Ha + b Log@c Hd + e xLn DL
-
, x, 12, 0>
d+ex
92 b He f - d gL2 n
32 b He f - d gL n Hf + g xL
32
f+gx
-
15 e3
e
f+g x
e f-d g
e72
2 Hf + g xL
52
-
45 e2
2 b He f - d gL52 n ArcTanhB
Ha + b Log@c Hd + e xL DL
F
2
n
-
5e
4 b He f - d gL52 n ArcTanhB
e
f+g x
e f-d g
+
2 He f - d gL2
2
1-
e
f+g x
e f-d g
F
e
g
d+ex
-
g
2 b f2 n
e f-d g
e72
e f-d g
+
+
2 He f - d gL Hf + g xL32 Ha + b Log@c Hd + e xLn DL
+
3 e2
F Ha + b Log@c Hd + e xLn DL
2 b He f - d gL52 n PolyLogB2, -
F
-
e f-d g+ e
e f-d g
f+g x
e f-d g- e
e f-d g
f+g x
F
e f - d g + g Hd + e xL
e
e f+e g x
g Hd+e xL
d + e x HypergeometricPFQB:-
1
,-
2
ef-dg
e f - d g ArcSinhB
g
2bn
f+g x
f+g x
15 e72
e3
e
e
e72
1
-2
92 b He f - d gL52 n ArcTanhB
f + g x Ha + b Log@c Hd + e xLn DL
2 He f - d gL52 ArcTanhB
F LogB
+
25 e
e72
1
4 b n Hf + g xL
52
e f - d g + g Hd + e xL
d+ex
2
1 1
-e f + d g
>, : , >,
F+
2
2 2
g Hd + e xL
F Log@d + e xD -
- 2 e2 f2
d+ex
e
+
e f - d g + g Hd + e xL
1
,-
g
g Hd + e xL
d+ex
1
15 e3
d+ex
e f - d g + g Hd + e xL
g Hd + e xL
e f+e g x
g Hd+e xL
+4defg
1+
Log@d + e xD -
g Hd+e xL
e f-d g
d+ex
e f - d g + g Hd + e xL
g Hd + e xL
-
-
+
43
44
2.2 Logarithm Functions.nb
2 d2 g2
2 d2 g2
e f - d g + g Hd + e xL
g Hd + e xL
d+ex
ef+egx
d+ex
4 d g2 Hd + e xL32
g Hd + e xL
g Hd + e xL
ef-dg
ef+egx
g Hd + e xL
3
HypergeometricPFQB:2
30 d2 g2
1+
d+ex
1+
+ 2 e2 f2
1+
g Hd + e xL
g Hd + e xL
g Hd + e xL
+ 4 e f g Hd + e xL32
g Hd + e xL
-e f + d g
1
HypergeometricPFQB:-
6defg
2 e2 f2
2
ef+egx
g Hd + e xL
1
HypergeometricPFQB:2
e f - d g + g Hd + e xL
g Hd + e xL
d+ex
ef+egx
g Hd + e xL
d+ex
23 d2 g2
ef-dg
g Hd + e xL
1+
1+
g Hd + e xL
g Hd + e xL
2bfn
e f - d g + g Hd + e xL
e
12 d g
, 1, 1>, 82, 2<,
g Hd + e xL
ef-dg
- 5 e f g Hd + e xL32
3
2
F - 2 e2 f2
g Hd + e xL
g
d+ex
F Log@d + e xD +
e f - d g + g Hd + e xL
3 e2
g Hd + e xL
+
ef-dg
-
HypergeometricPFQB:-
e f - d g + g Hd + e xL
Log@d + e xD - 3 g2 Hd + e xL52
ef-dg
d+ex
1+
-e f + d g
d+ex
1+
ef-dg
g Hd + e xL
Log@d + e xD - e f g Hd + e xL32
ArcSinhB
ef-dg
g Hd + e xL
1 1
-e f + d g
>, : , >,
F2
2 2
g Hd + e xL
d+ex
g Hd + e xL
d+ex
g Hd + e xL
g Hd + e xL
1+
g Hd + e xL
1+
Log@d + e xD -
g Hd + e xL
Log@d + e xD +
g Hd + e xL
Log@d + e xD +
ef-dg
1
e f+e g x
1
+
g Hd + e xL
g Hd+e xL
1
,-
2
g Hd + e xL
ef-dg
ef+egx
ef-dg
, 1, 1>, 82, 2<,
ef-dg
ef+egx
HypergeometricPFQB:-
g Hd + e xL
Log@d + e xD +
1+
d+ex
ef+egx
e f - d g + g Hd + e xL
d+ex
ef+egx
ef-dg
ef-dg
1+
g Hd + e xL
1
Log@d + e xD + 6 d e f g
g Hd + e xL
1+
ef+egx
-4defg
ef+egx
ef-dg
ef+egx
g Hd + e xL
g Hd + e xL
,2
Log@d + e xD + 8 d2 g2
g Hd + e xL
ef+egx
d+ex
11 d g2 Hd + e xL32
15 d2 g32
1+
ef+egx
ef+egx
1
,-
g Hd + e xL
ef-dg
F + 5 d g2 Hd + e xL32
ef-dg
15 d g2 Hd + e xL32
1+
g Hd + e xL
+ 2 g2 Hd + e xL52
ef-dg
, 1, 1>, 82, 2<,
ef+egx
d+ex
g Hd+e xL
e f-d g
1 1
-e f + d g
>, : , >,
F2
2 2
g Hd + e xL
1
,2
1+
g Hd + e xL
-e f + d g
F+
Log@d + e xD -
2.2 Logarithm Functions.nb
3 g Hd + e xL32
ef+egx
1
g Hd + e xL
HypergeometricPFQB:2
e f - d g + g Hd + e xL
ef+egx
2
d+ex
3d
g
g Hd + e xL
ef-dg
e f -1 +
e
g Hd + e xL
-e f + d g
e f - d g + g Hd + e xL
f+g x
e f-d g
F+
e f - d g + g Hd + e xL
+g d-4d
ef-dg
ef-dg
ef-dg
ArcSinhB
ef-dg
2 He f - d gL52 ArcTanhB
, 1, 1>, 82, 2<,
g
d+ex
e f - d g + g Hd + e xL
+ Hd + e xL
45
+
ef-dg
F Log@d + e xD -
F Ha + b H- n Log@d + e xD + Log@c Hd + e xLn DLL
+
e72
f+gx
2 I23 e2 f2 - 35 d e f g + 15 d2 g2 M Ha + b H- n Log@d + e xD + Log@c Hd + e xLn DLL
+
15 e3
2 g H11 e f - 5 d gL x Ha + b H- n Log@d + e xD + Log@c Hd + e xLn DLL
+
15 e2
2 g2 x2 Ha + b H- n Log@d + e xD + Log@c Hd + e xLn DLL
5e
Problem ð170: Valid but suboptimal antiderivative:
:
-
Hf + g xL32 Ha + b Log@c Hd + e xLn DL
, x, 13, 0>
d+ex
16 b He f - d gL n
3
2 He f - d gL
4 b n Hf + g xL
32
f+gx
-
e2
+
9e
16 b He f - d gL32 n ArcTanhB
3
f + g x Ha + b Log@c Hd + e xLn DL
+
e2
4 b He f - d gL32 n ArcTanhB
e52
e
f+g x
e f-d g
F LogB
f+g x
e f-d g
e52
2 Hf + g xL32 Ha + b Log@c Hd + e xLn DL
F
-
3e
2
1-
e
e
f+g x
e f-d g
F
-
+
e
f+g x
e f-d g
e52
2 He f - d gL32 ArcTanhB
2 b He f - d gL32 n PolyLogB2, e52
2 b He f - d gL32 n ArcTanhB
e f-d g+ e
e f-d g
f+g x
e f-d g- e
e f-d g
f+g x
F
e
f+g x
e f-d g
e52
F
2
+
F Ha + b Log@c Hd + e xLn DL
-
46
2.2 Logarithm Functions.nb
e f - d g + g Hd + e xL
1
2bfn
e
g
e
e f+e g x
g Hd+e xL
d+ex
1
-2
g
d + e x HypergeometricPFQB:-
1
,-
2
ef-dg
e f - d g ArcSinhB
g
d+ex
e f - d g + g Hd + e xL
bn
12 d g
2
F Log@d + e xD +
d+ex
3d
g
3 e2
ef+egx
1
g Hd + e xL
g Hd + e xL
ef-dg
e
HypergeometricPFQB:2
e f -1 +
e f - d g + g Hd + e xL
1+
e f - d g + g Hd + e xL
e f-d g
g Hd + e xL
g Hd + e xL
-e f + d g
F+
ef-dg
g
d+ex
1 1
-e f + d g
>, : , >,
F2
2 2
g Hd + e xL
1
,2
e f - d g + g Hd + e xL
ef-dg
ArcSinhB
1
,-
2
+g d-4d
+ Hd + e xL
F Log@d + e xD -
+
e52
3 e2
Problem ð171: Valid but suboptimal antiderivative:
f + g x Ha + b Log@c Hd + e xLn DL
, x, 11, 0>
+
Log@d + e xD -
e f-d g
1
F Ha + b H- n Log@d + e xD + Log@c Hd + e xLn DLL
f+g x
e f - d g + g Hd + e xL
g Hd+e xL
HypergeometricPFQB:-
ef-dg
2 H4 e f - 3 d gL Ha + b H- n Log@d + e xD + Log@c Hd + e xLn DLL
d+ex
g Hd+e xL
, 1, 1>, 82, 2<,
f+gx
:
e f+e g x
d+ex
ef-dg
2 He f - d gL32 ArcTanhB
d+ex
ef-dg
ef+egx
2
g
1
e f - d g + g Hd + e xL
d+ex
e
3 g Hd + e xL32
1 1
-e f + d g
>, : , >,
F+
2
2 2
g Hd + e xL
1
,-
2 g x Ha + b H- n Log@d + e xD + Log@c Hd + e xLn DLL
3e
e f - d g + g Hd + e xL
ef-dg
+
2.2 Logarithm Functions.nb
4bn
4b
f+gx
-
e f - d g n ArcTanhB
e
f+g x
e f-d g
+
e32
e
f + g x Ha + b Log@c Hd + e xLn DL
2
2
F
2b
e f - d g n ArcTanhB
e
f+g x
e f-d g
e32
e
e f - d g ArcTanhB
f+g x
e f-d g
e32
e f-d g
F LogB
2
1-
e
f+g x
e f-d g
F
2b
g
e f - d g n PolyLogB2, -
2
-
e f-d g+ e
e f-d g
f+g x
e f-d g- e
e f-d g
f+g x
1
-2
g
d + e x HypergeometricPFQB:-
e
e f+e g x
g Hd+e xL
e f - d g + g Hd + e xL
g Hd + e xL
d+ex
+
-
e f - d g + g Hd + e xL
2bn
d+ex
2
e32
1
g
F
F Ha + b Log@c Hd + e xLn DL
e32
e
f+g x
+
e
4b
e
e f - d g n ArcTanhB
1
,-
2
ef-dg
Log@d + e xD -
e f - d g ArcSinhB
g
f + g x Ha + b H- n Log@d + e xD + Log@c Hd + e xLn DLL
2
e f - d g ArcTanhB
d+ex
e
f+g x
e f-d g
-
47
F
1 1
-e f + d g
>, : , >,
F+
2
2 2
g Hd + e xL
1
,2
F Log@d + e xD +
F Ha + b H- n Log@d + e xD + Log@c Hd + e xLn DLL
e32
e
Problem ð173: Valid but suboptimal antiderivative:
:
a + b Log@c Hd + e xLn D
Hd + e xL Hf + g xL32
4b
e n ArcTanhB
e
, x, 10, 0>
f+g x
e f-d g
He f - d gL32
2
e ArcTanhB
e
f+g x
e f-d g
F
2b
e n ArcTanhB
e
f+g x
e f-d g
+
He f - d gL32
F Ha + b Log@c Hd + e xL DL
He f - d gL32
4b
n
F
2
+
2 Ha + b Log@c Hd + e xLn DL
He f - d gL
e n ArcTanhB
e
-
f+gx
f+g x
e f-d g
-
F LogB
He f - d gL32
2
1-
e
f+g x
e f-d g
F
2b
-
e n PolyLogB2, -
e f-d g+ e
e f-d g
f+g x
e f-d g- e
e f-d g
f+g x
He f - d gL32
F
48
2.2 Logarithm Functions.nb
2
9
3 3 3
5 5
-e f + d g
- b n 2 e He f - d gL2 Hf + g xL HypergeometricPFQB: , , >, : , >,
F + 9 g32 Hd + e xL32
2 2 2
2 2
g Hd + e xL
e f - d g Hf + g xL ArcSinhB
9 Ha - b n Log@d + e xD + b Log@c Hd + e xL DL
ef-dg
g
9
n
He f - d gL
d+ex
F Log@d + e xD
e ArcTanhB
e
f+g x
e f-d g
“
g2 He f - d gL2 Hd + e xL2
g H- e f + d gL
f+gx
e Hf + g xL
g Hd + e xL
e Hf + g xL
g Hd + e xL
d+ex
+e
+
F Ha - b n Log@d + e xD + b Log@c Hd + e xLn DL
He f - d gL32
-
f+gx
Problem ð174: Valid but suboptimal antiderivative:
:
a + b Log@c Hd + e xLn D
Hd + e xL Hf + g xL52
, x, 11, 0>
16 b e32 n ArcTanhB
4ben
-
3 He f - d gL
2
2 e32 ArcTanhB
e
f+g x
e f-d g
3 He f - d gL52
+
f+gx
e
f+g x
e f-d g
F Ha + b Log@c Hd + e xLn DL
He f - d gL52
F
2 b e32 n ArcTanhB
e
e f-d g
+
He f - d gL52
4 b e32 n ArcTanhB
e
f+g x
e f-d g
-
f+g x
F
2
F LogB
He f - d gL52
+
2 Ha + b Log@c Hd + e xLn DL
3 He f - d gL Hf + g xL32
2
1-
e
f+g x
e f-d g
F
+
2 e Ha + b Log@c Hd + e xLn DL
He f - d gL
2
2 b e32 n PolyLogB2, -
f+gx
e f-d g+ e
e f-d g
f+g x
e f-d g- e
e f-d g
f+g x
He f - d gL52
-
F
2.2 Logarithm Functions.nb
49
1
eJ
e f-d g+g Hd+e xL
e
N
52
52
ef+egx
bn
g Hd + e xL
g2
-
5 5 5
7 7
-e f + d g
HypergeometricPFQB: , , >, : , >,
F+1“
25
2 2 2
2 2
g Hd + e xL
4
-
H- e f + d gL Hd + e xL H4 e f - 4 d g + 3 g Hd + e xLL
He f + e g xL2
2 e32 ArcTanhB
e
f+g x
e f-d g
f+gx
3 g32
2
-
-
e f - d g Hd + e xL32 ArcSinhB
2 Ha + b H- n Log@d + e xD + Log@c Hd + e xLn DLL
3 H- e f + d gL Hf + g xL2
+
ef+egx
g Hd + e xL
e f-d g
g
d+e x
e f+e g x
F
32
2 g Hd + e xL - 1 +
-e f + d g
2
g Hd + e xL
Log@d + e xD -
g Hd+e xL
F Ha + b H- n Log@d + e xD + Log@c Hd + e xLn DLL
He f - d gL52
3 He f - d gL3
+
2 e Ha + b H- n Log@d + e xD + Log@c Hd + e xLn DLL
He f - d gL2 Hf + g xL
Problem ð175: Valid but suboptimal antiderivative:
:
d + e x Log@a + b xD
, x, 11, 0>
a+bx
4
4
d+ex
-
b d - a e ArcTanhB
b
b d-a e
+
b32
b
2
b d - a e ArcTanhB
b
d+e x
b d-a e
b32
- 2 Hd + e xL32 2
-
e
d+e x
F
F Log@a + b xD
2
a+bx
b32
4
-
F
2
2
d + e x Log@a + b xD
+
F LogB
b
2
1-
b
d+e x
b d-a e
F
2
b d - a e PolyLogB2, -
-
b32
1
,2
1 1
-b d + a e
>, : , >,
F+
2
2 2
e Ha + b xL
b d - a e ArcSinhB
e
a+bx
F Log@a + b xD
b d-a e+ b
b d-a e
d+e x
b d-a e- b
b d-a e
d+e x
b32
1
,-
bd-ae
+
d+e x
b d-a e
2
e Ha + b xL
b
b d - a e ArcTanhB
a + b x HypergeometricPFQB:-
b Hd + e xL
d+e x
b d-a e
+
1
e
b
b d - a e ArcTanhB
“
e32 Ha + b xL32
b Hd + e xL
e Ha + b xL
32
F
50
2.2 Logarithm Functions.nb
Problem ð181: Valid but suboptimal antiderivative:
:
a + b Log@c Hd He + f xLp Lq D
Hg + h xL Hi + j xL2
b f p q Log@e + f xD
-
Hf i - e jL Hh i - g jL
+
a
Hh i - g jL Hi + j xL
a h Log@g + h xD
Hh i - g jL2
-
a h Log@i + j xD
Hh i - g jL2
-
a + b Log@c Hd He + f xLp Lq D
Hh i - g jL Hi + j xL
Hh i - g jL2
-
b e j p q Log@e + f xD
Hf i - e jL Hh i - g jL Hi + j xL
Hh i - g jL2
+
Hf i - e jL Hh i - g jL Hi + j xL
b h Log@c Hd He + f xLp Lq D Log@i + j xD
Hh i - g jL2
-
F
Hh i - g jL2
+
Hh i - g jL2
, x, 28, 0>
f Hi+j xL
f i-e j
F
F
+
h He+f xL
F
f g-e h
b h p q PolyLogB2, -
b f j p q x Log@e + f xD
-
Hf i - e jL Hh i - g jL Hi + j xL
Hf i - e jL Hh i - g jL Hi + j xL
Hh i - g jL2
f g-e h
b h p q PolyLogB2, -
b f j p q x Log@i + j xD
+
f Hg+h xL
b h Log@c Hd He + f xLp Lq D Log@g + h xD
b h p q Log@e + f xD LogB
Hi + j xL3 Ha + b Log@c Hd He + f xLp Lq DL2
g+hx
f i-e j
H- h i + g jL Hi + j xL
Problem ð183: Valid but suboptimal antiderivative:
:
f Hi+j xL
Hh i - g jL2
b p q Log@e + f xD
+
b h p q Log@e + f xD Log@g + h xD
b f i p q Log@i + j xD
+
+
h Ha + b Log@c Hd He + f xLp Lq DL LogB
h Ha + b Log@c Hd He + f xLp Lq DL LogB
b f p q Log@i + j xD
Hf i - e jL Hh i - g jL
, x, 9, 0>
+
f i-e j
F
b Log@c Hd He + f xLp Lq D
Hh i - g jL Hi + j xL
b h p q Log@e + f xD LogB
Hh i - g jL2
f Hg+h xL
f g-e h
F
+
-
b h p q Log@e + f xD Log@i + j xD
+
Hh i - g jL2
b h p q PolyLogB2,
+
+
Hh i - g jL2
j He+f xL
Hh i - g jL2
h He+f xL
F
-f g+e h
-
-
b h p q PolyLogB2,
Hh i - g jL2
j He+f xL
-f i+e j
F
2.2 Logarithm Functions.nb
-
2 a b j Hf i - e jL2 p q x
-
3 f2 h
11 b2 j Hf i - e jL2 p2 q2 x
9 f2 h
b2 j2 Hh i - g jL p2 q2 x2
+
4 h2
2 a b j Hf i - e jL Hh i - g jL p q x
f h2
+
b2 e j2 Hh i - g jL p2 q2 x
+
2 f h2
2 b2 j Hf i - e jL2 p q He + f xL Log@c Hd He + f xLp Lq D
-
3 f3 h
2 b2 j Hh i - g jL2 p q He + f xL Log@c Hd He + f xLp Lq D
3 f3 h
+
Hi + j xL3 Ha + b Log@c Hd He + f xLp Lq DL2
3h
+
+
2 b2 p2 q2 Hi + j xL3
27 h
-
+
h3
5 b2 Hf i - e jL3 p2 q2 Log@e + f xD
-
9 f3 h
b j2 Hh i - g jL p q He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL
-
-
2 f2 h2
-
2 b p q Hi + j xL3 Ha + b Log@c Hd He + f xLp Lq DL
-
9h
+
f2 h2
+
j2 Hh i - g jL He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL2
2 f2 h2
Hh i - g jL3 Ha + b Log@c Hd He + f xLp Lq DL2 LogB
2 b Hh i - g jL3 p q Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2, h4
+
2 b2 j Hh i - g jL2 p2 q2 x
j Hf i - e jL Hh i - g jL He + f xL Ha + b Log@c Hd He + f xLp Lq DL2
j Hh i - g jL2 He + f xL Ha + b Log@c Hd He + f xLp Lq DL2
f h3
f h2
+
2 b2 j Hf i - e jL Hh i - g jL p q He + f xL Log@c Hd He + f xLp Lq D
b Hf i - e jL p q Hi + j xL2 Ha + b Log@c Hd He + f xLp Lq DL
Hf i - e jL3 Ha + b Log@c Hd He + f xLp Lq DL2
+
h3
f2 h2
f h3
3fh
2 a b j Hh i - g jL2 p q x
2 b2 j Hf i - e jL Hh i - g jL p2 q2 x
5 b2 Hf i - e jL p2 q2 Hi + j xL2
18 f h
-
f Hg+h xL
f g-e h
h4
h He+f xL
F
f g-e h
-
F
+
2 b2 Hh i - g jL3 p2 q2 PolyLogB3, h4
+
h He+f xL
F
f g-e h
1
108 f3 h4
- 648 a b e f2 h3 i2 j p q + 648 a b e f2 g h2 i j2 p q - 216 a b e f2 g2 h j3 p q + 648 b2 e f2 h3 i2 j p2 q2 - 648 b2 e f2 g h2 i j2 p2 q2 + 216 b2 e f2 g2 h j3 p2 q2 +
324 a2 f3 h3 i2 j x - 324 a2 f3 g h2 i j2 x + 108 a2 f3 g2 h j3 x - 648 a b f3 h3 i2 j p q x + 648 a b f3 g h2 i j2 p q x + 324 a b e f2 h3 i j2 p q x 216 a b f3 g2 h j3 p q x - 108 a b e f2 g h2 j3 p q x - 72 a b e2 f h3 j3 p q x + 648 b2 f3 h3 i2 j p2 q2 x - 648 b2 f3 g h2 i j2 p2 q2 x 486 b2 e f2 h3 i j2 p2 q2 x + 216 b2 f3 g2 h j3 p2 q2 x + 162 b2 e f2 g h2 j3 p2 q2 x + 132 b2 e2 f h3 j3 p2 q2 x + 162 a2 f3 h3 i j2 x2 54 a2 f3 g h2 j3 x2 - 162 a b f3 h3 i j2 p q x2 + 54 a b f3 g h2 j3 p q x2 + 36 a b e f2 h3 j3 p q x2 + 81 b2 f3 h3 i j2 p2 q2 x2 - 27 b2 f3 g h2 j3 p2 q2 x2 30 b2 e f2 h3 j3 p2 q2 x2 + 36 a2 f3 h3 j3 x3 - 24 a b f3 h3 j3 p q x3 + 8 b2 f3 h3 j3 p2 q2 x3 + 648 a b e f2 h3 i2 j p q Log@e + f xD 648 a b e f2 g h2 i j2 p q Log@e + f xD - 324 a b e2 f h3 i j2 p q Log@e + f xD + 216 a b e f2 g2 h j3 p q Log@e + f xD +
108 a b e2 f g h2 j3 p q Log@e + f xD + 72 a b e3 h3 j3 p q Log@e + f xD + 486 b2 e2 f h3 i j2 p2 q2 Log@e + f xD - 162 b2 e2 f g h2 j3 p2 q2 Log@e + f xD 132 b2 e3 h3 j3 p2 q2 Log@e + f xD - 324 b2 e f2 h3 i2 j p2 q2 Log@e + f xD2 + 324 b2 e f2 g h2 i j2 p2 q2 Log@e + f xD2 +
162 b2 e2 f h3 i j2 p2 q2 Log@e + f xD2 - 108 b2 e f2 g2 h j3 p2 q2 Log@e + f xD2 - 54 b2 e2 f g h2 j3 p2 q2 Log@e + f xD2 36 b2 e3 h3 j3 p2 q2 Log@e + f xD2 - 648 b2 e f2 h3 i2 j p q Log@c Hd He + f xLp Lq D + 648 b2 e f2 g h2 i j2 p q Log@c Hd He + f xLp Lq D 216 b2 e f2 g2 h j3 p q Log@c Hd He + f xLp Lq D + 648 a b f3 h3 i2 j x Log@c Hd He + f xLp Lq D - 648 a b f3 g h2 i j2 x Log@c Hd He + f xLp Lq D +
216 a b f3 g2 h j3 x Log@c Hd He + f xLp Lq D - 648 b2 f3 h3 i2 j p q x Log@c Hd He + f xLp Lq D + 648 b2 f3 g h2 i j2 p q x Log@c Hd He + f xLp Lq D +
324 b2 e f2 h3 i j2 p q x Log@c Hd He + f xLp Lq D - 216 b2 f3 g2 h j3 p q x Log@c Hd He + f xLp Lq D - 108 b2 e f2 g h2 j3 p q x Log@c Hd He + f xLp Lq D 72 b2 e2 f h3 j3 p q x Log@c Hd He + f xLp Lq D + 324 a b f3 h3 i j2 x2 Log@c Hd He + f xLp Lq D - 108 a b f3 g h2 j3 x2 Log@c Hd He + f xLp Lq D +
+
+
+
-
51
52
2.2 Logarithm Functions.nb
72 b2 e2 f h3 j3 p q x Log@c Hd He + f xLp Lq D + 324 a b f3 h3 i j2 x2 Log@c Hd He + f xLp Lq D - 108 a b f3 g h2 j3 x2 Log@c Hd He + f xLp Lq D 162 b2 f3 h3 i j2 p q x2 Log@c Hd He + f xLp Lq D + 54 b2 f3 g h2 j3 p q x2 Log@c Hd He + f xLp Lq D + 36 b2 e f2 h3 j3 p q x2 Log@c Hd He + f xLp Lq D +
72 a b f3 h3 j3 x3 Log@c Hd He + f xLp Lq D - 24 b2 f3 h3 j3 p q x3 Log@c Hd He + f xLp Lq D + 648 b2 e f2 h3 i2 j p q Log@e + f xD Log@c Hd He + f xLp Lq D 648 b2 e f2 g h2 i j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D - 324 b2 e2 f h3 i j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D +
216 b2 e f2 g2 h j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D + 108 b2 e2 f g h2 j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D +
72 b2 e3 h3 j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D + 324 b2 f3 h3 i2 j x Log@c Hd He + f xLp Lq D2 - 324 b2 f3 g h2 i j2 x Log@c Hd He + f xLp Lq D2 +
108 b2 f3 g2 h j3 x Log@c Hd He + f xLp Lq D2 + 162 b2 f3 h3 i j2 x2 Log@c Hd He + f xLp Lq D2 - 54 b2 f3 g h2 j3 x2 Log@c Hd He + f xLp Lq D2 +
36 b2 f3 h3 j3 x3 Log@c Hd He + f xLp Lq D2 + 108 a2 f3 h3 i3 Log@g + h xD - 324 a2 f3 g h2 i2 j Log@g + h xD + 324 a2 f3 g2 h i j2 Log@g + h xD 108 a2 f3 g3 j3 Log@g + h xD - 216 a b f3 h3 i3 p q Log@e + f xD Log@g + h xD + 648 a b f3 g h2 i2 j p q Log@e + f xD Log@g + h xD 648 a b f3 g2 h i j2 p q Log@e + f xD Log@g + h xD + 216 a b f3 g3 j3 p q Log@e + f xD Log@g + h xD + 108 b2 f3 h3 i3 p2 q2 Log@e + f xD2 Log@g + h xD 324 b2 f3 g h2 i2 j p2 q2 Log@e + f xD2 Log@g + h xD + 324 b2 f3 g2 h i j2 p2 q2 Log@e + f xD2 Log@g + h xD - 108 b2 f3 g3 j3 p2 q2 Log@e + f xD2 Log@g + h xD +
216 a b f3 h3 i3 Log@c Hd He + f xLp Lq D Log@g + h xD - 648 a b f3 g h2 i2 j Log@c Hd He + f xLp Lq D Log@g + h xD +
648 a b f3 g2 h i j2 Log@c Hd He + f xLp Lq D Log@g + h xD - 216 a b f3 g3 j3 Log@c Hd He + f xLp Lq D Log@g + h xD 216 b2 f3 h3 i3 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD + 648 b2 f3 g h2 i2 j p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD 648 b2 f3 g2 h i j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD + 216 b2 f3 g3 j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD +
108 b2 f3 h3 i3 Log@c Hd He + f xLp Lq D2 Log@g + h xD - 324 b2 f3 g h2 i2 j Log@c Hd He + f xLp Lq D2 Log@g + h xD +
324 b2 f3 g2 h i j2 Log@c Hd He + f xLp Lq D2 Log@g + h xD - 108 b2 f3 g3 j3 Log@c Hd He + f xLp Lq D2 Log@g + h xD +
f Hg + h xL
f Hg + h xL
216 a b f3 h3 i3 p q Log@e + f xD LogB
F - 648 a b f3 g h2 i2 j p q Log@e + f xD LogB
F+
fg-eh
fg-eh
648 a b f3 g2 h i j2 p q Log@e + f xD LogB
f Hg + h xL
fg-eh
108 b2 f3 h3 i3 p2 q2 Log@e + f xD2 LogB
f Hg + h xL
fg-eh
324 b2 f3 g2 h i j2 p2 q2 Log@e + f xD2 LogB
F - 216 a b f3 g3 j3 p q Log@e + f xD LogB
f Hg + h xL
F + 108 b2 f3 g3 j3 p2 q2 Log@e + f xD2 LogB
216 b2 f3 h3 i3 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
f Hg + h xL
fg-eh
648 b2 f3 g2 h i j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
Problem ð185: Valid but suboptimal antiderivative:
g+hx
, x, 8, 0>
F-
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
FF+
F - 648 b2 f3 g h2 i2 j p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
f Hg + h xL
fg-eh
216 b f3 Hh i - g jL3 p q Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2,
Hi + j xL Ha + b Log@c Hd He + f xLp Lq DL2
fg-eh
F + 324 b2 f3 g h2 i2 j p2 q2 Log@e + f xD2 LogB
fg-eh
:
f Hg + h xL
F - 216 b2 f3 g3 j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
h He + f xL
-f g + e h
F - 216 b2 f3 Hh i - g jL3 p2 q2 PolyLogB3,
h He + f xL
-f g + e h
F
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
F+
F+
2.2 Logarithm Functions.nb
2 b2 j p2 q2 x
2abjpqx
-
+
h
h
2 b2 j p q He + f xL Log@c Hd He + f xLp Lq D
+
fh
j He + f xL Ha + b Log@c Hd He + f xLp Lq DL2
Hh i - g jL Ha + b Log@c Hd He + f xLp Lq DL2 LogB
+
f Hg+h xL
f g-e h
h2
fh
2 b Hh i - g jL p q Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2, h2
h He+f xL
F
f g-e h
-
F
+
2 b2 Hh i - g jL p2 q2 PolyLogB3, h2
h He+f xL
F
f g-e h
1
- 2 a b e h j p q + 2 b2 e h j p2 q2 + a2 f h j x - 2 a b f h j p q x + 2 b2 f h j p2 q2 x + 2 a b e h j p q Log@e + f xD f h2
b2 e h j p2 q2 Log@e + f xD2 - 2 b2 e h j p q Log@c Hd He + f xLp Lq D + 2 a b f h j x Log@c Hd He + f xLp Lq D - 2 b2 f h j p q x Log@c Hd He + f xLp Lq D +
2 b2 e h j p q Log@e + f xD Log@c Hd He + f xLp Lq D + b2 f h j x Log@c Hd He + f xLp Lq D2 + a2 f h i Log@g + h xD - a2 f g j Log@g + h xD 2 a b f h i p q Log@e + f xD Log@g + h xD + 2 a b f g j p q Log@e + f xD Log@g + h xD + b2 f h i p2 q2 Log@e + f xD2 Log@g + h xD b2 f g j p2 q2 Log@e + f xD2 Log@g + h xD + 2 a b f h i Log@c Hd He + f xLp Lq D Log@g + h xD - 2 a b f g j Log@c Hd He + f xLp Lq D Log@g + h xD 2 b2 f h i p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD + 2 b2 f g j p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD +
f Hg + h xL
b2 f h i Log@c Hd He + f xLp Lq D2 Log@g + h xD - b2 f g j Log@c Hd He + f xLp Lq D2 Log@g + h xD + 2 a b f h i p q Log@e + f xD LogB
Ffg-eh
2 a b f g j p q Log@e + f xD LogB
f Hg + h xL
fg-eh
F - b2 f h i p2 q2 Log@e + f xD2 LogB
2 b2 f h i p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
f Hg + h xL
fg-eh
2 b f Hh i - g jL p q Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2,
f Hg + h xL
fg-eh
F + b2 f g j p2 q2 Log@e + f xD2 LogB
F - 2 b2 f g j p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
h He + f xL
-f g + e h
F + 2 b2 f H- h i + g jL p2 q2 PolyLogB3,
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
h He + f xL
-f g + e h
F
F+
F+
Problem ð186: Valid but suboptimal antiderivative:
:
Ha + b Log@c Hd He + f xLp Lq DL2
, x, 3, 0>
g+hx
Ha + b Log@c Hd He + f xLp Lq DL2 LogB
h
1
h
f Hg+h xL
f g-e h
F
+
2 b p q Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2, h
h He+f xL
F
f g-e h
2 b2 p2 q2 PolyLogB3, h
h He+f xL
F
f g-e h
a2 Log@g + h xD - 2 a b p q Log@e + f xD Log@g + h xD + b2 p2 q2 Log@e + f xD2 Log@g + h xD +
2 a b Log@c Hd He + f xLp Lq D Log@g + h xD - 2 b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD + b2 Log@c Hd He + f xLp Lq D2 Log@g + h xD +
f Hg + h xL
f Hg + h xL
f Hg + h xL
2 a b p q Log@e + f xD LogB
F - b2 p2 q2 Log@e + f xD2 LogB
F + 2 b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
F+
fg-eh
fg-eh
fg-eh
2 b p q Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2,
h He + f xL
-f g + e h
F - 2 b2 p2 q2 PolyLogB3,
h He + f xL
-f g + e h
F
53
54
2.2 Logarithm Functions.nb
Problem ð187: Valid but suboptimal antiderivative:
:
Ha + b Log@c Hd He + f xLp Lq DL2
Hg + h xL Hi + j xL
, x, 8, 0>
Ha + b Log@c Hd He + f xLp Lq DL2 LogB
f Hg+h xL
f g-e h
hi-gj
F
-
Ha + b Log@c Hd He + f xLp Lq DL2 LogB
f i-e j
hi-gj
2 b p q Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2, -
j He+f xL
f i-e j
hi-gj
1
f Hi+j xL
F
2 b2 p2 q2 PolyLogB3, hi-gj
F
+
2 b p q Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2, -
h He+f xL
F
f g-e h
hi-gj
2 b2 p2 q2 PolyLogB3, +
j He+f xL
f i-e j
hi-gj
F
a2 Log@g + h xD - 2 a b p q Log@e + f xD Log@g + h xD + b2 p2 q2 Log@e + f xD2 Log@g + h xD +
hi-gj
2 a b Log@c Hd He + f xLp Lq D Log@g + h xD - 2 b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD +
f Hg + h xL
f Hg + h xL
b2 Log@c Hd He + f xLp Lq D2 Log@g + h xD + 2 a b p q Log@e + f xD LogB
F - b2 p2 q2 Log@e + f xD2 LogB
F+
fg-eh
fg-eh
2 b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
f Hg + h xL
fg-eh
F - a2 Log@i + j xD + 2 a b p q Log@e + f xD Log@i + j xD -
b2 p2 q2 Log@e + f xD2 Log@i + j xD - 2 a b Log@c Hd He + f xLp Lq D Log@i + j xD + 2 b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@i + j xD f Hi + j xL
f Hi + j xL
b2 Log@c Hd He + f xLp Lq D2 Log@i + j xD - 2 a b p q Log@e + f xD LogB
F + b2 p2 q2 Log@e + f xD2 LogB
Ffi-ej
fi-ej
2 b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
f Hi + j xL
2 b p q Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2,
fi-ej
j He + f xL
-f i + e j
Problem ð190: Valid but suboptimal antiderivative:
:
Hi + j xL3 Ha + b Log@c Hd He + f xLp Lq DL3
g+hx
F + 2 b p q Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2,
, x, 34, 0>
F - 2 b2 p2 q2 PolyLogB3,
h He + f xL
-f g + e h
h He + f xL
-f g + e h
F + 2 b2 p2 q2 PolyLogB3,
F-
j He + f xL
-f i + e j
F
h He+f xL
F
f g-e h
-
2.2 Logarithm Functions.nb
6 a b2 j Hf i - e jL2 p2 q2 x
f2 h
+
3 b3 e j2 Hh i - g jL p3 q3 x
4 f h2
2 b3 j3 p3 q3 He + f xL3
27 f3 h
+
6 a b2 j Hf i - e jL Hh i - g jL p2 q2 x
+
f h2
6 b3 j Hf i - e jL Hh i - g jL p3 q3 x
-
h3
-
f h2
6 b3 j Hh i - g jL2 p3 q3 x
h3
6 b3 j Hf i - e jL2 p2 q2 He + f xL Log@c Hd He + f xLp Lq D
f3 h
6 b3 j Hh i - g jL2 p2 q2 He + f xL Log@c Hd He + f xLp Lq D
+
f h3
4 f2 h2
3 b j Hf i - e jL2 p q He + f xL Ha + b Log@c Hd He + f xLp Lq DL2
-
f3 h
3 b j Hh i - g jL2 p q He + f xL Ha + b Log@c Hd He + f xLp Lq DL2
f h3
j Hf i - e jL2 He + f xL Ha + b Log@c Hd He + f xLp Lq DL3
+
f3 h
j Hh i - g jL2 He + f xL Ha + b Log@c Hd He + f xLp Lq DL3
+
j2 Hh i - g jL He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL3
Hh i - g jL3 Ha + b Log@c Hd He + f xLp Lq DL3 LogB
h4
f Hg+h xL
f g-e h
3 b3 j2 Hf i - e jL p3 q3 x2
6 b3 j Hf i - e jL2 p3 q3 x
3 b3 j2 Hh i - g jL p3 q3 x2
-
-
f2 h
-
8 h2
4fh
6 b3 j Hf i - e jL Hh i - g jL p2 q2 He + f xL Log@c Hd He + f xLp Lq D
+
f2 h2
+
2 f3 h
+
2 b2 j3 p2 q2 He + f xL3 Ha + b Log@c Hd He + f xLp Lq DL
-
9 f3 h
3 b j Hf i - e jL Hh i - g jL p q He + f xL Ha + b Log@c Hd He + f xLp Lq DL2
-
3 b j2 Hf i - e jL p q He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL2
-
-
2 f3 h
-
b j3 p q He + f xL3 Ha + b Log@c Hd He + f xLp Lq DL2
+
3 f3 h
j Hf i - e jL Hh i - g jL He + f xL Ha + b Log@c Hd He + f xLp Lq DL3
j2 Hf i - e jL He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL3
+
+
f3 h
+
F
j3 He + f xL3 Ha + b Log@c Hd He + f xLp Lq DL3
+
3 f3 h
+
3 b Hh i - g jL3 p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2, -
6 b2 Hh i - g jL3 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3, h4
2 f2 h
-
f2 h2
f h3
2 f2 h2
3 b3 e j2 Hf i - e jL p3 q3 x
f2 h2
3 b j2 Hh i - g jL p q He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL2
4 f2 h2
+
-
-
3 b2 j2 Hf i - e jL p2 q2 He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL
3 b2 j2 Hh i - g jL p2 q2 He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL
1
6 a b2 j Hh i - g jL2 p2 q2 x
h4
h He+f xL
F
f g-e h
+
6 b3 Hh i - g jL3 p3 q3 PolyLogB4, h4
h He+f xL
F
f g-e h
h He+f xL
F
f g-e h
-
- 1944 a2 b e f2 h3 i2 j p q + 1944 a2 b e f2 g h2 i j2 p q - 648 a2 b e f2 g2 h j3 p q + 3888 a b2 e f2 h3 i2 j p2 q2 - 3888 a b2 e f2 g h2 i j2 p2 q2 +
216 f3 h4
1296 a b2 e f2 g2 h j3 p2 q2 - 3888 b3 e f2 h3 i2 j p3 q3 + 3888 b3 e f2 g h2 i j2 p3 q3 - 1296 b3 e f2 g2 h j3 p3 q3 + 648 a3 f3 h3 i2 j x - 648 a3 f3 g h2 i j2 x +
216 a3 f3 g2 h j3 x - 1944 a2 b f3 h3 i2 j p q x + 1944 a2 b f3 g h2 i j2 p q x + 972 a2 b e f2 h3 i j2 p q x - 648 a2 b f3 g2 h j3 p q x - 324 a2 b e f2 g h2 j3 p q x 216 a2 b e2 f h3 j3 p q x + 3888 a b2 f3 h3 i2 j p2 q2 x - 3888 a b2 f3 g h2 i j2 p2 q2 x - 2916 a b2 e f2 h3 i j2 p2 q2 x + 1296 a b2 f3 g2 h j3 p2 q2 x +
972 a b2 e f2 g h2 j3 p2 q2 x + 792 a b2 e2 f h3 j3 p2 q2 x - 3888 b3 f3 h3 i2 j p3 q3 x + 3888 b3 f3 g h2 i j2 p3 q3 x + 3402 b3 e f2 h3 i j2 p3 q3 x 1296 b3 f3 g2 h j3 p3 q3 x - 1134 b3 e f2 g h2 j3 p3 q3 x - 1020 b3 e2 f h3 j3 p3 q3 x + 324 a3 f3 h3 i j2 x2 - 108 a3 f3 g h2 j3 x2 - 486 a2 b f3 h3 i j2 p q x2 +
162 a2 b f3 g h2 j3 p q x2 + 108 a2 b e f2 h3 j3 p q x2 + 486 a b2 f3 h3 i j2 p2 q2 x2 - 162 a b2 f3 g h2 j3 p2 q2 x2 - 180 a b2 e f2 h3 j3 p2 q2 x2 243 b3 f3 h3 i j2 p3 q3 x2 + 81 b3 f3 g h2 j3 p3 q3 x2 + 114 b3 e f2 h3 j3 p3 q3 x2 + 72 a3 f3 h3 j3 x3 - 72 a2 b f3 h3 j3 p q x3 + 48 a b2 f3 h3 j3 p2 q2 x3 16 b3 f3 h3 j3 p3 q3 x3 + 1944 a2 b e f2 h3 i2 j p q Log@e + f xD - 1944 a2 b e f2 g h2 i j2 p q Log@e + f xD - 972 a2 b e2 f h3 i j2 p q Log@e + f xD +
648 a2 b e f2 g2 h j3 p q Log@e + f xD + 324 a2 b e2 f g h2 j3 p q Log@e + f xD + 216 a2 b e3 h3 j3 p q Log@e + f xD + 2916 a b2 e2 f h3 i j2 p2 q2 Log@e + f xD +
+
+
55
56
2.2 Logarithm Functions.nb
648 a2 b e f2 g2 h j3 p q Log@e + f xD + 324 a2 b e2 f g h2 j3 p q Log@e + f xD + 216 a2 b e3 h3 j3 p q Log@e + f xD + 2916 a b2 e2 f h3 i j2 p2 q2 Log@e + f xD 972 a b2 e2 f g h2 j3 p2 q2 Log@e + f xD - 792 a b2 e3 h3 j3 p2 q2 Log@e + f xD - 3402 b3 e2 f h3 i j2 p3 q3 Log@e + f xD +
1134 b3 e2 f g h2 j3 p3 q3 Log@e + f xD + 1020 b3 e3 h3 j3 p3 q3 Log@e + f xD - 1944 a b2 e f2 h3 i2 j p2 q2 Log@e + f xD2 +
1944 a b2 e f2 g h2 i j2 p2 q2 Log@e + f xD2 + 972 a b2 e2 f h3 i j2 p2 q2 Log@e + f xD2 - 648 a b2 e f2 g2 h j3 p2 q2 Log@e + f xD2 324 a b2 e2 f g h2 j3 p2 q2 Log@e + f xD2 - 216 a b2 e3 h3 j3 p2 q2 Log@e + f xD2 - 1458 b3 e2 f h3 i j2 p3 q3 Log@e + f xD2 +
486 b3 e2 f g h2 j3 p3 q3 Log@e + f xD2 + 396 b3 e3 h3 j3 p3 q3 Log@e + f xD2 + 648 b3 e f2 h3 i2 j p3 q3 Log@e + f xD3 - 648 b3 e f2 g h2 i j2 p3 q3 Log@e + f xD3 324 b3 e2 f h3 i j2 p3 q3 Log@e + f xD3 + 216 b3 e f2 g2 h j3 p3 q3 Log@e + f xD3 + 108 b3 e2 f g h2 j3 p3 q3 Log@e + f xD3 + 72 b3 e3 h3 j3 p3 q3 Log@e + f xD3 3888 a b2 e f2 h3 i2 j p q Log@c Hd He + f xLp Lq D + 3888 a b2 e f2 g h2 i j2 p q Log@c Hd He + f xLp Lq D - 1296 a b2 e f2 g2 h j3 p q Log@c Hd He + f xLp Lq D +
3888 b3 e f2 h3 i2 j p2 q2 Log@c Hd He + f xLp Lq D - 3888 b3 e f2 g h2 i j2 p2 q2 Log@c Hd He + f xLp Lq D + 1296 b3 e f2 g2 h j3 p2 q2 Log@c Hd He + f xLp Lq D +
1944 a2 b f3 h3 i2 j x Log@c Hd He + f xLp Lq D - 1944 a2 b f3 g h2 i j2 x Log@c Hd He + f xLp Lq D + 648 a2 b f3 g2 h j3 x Log@c Hd He + f xLp Lq D 3888 a b2 f3 h3 i2 j p q x Log@c Hd He + f xLp Lq D + 3888 a b2 f3 g h2 i j2 p q x Log@c Hd He + f xLp Lq D + 1944 a b2 e f2 h3 i j2 p q x Log@c Hd He + f xLp Lq D 1296 a b2 f3 g2 h j3 p q x Log@c Hd He + f xLp Lq D - 648 a b2 e f2 g h2 j3 p q x Log@c Hd He + f xLp Lq D - 432 a b2 e2 f h3 j3 p q x Log@c Hd He + f xLp Lq D +
3888 b3 f3 h3 i2 j p2 q2 x Log@c Hd He + f xLp Lq D - 3888 b3 f3 g h2 i j2 p2 q2 x Log@c Hd He + f xLp Lq D - 2916 b3 e f2 h3 i j2 p2 q2 x Log@c Hd He + f xLp Lq D +
1296 b3 f3 g2 h j3 p2 q2 x Log@c Hd He + f xLp Lq D + 972 b3 e f2 g h2 j3 p2 q2 x Log@c Hd He + f xLp Lq D + 792 b3 e2 f h3 j3 p2 q2 x Log@c Hd He + f xLp Lq D +
972 a2 b f3 h3 i j2 x2 Log@c Hd He + f xLp Lq D - 324 a2 b f3 g h2 j3 x2 Log@c Hd He + f xLp Lq D - 972 a b2 f3 h3 i j2 p q x2 Log@c Hd He + f xLp Lq D +
324 a b2 f3 g h2 j3 p q x2 Log@c Hd He + f xLp Lq D + 216 a b2 e f2 h3 j3 p q x2 Log@c Hd He + f xLp Lq D + 486 b3 f3 h3 i j2 p2 q2 x2 Log@c Hd He + f xLp Lq D 162 b3 f3 g h2 j3 p2 q2 x2 Log@c Hd He + f xLp Lq D - 180 b3 e f2 h3 j3 p2 q2 x2 Log@c Hd He + f xLp Lq D + 216 a2 b f3 h3 j3 x3 Log@c Hd He + f xLp Lq D 144 a b2 f3 h3 j3 p q x3 Log@c Hd He + f xLp Lq D + 48 b3 f3 h3 j3 p2 q2 x3 Log@c Hd He + f xLp Lq D + 3888 a b2 e f2 h3 i2 j p q Log@e + f xD Log@c Hd He + f xLp Lq D 3888 a b2 e f2 g h2 i j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D - 1944 a b2 e2 f h3 i j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D +
1296 a b2 e f2 g2 h j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D + 648 a b2 e2 f g h2 j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D +
432 a b2 e3 h3 j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D + 2916 b3 e2 f h3 i j2 p2 q2 Log@e + f xD Log@c Hd He + f xLp Lq D 972 b3 e2 f g h2 j3 p2 q2 Log@e + f xD Log@c Hd He + f xLp Lq D - 792 b3 e3 h3 j3 p2 q2 Log@e + f xD Log@c Hd He + f xLp Lq D 1944 b3 e f2 h3 i2 j p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D + 1944 b3 e f2 g h2 i j2 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D +
972 b3 e2 f h3 i j2 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D - 648 b3 e f2 g2 h j3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D 324 b3 e2 f g h2 j3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D - 216 b3 e3 h3 j3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D 1944 b3 e f2 h3 i2 j p q Log@c Hd He + f xLp Lq D2 + 1944 b3 e f2 g h2 i j2 p q Log@c Hd He + f xLp Lq D2 - 648 b3 e f2 g2 h j3 p q Log@c Hd He + f xLp Lq D2 +
1944 a b2 f3 h3 i2 j x Log@c Hd He + f xLp Lq D2 - 1944 a b2 f3 g h2 i j2 x Log@c Hd He + f xLp Lq D2 + 648 a b2 f3 g2 h j3 x Log@c Hd He + f xLp Lq D2 1944 b3 f3 h3 i2 j p q x Log@c Hd He + f xLp Lq D2 + 1944 b3 f3 g h2 i j2 p q x Log@c Hd He + f xLp Lq D2 + 972 b3 e f2 h3 i j2 p q x Log@c Hd He + f xLp Lq D2 648 b3 f3 g2 h j3 p q x Log@c Hd He + f xLp Lq D2 - 324 b3 e f2 g h2 j3 p q x Log@c Hd He + f xLp Lq D2 - 216 b3 e2 f h3 j3 p q x Log@c Hd He + f xLp Lq D2 +
972 a b2 f3 h3 i j2 x2 Log@c Hd He + f xLp Lq D2 - 324 a b2 f3 g h2 j3 x2 Log@c Hd He + f xLp Lq D2 - 486 b3 f3 h3 i j2 p q x2 Log@c Hd He + f xLp Lq D2 +
162 b3 f3 g h2 j3 p q x2 Log@c Hd He + f xLp Lq D2 + 108 b3 e f2 h3 j3 p q x2 Log@c Hd He + f xLp Lq D2 + 216 a b2 f3 h3 j3 x3 Log@c Hd He + f xLp Lq D2 72 b3 f3 h3 j3 p q x3 Log@c Hd He + f xLp Lq D2 + 1944 b3 e f2 h3 i2 j p q Log@e + f xD Log@c Hd He + f xLp Lq D2 1944 b3 e f2 g h2 i j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 - 972 b3 e2 f h3 i j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 +
648 b3 e f2 g2 h j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 + 324 b3 e2 f g h2 j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 +
216 b3 e3 h3 j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 + 648 b3 f3 h3 i2 j x Log@c Hd He + f xLp Lq D3 - 648 b3 f3 g h2 i j2 x Log@c Hd He + f xLp Lq D3 +
216 b3 f3 g2 h j3 x Log@c Hd He + f xLp Lq D3 + 324 b3 f3 h3 i j2 x2 Log@c Hd He + f xLp Lq D3 - 108 b3 f3 g h2 j3 x2 Log@c Hd He + f xLp Lq D3 +
72 b3 f3 h3 j3 x3 Log@c Hd He + f xLp Lq D3 + 216 a3 f3 h3 i3 Log@g + h xD - 648 a3 f3 g h2 i2 j Log@g + h xD + 648 a3 f3 g2 h i j2 Log@g + h xD 216 a3 f3 g3 j3 Log@g + h xD - 648 a2 b f3 h3 i3 p q Log@e + f xD Log@g + h xD + 1944 a2 b f3 g h2 i2 j p q Log@e + f xD Log@g + h xD 1944 a2 b f3 g2 h i j2 p q Log@e + f xD Log@g + h xD + 648 a2 b f3 g3 j3 p q Log@e + f xD Log@g + h xD + 648 a b2 f3 h3 i3 p2 q2 Log@e + f xD2 Log@g + h xD 1944 a b2 f3 g h2 i2 j p2 q2 Log@e + f xD2 Log@g + h xD + 1944 a b2 f3 g2 h i j2 p2 q2 Log@e + f xD2 Log@g + h xD 648 a b2 f3 g3 j3 p2 q2 Log@e + f xD2 Log@g + h xD - 216 b3 f3 h3 i3 p3 q3 Log@e + f xD3 Log@g + h xD + 648 b3 f3 g h2 i2 j p3 q3 Log@e + f xD3 Log@g + h xD 648 b3 f3 g2 h i j2 p3 q3 Log@e + f xD3 Log@g + h xD + 216 b3 f3 g3 j3 p3 q3 Log@e + f xD3 Log@g + h xD + 648 a2 b f3 h3 i3 Log@c Hd He + f xLp Lq D Log@g + h xD 1944 a2 b f3 g h2 i2 j Log@c Hd He + f xLp Lq D Log@g + h xD + 1944 a2 b f3 g2 h i j2 Log@c Hd He + f xLp Lq D Log@g + h xD 648 a2 b f3 g3 j3 Log@c Hd He + f xLp Lq D Log@g + h xD - 1296 a b2 f3 h3 i3 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD +
3888 a b2 f3 g h2 i2 j p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD - 3888 a b2 f3 g2 h i j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD +
+
+
-
2.2 Logarithm Functions.nb
3888 a b2 f3 g h2 i2 j p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD - 3888 a b2 f3 g2 h i j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD +
1296 a b2 f3 g3 j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD + 648 b3 f3 h3 i3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@g + h xD 1944 b3 f3 g h2 i2 j p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@g + h xD + 1944 b3 f3 g2 h i j2 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@g + h xD 648 b3 f3 g3 j3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@g + h xD + 648 a b2 f3 h3 i3 Log@c Hd He + f xLp Lq D2 Log@g + h xD 1944 a b2 f3 g h2 i2 j Log@c Hd He + f xLp Lq D2 Log@g + h xD + 1944 a b2 f3 g2 h i j2 Log@c Hd He + f xLp Lq D2 Log@g + h xD 648 a b2 f3 g3 j3 Log@c Hd He + f xLp Lq D2 Log@g + h xD - 648 b3 f3 h3 i3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@g + h xD +
1944 b3 f3 g h2 i2 j p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@g + h xD - 1944 b3 f3 g2 h i j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@g + h xD +
648 b3 f3 g3 j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@g + h xD + 216 b3 f3 h3 i3 Log@c Hd He + f xLp Lq D3 Log@g + h xD 648 b3 f3 g h2 i2 j Log@c Hd He + f xLp Lq D3 Log@g + h xD + 648 b3 f3 g2 h i j2 Log@c Hd He + f xLp Lq D3 Log@g + h xD f Hg + h xL
216 b3 f3 g3 j3 Log@c Hd He + f xLp Lq D3 Log@g + h xD + 648 a2 b f3 h3 i3 p q Log@e + f xD LogB
Ffg-eh
1944 a2 b f3 g h2 i2 j p q Log@e + f xD LogB
f Hg + h xL
fg-eh
648 a2 b f3 g3 j3 p q Log@e + f xD LogB
f Hg + h xL
fg-eh
1944 a b2 f3 g h2 i2 j p2 q2 Log@e + f xD2 LogB
F + 1944 a2 b f3 g2 h i j2 p q Log@e + f xD LogB
F - 648 a b2 f3 h3 i3 p2 q2 Log@e + f xD2 LogB
f Hg + h xL
fg-eh
648 a b2 f3 g3 j3 p2 q2 Log@e + f xD2 LogB
f Hg + h xL
fg-eh
648 b3 f3 g h2 i2 j p3 q3 Log@e + f xD3 LogB
fg-eh
216 b3 f3 g3 j3 p3 q3 Log@e + f xD3 LogB
f Hg + h xL
fg-eh
fg-eh
F-
f Hg + h xL
fg-eh
F-
f Hg + h xL
fg-eh
F-
F + 1296 a b2 f3 h3 i3 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
1296 a b2 f3 g3 j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
1944 b3 f3 g h2 i2 j p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D LogB
fg-eh
F+
f Hg + h xL
F + 648 b3 f3 g2 h i j2 p3 q3 Log@e + f xD3 LogB
3888 a b2 f3 g2 h i j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
f Hg + h xL
fg-eh
F - 1944 a b2 f3 g2 h i j2 p2 q2 Log@e + f xD2 LogB
3888 a b2 f3 g h2 i2 j p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
Log@c Hd He + f xLp Lq D LogB
fg-eh
f Hg + h xL
F + 216 b3 f3 h3 i3 p3 q3 Log@e + f xD3 LogB
f Hg + h xL
f Hg + h xL
F+
fg-eh
fg-eh
1944 b3 f3 g2 h i j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
fg-eh
F-
F - 648 b3 f3 h3 i3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D LogB
f Hg + h xL
f Hg + h xL
f Hg + h xL
F-
F - 1944 b3 f3 g2 h i j2 p2 q2 Log@e + f xD2
F + 648 b3 f3 g3 j3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D LogB
648 b3 f3 h3 i3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
F+
f Hg + h xL
fg-eh
f Hg + h xL
F+
F - 1944 b3 f3 g h2 i2 j p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
f Hg + h xL
fg-eh
F - 648 b3 f3 g3 j3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
-
fg-eh
F+
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
F+
F+
57
58
2.2 Logarithm Functions.nb
648 b f3 Hh i - g jL3 p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2,
h He + f xL
-f g + e h
h He + f xL
1296 b2 f3 Hh i - g jL3 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3,
3888 b3 f3 g h2 i2 j p3 q3 PolyLogB4,
h He + f xL
-f g + e h
F-
-f g + e h
F + 1296 b3 f3 h3 i3 p3 q3 PolyLogB4,
F + 3888 b3 f3 g2 h i j2 p3 q3 PolyLogB4,
h He + f xL
-f g + e h
h He + f xL
-f g + e h
F-
F - 1296 b3 f3 g3 j3 p3 q3 PolyLogB4,
h He + f xL
-f g + e h
F
Problem ð191: Valid but suboptimal antiderivative:
:
Hi + j xL2 Ha + b Log@c Hd He + f xLp Lq DL3
, x, 20, 0>
g+hx
6 a b2 j Hf i - e jL p2 q2 x
fh
3 b3 j2 p3 q3 x2
+
8h
+
6 a b2 j Hh i - g jL p2 q2 x
3 b3 e j2 p3 q3 x
-
-
4fh
h2
3
2
2
6 b j Hf i - e jL p q He + f xL Log@c Hd He + f xLp Lq D
f2 h
3 b2 j2 p2 q2 He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL
-
4 f2 h
j Hf i - e jL He + f xL Ha + b Log@c Hd He + f xLp Lq DL3
f2 h
Hh i - g jL2 Ha + b Log@c Hd He + f xLp Lq DL3 LogB
h3
+
f Hg+h xL
f g-e h
-
3 b j2 p q He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL2
4 f2 h
j Hh i - g jL He + f xL Ha + b Log@c Hd He + f xLp Lq DL3
F
f h2
+
+
f h2
-
f2 h
+
+
j2 He + f xL2 Ha + b Log@c Hd He + f xLp Lq DL3
3 b Hh i - g jL2 p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2, -
6 b2 Hh i - g jL2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3, h3
+
6 b3 j Hh i - g jL p3 q3 x
h2
6 b3 j Hh i - g jL p2 q2 He + f xL Log@c Hd He + f xLp Lq D
fh
-
3 b j Hf i - e jL p q He + f xL Ha + b Log@c Hd He + f xLp Lq DL2
3 b j Hh i - g jL p q He + f xL Ha + b Log@c Hd He + f xLp Lq DL2
f h2
6 b3 j Hf i - e jL p3 q3 x
h3
h He+f xL
F
f g-e h
+
6 b3 Hh i - g jL2 p3 q3 PolyLogB4, h3
h He+f xL
F
f g-e h
2 f2 h
h He+f xL
F
f g-e h
-
1
- 48 a2 b e f h2 i j p q + 24 a2 b e f g h j2 p q + 96 a b2 e f h2 i j p2 q2 - 48 a b2 e f g h j2 p2 q2 - 96 b3 e f h2 i j p3 q3 + 48 b3 e f g h j2 p3 q3 +
8 f2 h3
16 a3 f2 h2 i j x - 8 a3 f2 g h j2 x - 48 a2 b f2 h2 i j p q x + 24 a2 b f2 g h j2 p q x + 12 a2 b e f h2 j2 p q x + 96 a b2 f2 h2 i j p2 q2 x 48 a b2 f2 g h j2 p2 q2 x - 36 a b2 e f h2 j2 p2 q2 x - 96 b3 f2 h2 i j p3 q3 x + 48 b3 f2 g h j2 p3 q3 x + 42 b3 e f h2 j2 p3 q3 x + 4 a3 f2 h2 j2 x2 6 a2 b f2 h2 j2 p q x2 + 6 a b2 f2 h2 j2 p2 q2 x2 - 3 b3 f2 h2 j2 p3 q3 x2 + 48 a2 b e f h2 i j p q Log@e + f xD - 24 a2 b e f g h j2 p q Log@e + f xD 12 a2 b e2 h2 j2 p q Log@e + f xD + 36 a b2 e2 h2 j2 p2 q2 Log@e + f xD - 42 b3 e2 h2 j2 p3 q3 Log@e + f xD - 48 a b2 e f h2 i j p2 q2 Log@e + f xD2 +
24 a b2 e f g h j2 p2 q2 Log@e + f xD2 + 12 a b2 e2 h2 j2 p2 q2 Log@e + f xD2 - 18 b3 e2 h2 j2 p3 q3 Log@e + f xD2 + 16 b3 e f h2 i j p3 q3 Log@e + f xD3 8 b3 e f g h j2 p3 q3 Log@e + f xD3 - 4 b3 e2 h2 j2 p3 q3 Log@e + f xD3 - 96 a b2 e f h2 i j p q Log@c Hd He + f xLp Lq D +
48 a b2 e f g h j2 p q Log@c Hd He + f xLp Lq D + 96 b3 e f h2 i j p2 q2 Log@c Hd He + f xLp Lq D - 48 b3 e f g h j2 p2 q2 Log@c Hd He + f xLp Lq D +
48 a2 b f2 h2 i j x Log@c Hd He + f xLp Lq D - 24 a2 b f2 g h j2 x Log@c Hd He + f xLp Lq D - 96 a b2 f2 h2 i j p q x Log@c Hd He + f xLp Lq D +
48 a b2 f2 g h j2 p q x Log@c Hd He + f xLp Lq D + 24 a b2 e f h2 j2 p q x Log@c Hd He + f xLp Lq D + 96 b3 f2 h2 i j p2 q2 x Log@c Hd He + f xLp Lq D 48 b3 f2 g h j2 p2 q2 x Log@c Hd He + f xLp Lq D - 36 b3 e f h2 j2 p2 q2 x Log@c Hd He + f xLp Lq D + 12 a2 b f2 h2 j2 x2 Log@c Hd He + f xLp Lq D +
+
+
-
+
2.2 Logarithm Functions.nb
59
48 b3 f2 g h j2 p2 q2 x Log@c Hd He + f xLp Lq D - 36 b3 e f h2 j2 p2 q2 x Log@c Hd He + f xLp Lq D + 12 a2 b f2 h2 j2 x2 Log@c Hd He + f xLp Lq D 12 a b2 f2 h2 j2 p q x2 Log@c Hd He + f xLp Lq D + 6 b3 f2 h2 j2 p2 q2 x2 Log@c Hd He + f xLp Lq D + 96 a b2 e f h2 i j p q Log@e + f xD Log@c Hd He + f xLp Lq D 48 a b2 e f g h j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D - 24 a b2 e2 h2 j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D +
36 b3 e2 h2 j2 p2 q2 Log@e + f xD Log@c Hd He + f xLp Lq D - 48 b3 e f h2 i j p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D +
24 b3 e f g h j2 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D + 12 b3 e2 h2 j2 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D 48 b3 e f h2 i j p q Log@c Hd He + f xLp Lq D2 + 24 b3 e f g h j2 p q Log@c Hd He + f xLp Lq D2 + 48 a b2 f2 h2 i j x Log@c Hd He + f xLp Lq D2 24 a b2 f2 g h j2 x Log@c Hd He + f xLp Lq D2 - 48 b3 f2 h2 i j p q x Log@c Hd He + f xLp Lq D2 + 24 b3 f2 g h j2 p q x Log@c Hd He + f xLp Lq D2 +
12 b3 e f h2 j2 p q x Log@c Hd He + f xLp Lq D2 + 12 a b2 f2 h2 j2 x2 Log@c Hd He + f xLp Lq D2 - 6 b3 f2 h2 j2 p q x2 Log@c Hd He + f xLp Lq D2 +
48 b3 e f h2 i j p q Log@e + f xD Log@c Hd He + f xLp Lq D2 - 24 b3 e f g h j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 12 b3 e2 h2 j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 + 16 b3 f2 h2 i j x Log@c Hd He + f xLp Lq D3 - 8 b3 f2 g h j2 x Log@c Hd He + f xLp Lq D3 +
4 b3 f2 h2 j2 x2 Log@c Hd He + f xLp Lq D3 + 8 a3 f2 h2 i2 Log@g + h xD - 16 a3 f2 g h i j Log@g + h xD + 8 a3 f2 g2 j2 Log@g + h xD 24 a2 b f2 h2 i2 p q Log@e + f xD Log@g + h xD + 48 a2 b f2 g h i j p q Log@e + f xD Log@g + h xD - 24 a2 b f2 g2 j2 p q Log@e + f xD Log@g + h xD +
24 a b2 f2 h2 i2 p2 q2 Log@e + f xD2 Log@g + h xD - 48 a b2 f2 g h i j p2 q2 Log@e + f xD2 Log@g + h xD + 24 a b2 f2 g2 j2 p2 q2 Log@e + f xD2 Log@g + h xD 8 b3 f2 h2 i2 p3 q3 Log@e + f xD3 Log@g + h xD + 16 b3 f2 g h i j p3 q3 Log@e + f xD3 Log@g + h xD - 8 b3 f2 g2 j2 p3 q3 Log@e + f xD3 Log@g + h xD +
24 a2 b f2 h2 i2 Log@c Hd He + f xLp Lq D Log@g + h xD - 48 a2 b f2 g h i j Log@c Hd He + f xLp Lq D Log@g + h xD +
24 a2 b f2 g2 j2 Log@c Hd He + f xLp Lq D Log@g + h xD - 48 a b2 f2 h2 i2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD +
96 a b2 f2 g h i j p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD - 48 a b2 f2 g2 j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD +
24 b3 f2 h2 i2 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@g + h xD - 48 b3 f2 g h i j p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@g + h xD +
24 b3 f2 g2 j2 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@g + h xD + 24 a b2 f2 h2 i2 Log@c Hd He + f xLp Lq D2 Log@g + h xD 48 a b2 f2 g h i j Log@c Hd He + f xLp Lq D2 Log@g + h xD + 24 a b2 f2 g2 j2 Log@c Hd He + f xLp Lq D2 Log@g + h xD 24 b3 f2 h2 i2 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@g + h xD + 48 b3 f2 g h i j p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@g + h xD 24 b3 f2 g2 j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@g + h xD + 8 b3 f2 h2 i2 Log@c Hd He + f xLp Lq D3 Log@g + h xD 16 b3 f2 g h i j Log@c Hd He + f xLp Lq D3 Log@g + h xD + 8 b3 f2 g2 j2 Log@c Hd He + f xLp Lq D3 Log@g + h xD +
f Hg + h xL
f Hg + h xL
f Hg + h xL
24 a2 b f2 h2 i2 p q Log@e + f xD LogB
F - 48 a2 b f2 g h i j p q Log@e + f xD LogB
F + 24 a2 b f2 g2 j2 p q Log@e + f xD LogB
Ffg-eh
fg-eh
fg-eh
24 a b2 f2 h2 i2 p2 q2 Log@e + f xD2 LogB
f Hg + h xL
fg-eh
24 a b2 f2 g2 j2 p2 q2 Log@e + f xD2 LogB
f Hg + h xL
fg-eh
16 b3 f2 g h i j p3 q3 Log@e + f xD3 LogB
f Hg + h xL
fg-eh
F + 48 a b2 f2 g h i j p2 q2 Log@e + f xD2 LogB
F + 8 b3 f2 h2 i2 p3 q3 Log@e + f xD3 LogB
F + 8 b3 f2 g2 j2 p3 q3 Log@e + f xD3 LogB
48 a b2 f2 h2 i2 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
48 a b2 f2 g2 j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
48 b3 f2 g h i j p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D LogB
24 b3 f2 h2 i2 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
24 b3 f2 g2 j2 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
F-
F-
F+
F - 24 b3 f2 h2 i2 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D LogB
fg-eh
fg-eh
fg-eh
F - 96 a b2 f2 g h i j p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
f Hg + h xL
f Hg + h xL
f Hg + h xL
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
F - 24 b3 f2 g2 j2 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D LogB
F - 48 b3 f2 g h i j p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
-
F+
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
F + 24 b f2 Hh i - g jL2 p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2,
+
F+
F+
F+
h He + f xL
-f g + e h
F-
60
2.2 Logarithm Functions.nb
48 b2 f2 Hh i - g jL2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3,
96 b3 f2 g h i j p3 q3 PolyLogB4,
h He + f xL
-f g + e h
h He + f xL
-f g + e h
F + 48 b3 f2 g2 j2 p3 q3 PolyLogB4,
F + 48 b3 f2 h2 i2 p3 q3 PolyLogB4,
h He + f xL
-f g + e h
F
h He + f xL
-f g + e h
F-
Problem ð192: Valid but suboptimal antiderivative:
:
Hi + j xL Ha + b Log@c Hd He + f xLp Lq DL3
, x, 10, 0>
g+hx
6 a b2 j p2 q2 x
6 b3 j p3 q3 x
-
h
+
h
6 b3 j p2 q2 He + f xL Log@c Hd He + f xLp Lq D
3 b j p q He + f xL Ha + b Log@c Hd He + f xLp Lq DL2
fh
Hh i - g jL Ha + b Log@c Hd He + f xLp Lq DL3 LogB
h2
+
j He + f xL Ha + b Log@c Hd He + f xLp Lq DL3
f Hg+h xL
f g-e h
F
+
fh
+
3 b Hh i - g jL p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2, -
6 b2 Hh i - g jL p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3, h2
-
fh
h2
h He+f xL
F
f g-e h
+
6 b3 Hh i - g jL p3 q3 PolyLogB4, h2
h He+f xL
F
f g-e h
h He+f xL
F
f g-e h
-
2.2 Logarithm Functions.nb
1
- 3 a2 b e h j p q + 6 a b2 e h j p2 q2 - 6 b3 e h j p3 q3 + a3 f h j x - 3 a2 b f h j p q x + 6 a b2 f h j p2 q2 x - 6 b3 f h j p3 q3 x + 3 a2 b e h j p q Log@e + f xD f h2
3 a b2 e h j p2 q2 Log@e + f xD2 + b3 e h j p3 q3 Log@e + f xD3 - 6 a b2 e h j p q Log@c Hd He + f xLp Lq D + 6 b3 e h j p2 q2 Log@c Hd He + f xLp Lq D +
3 a2 b f h j x Log@c Hd He + f xLp Lq D - 6 a b2 f h j p q x Log@c Hd He + f xLp Lq D + 6 b3 f h j p2 q2 x Log@c Hd He + f xLp Lq D +
6 a b2 e h j p q Log@e + f xD Log@c Hd He + f xLp Lq D - 3 b3 e h j p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D - 3 b3 e h j p q Log@c Hd He + f xLp Lq D2 +
3 a b2 f h j x Log@c Hd He + f xLp Lq D2 - 3 b3 f h j p q x Log@c Hd He + f xLp Lq D2 + 3 b3 e h j p q Log@e + f xD Log@c Hd He + f xLp Lq D2 +
b3 f h j x Log@c Hd He + f xLp Lq D3 + a3 f h i Log@g + h xD - a3 f g j Log@g + h xD - 3 a2 b f h i p q Log@e + f xD Log@g + h xD +
3 a2 b f g j p q Log@e + f xD Log@g + h xD + 3 a b2 f h i p2 q2 Log@e + f xD2 Log@g + h xD - 3 a b2 f g j p2 q2 Log@e + f xD2 Log@g + h xD b3 f h i p3 q3 Log@e + f xD3 Log@g + h xD + b3 f g j p3 q3 Log@e + f xD3 Log@g + h xD + 3 a2 b f h i Log@c Hd He + f xLp Lq D Log@g + h xD 3 a2 b f g j Log@c Hd He + f xLp Lq D Log@g + h xD - 6 a b2 f h i p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD +
6 a b2 f g j p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD + 3 b3 f h i p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@g + h xD 3 b3 f g j p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@g + h xD + 3 a b2 f h i Log@c Hd He + f xLp Lq D2 Log@g + h xD 3 a b2 f g j Log@c Hd He + f xLp Lq D2 Log@g + h xD - 3 b3 f h i p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@g + h xD +
3 b3 f g j p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@g + h xD + b3 f h i Log@c Hd He + f xLp Lq D3 Log@g + h xD f Hg + h xL
f Hg + h xL
b3 f g j Log@c Hd He + f xLp Lq D3 Log@g + h xD + 3 a2 b f h i p q Log@e + f xD LogB
F - 3 a2 b f g j p q Log@e + f xD LogB
Ffg-eh
fg-eh
3 a b2 f h i p2 q2 Log@e + f xD2 LogB
f Hg + h xL
fg-eh
b3 f g j p3 q3 Log@e + f xD3 LogB
f Hg + h xL
fg-eh
F + 3 a b2 f g j p2 q2 Log@e + f xD2 LogB
f Hg + h xL
fg-eh
3 b3 f g j p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D LogB
3 b3 f g j p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
fg-eh
f Hg + h xL
fg-eh
-f g + e h
:
Ha + b Log@c Hd He + f xLp Lq DL3
g+hx
, x, 4, 0>
fg-eh
F-
F + 3 b3 f h i p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
f Hg + h xL
h He + f xL
-f g + e h
F+
h He + f xL
-f g + e h
F
fg-eh
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
F + 3 b f Hh i - g jL p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2,
F - 6 b3 f g j p3 q3 PolyLogB4,
Problem ð193: Valid but suboptimal antiderivative:
f Hg + h xL
F - 3 b3 f h i p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D LogB
f Hg + h xL
6 b2 f Hh i - g jL p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3,
h He + f xL
fg-eh
F + b3 f h i p3 q3 Log@e + f xD3 LogB
F + 6 a b2 f h i p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
6 a b2 f g j p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
6 b3 f h i p3 q3 PolyLogB4,
f Hg + h xL
F-
F+
F-
h He + f xL
-f g + e h
F-
61
62
2.2 Logarithm Functions.nb
Ha + b Log@c Hd He + f xLp Lq DL3 LogB
f Hg+h xL
f g-e h
h
F
+
3 b p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2, -
6 b2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3, h
1
h
h He+f xL
F
f g-e h
h
6 b3 p3 q3 PolyLogB4, +
h
h He+f xL
F
f g-e h
h He+f xL
F
f g-e h
-
a3 Log@g + h xD - 3 a2 b p q Log@e + f xD Log@g + h xD + 3 a b2 p2 q2 Log@e + f xD2 Log@g + h xD b3 p3 q3 Log@e + f xD3 Log@g + h xD + 3 a2 b Log@c Hd He + f xLp Lq D Log@g + h xD - 6 a b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD +
3 b3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@g + h xD + 3 a b2 Log@c Hd He + f xLp Lq D2 Log@g + h xD 3 b3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@g + h xD + b3 Log@c Hd He + f xLp Lq D3 Log@g + h xD +
f Hg + h xL
f Hg + h xL
f Hg + h xL
3 a2 b p q Log@e + f xD LogB
F - 3 a b2 p2 q2 Log@e + f xD2 LogB
F + b3 p3 q3 Log@e + f xD3 LogB
F+
fg-eh
fg-eh
fg-eh
6 a b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
3 b3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
6 b2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3,
F - 3 b3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D LogB
F + 3 b p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2,
h He + f xL
-f g + e h
F + 6 b3 p3 q3 PolyLogB4,
h He + f xL
-f g + e h
F
f Hg + h xL
fg-eh
h He + f xL
-f g + e h
F+
F-
Problem ð194: Valid but suboptimal antiderivative:
:
Ha + b Log@c Hd He + f xLp Lq DL3
Hg + h xL Hi + j xL
, x, 10, 0>
Ha + b Log@c Hd He + f xLp Lq DL3 LogB
f Hg+h xL
hi-gj
f g-e h
F
-
Ha + b Log@c Hd He + f xLp Lq DL3 LogB
3 b p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2, -
f i-e j
hi-gj
j He+f xL
f i-e j
hi-gj
6 b2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3, hi-gj
f Hi+j xL
F
j He+f xL
f i-e j
-
F
+
3 b p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2, hi-gj
6 b2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3, hi-gj
F
6 b3 p3 q3 PolyLogB4, +
hi-gj
h He+f xL
F
f g-e h
h He+f xL
F
f g-e h
6 b3 p3 q3 PolyLogB4, hi-gj
+
j He+f xL
f i-e j
F
h He+f xL
F
f g-e h
-
2.2 Logarithm Functions.nb
1
a3 Log@g + h xD - 3 a2 b p q Log@e + f xD Log@g + h xD + 3 a b2 p2 q2 Log@e + f xD2 Log@g + h xD -
hi-gj
b3 p3 q3 Log@e + f xD3 Log@g + h xD + 3 a2 b Log@c Hd He + f xLp Lq D Log@g + h xD - 6 a b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@g + h xD +
3 b3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@g + h xD + 3 a b2 Log@c Hd He + f xLp Lq D2 Log@g + h xD f Hg + h xL
3 b3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@g + h xD + b3 Log@c Hd He + f xLp Lq D3 Log@g + h xD + 3 a2 b p q Log@e + f xD LogB
Ffg-eh
3 a b2 p2 q2 Log@e + f xD2 LogB
f Hg + h xL
fg-eh
F + b3 p3 q3 Log@e + f xD3 LogB
3 b3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D LogB
f Hg + h xL
fg-eh
f Hg + h xL
fg-eh
F + 6 a b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
F + 3 b3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
f Hg + h xL
fg-eh
F-
f Hg + h xL
fg-eh
a3 Log@i + j xD + 3 a2 b p q Log@e + f xD Log@i + j xD - 3 a b2 p2 q2 Log@e + f xD2 Log@i + j xD + b3 p3 q3 Log@e + f xD3 Log@i + j xD 3 a2 b Log@c Hd He + f xLp Lq D Log@i + j xD + 6 a b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D Log@i + j xD 3 b3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D Log@i + j xD - 3 a b2 Log@c Hd He + f xLp Lq D2 Log@i + j xD +
f Hi + j xL
3 b3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 Log@i + j xD - b3 Log@c Hd He + f xLp Lq D3 Log@i + j xD - 3 a2 b p q Log@e + f xD LogB
F+
fi-ej
3 a b2 p2 q2 Log@e + f xD2 LogB
f Hi + j xL
fi-ej
F - b3 p3 q3 Log@e + f xD3 LogB
3 b3 p2 q2 Log@e + f xD2 Log@c Hd He + f xLp Lq D LogB
3 b p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2,
6 a b2 p2 q2 PolyLogB3,
h He + f xL
-f g + e h
f Hi + j xL
fi-ej
h He + f xL
-f g + e h
j He + f xL
-f i + e j
Problem ð195: Valid but suboptimal antiderivative:
Ha + b Log@c Hd He + f xLp Lq DL3
Hg + h xL Hi + j xL2
fi-ej
F - 6 a b2 p q Log@e + f xD Log@c Hd He + f xLp Lq D LogB
F - 3 b3 p q Log@e + f xD Log@c Hd He + f xLp Lq D2 LogB
, x, 14, 0>
f Hi + j xL
F - 3 b p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2,
F - 6 b3 p2 q2 Log@c Hd He + f xLp Lq D PolyLogB3,
6 b3 p2 q2 Log@c Hd He + f xLp Lq D PolyLogB3,
:
f Hi + j xL
F + 6 b3 p3 q3 PolyLogB4,
h He + f xL
-f g + e h
h He + f xL
-f g + e h
fi-ej
F+
j He + f xL
-f i + e j
F + 6 a b2 p2 q2 PolyLogB3,
F - 6 b3 p3 q3 PolyLogB4,
F-
j He + f xL
-f i + e j
j He + f xL
-f i + e j
F
f Hi + j xL
F+
fi-ej
F-
F+
63
64
2.2 Logarithm Functions.nb
-
j He + f xL Ha + b Log@c Hd He + f xLp Lq DL3
Hf i - e jL Hh i - g jL Hi + j xL
h Ha + b Log@c Hd He + f xLp Lq DL3 LogB
Hh i - g jL2
+
h Ha + b Log@c Hd He + f xLp Lq DL3 LogB
f Hi+j xL
f i-e j
F
Hh i - g jL2
+
Hf i - e jL Hh i - g jL
6 b2 h p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3, Hh i - g jL2
6 b2 h p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3, H- h i + g jL Hi + j xL
f g-e h
F
+
3 b f p q Ha + b Log@c Hd He + f xLp Lq DL2 LogB
3 b h p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2, -
6 b2 f p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2, -
1
f Hg+h xL
Hh i - g jL2
j He+f xL
f i-e j
F
h He+f xL
F
f g-e h
j He+f xL
f i-e j
F
-
Hh i - g jL2
Hf i - e jL Hh i - g jL
h He+f xL
F
f g-e h
Hh i - g jL2
j He+f xL
f i-e j
Hf i - e jL Hh i - g jL
-
6 b3 h p3 q3 PolyLogB4, Hh i - g jL2
+
F
h He+f xL
F
f g-e h
f i-e j
F
-
+
3 b h p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2, 6 b3 f p3 q3 PolyLogB3, -
f Hi+j xL
j He+f xL
f i-e j
F
-
+
6 b3 h p3 q3 PolyLogB4, Hh i - g jL2
-
j He+f xL
f i-e j
F
- a3 - 3 a2 b q H- p Log@e + f xD + Log@d He + f xLp DL - 3 a b2 q2 H- p Log@e + f xD + Log@d He + f xLp DL2 - b3 q3 H- p Log@e + f xD + Log@d He + f xLp DL3 3 a2 b - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q-
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
F -
6 a b2 q H- p Log@e + f xD + Log@d He + f xLp DL - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q -
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F -
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F -
Log@d He + f xLp D
3 b3 q2 H- p Log@e + f xD + Log@d He + f xLp DL2 - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q -
+
Log@d He + f xLp D
3 a b2 - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q-
q-
q H- p Log@e + f xD + Log@d He + f xLp DL
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
q-
F
2
-
Log@d He + f xLp D
3 b3 q H- p Log@e + f xD + Log@d He + f xLp DL - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q 2
-
+
Log@d He+f xLp D
Log@d He+f xLp D
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
+
2.2 Logarithm Functions.nb
LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
q-
Log@d He+f xLp D
b3 - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
1
Hh i - g jL2
p DL
q-
F
2
F
3
-
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He+f xLp D
Log@d He + f xLp D
+
h a + b q H- p Log@e + f xD + Log@d He + f xLp DL + b - q H- p Log@e + f xD + Log@d He + f xLp DL -
Log@d He + f xLp D q 1
Log@g + h xD -
Hh i - g jL2
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
Log@d He + f xLp D
+
p DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F
3
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F
3
q-
h a + b q H- p Log@e + f xD + Log@d He + f xLp DL + b - q H- p Log@e + f xD + Log@d He + f xLp DL -
Log@d He + f xLp D q -
Log@d He + f xLp D
p DL
q-
Log@d He+f xLp D
Log@d He+f xLp D
Log@i + j xD + 3 a2 b p q + 2 a b2 p q2 H- p Log@e + f xD + Log@d He + f xLp DL + b3 p q3 H- p Log@e + f xD + Log@d He + f xLp DL2 +
2 a b2 p q - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q-
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
F +
2 b3 p q2 H- p Log@e + f xD + Log@d He + f xLp DL - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q -
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
b3 p q - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q-
- j He + f xL Log@e + f xD + f Hi + j xL Log@i + j xD
H- f i + e jL H- h i + g jL Hi + j xL
h JLog@e + f xD LogB
3
f Hi+j xL
f i-e j
F + PolyLogB2,
Hh i - g jL2
+
j He+f xL
-f i+e j
h JLog@e + f xD LogB
FN
+
Hd He + f xLp L
q-
q H- p Log@e + f xD + Log@d He + f xLp DL
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
p DL
F
2
f Hg+h xL
f g-e h
Log@d He + f xLp D
F + PolyLogB2,
Hh i - g jL2
+
h He+f xL
FN
-f g+e h
-
+
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
F +
65
66
2.2 Logarithm Functions.nb
3 a b2 p2 q2 + b3 p2 q3 H- p Log@e + f xD + Log@d He + f xLp DL + b3 p2 q2 - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q -
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
- Log@e + f xD Jj He + f xL Log@e + f xD - 2 f Hi + j xL LogB
h JLog@e + f xD2 LogB
h JLog@e + f xD2 LogB
b3 p3 q3
f Hg+h xL
f g-e h
f Hi+j xL
f i-e j
f i-e j
FN + 2 f Hi + j xL PolyLogB2,
H- f i + e jL H- h i + g jL Hi + j xL
F + 2 Log@e + f xD PolyLogB2,
Hh i - g jL2
F + 2 Log@e + f xD PolyLogB2,
Hh i - g jL2
h He+f xL
F
-f g+e h
j He+f xL
-f i+e j
- Log@e + f xD2 j He + f xL Log@e + f xD - 3 f Hi + j xL LogB
6 f Hi + j xL PolyLogB3,
h Log@e + f xD3 LogB
j He + f xL
-f i + e j
f Hg + h xL
fg-eh
1
Hh i - g jL2
h Log@e + f xD3 LogB
f Hi + j xL
fi-ej
Ha + b Log@c Hd He + f xLp Lq DL3
Hg + h xL Hi + j xL3
F + 3 Log@e + f xD2 PolyLogB2,
F + 3 Log@e + f xD2 PolyLogB2,
, x, 24, 0>
- 2 PolyLogB3,
F - 2 PolyLogB3,
f Hi + j xL
fi-ej
h He + f xL
-f g + e h
j He + f xL
-f i + e j
j He+f xL
h He+f xL
FN
-f g+e h
j He+f xL
-f i+e j
p DL
FN
-f i+e j
F
Hd He + f xLp L
q-
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
F
+
-
+
F + 6 f Hi + j xL Log@e + f xD PolyLogB2,
F “ HH- f i + e jL H- h i + g jL Hi + j xLL +
Problem ð196: Valid but suboptimal antiderivative:
:
f Hi+j xL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
1
Hh i - g jL2
F - 6 Log@e + f xD PolyLogB3,
F - 6 Log@e + f xD PolyLogB3,
h He + f xL
-f g + e h
j He + f xL
-f i + e j
j He + f xL
-f i + e j
F-
F + 6 PolyLogB4,
F + 6 PolyLogB4,
h He + f xL
-f g + e h
j He + f xL
-f i + e j
F F
2.2 Logarithm Functions.nb
3 b f j p q He + f xL Ha + b Log@c Hd He + f xLp Lq DL2
2 Hf i - e jL2 Hh i - g jL Hi + j xL
h j He + f xL Ha + b Log@c Hd He + f xLp Lq DL3
Hf i - e jL Hh i - g jL2 Hi + j xL
+
h2 Ha + b Log@c Hd He + f xLp Lq DL3 LogB
Hh i - g jL3
3 b3 f2 p3 q3 PolyLogB2, -
j He+f xL
f i-e j
Hf i - e jL2 Hh i - g jL
F
+
f Hi+j xL
f i-e j
f2 Ha + b Log@c Hd He + f xLp Lq DL3
2 Hf i - e jL2 Hh i - g jL
h2 Ha + b Log@c Hd He + f xLp Lq DL3 LogB
3 b f h p q Ha + b Log@c Hd He + f xLp Lq DL2 LogB
Hf i - e jL Hh i - g jL2
-
f Hi+j xL
F
f i-e j
+
Hh i - g jL3
F
+
f Hg+h xL
f g-e h
2 Hh i - g jL Hi + j xL2
F
-
2 Hf i - e jL2 Hh i - g jL
6 b2 f h p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2, -
6 b2 h2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3, Hh i - g jL3
6 b2 h2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB3, Hh i - g jL3
Hf i - e jL Hh i - g jL2
j He+f xL
f i-e j
F
h He+f xL
F
f g-e h
j He+f xL
f i-e j
F
-
-
3 b2 f2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL LogB
3 b f2 p q Ha + b Log@c Hd He + f xLp Lq DL2 LogB
Hh i - g jL3
Hf i - e jL2 Hh i - g jL
2 H- h i + g jL Hi + j xL2
Ha + b Log@c Hd He + f xLp Lq DL3
f Hi+j xL
f i-e j
3 b h2 p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2, -
3 b2 f2 p2 q2 Ha + b Log@c Hd He + f xLp Lq DL PolyLogB2, -
1
+
j He+f xL
f i-e j
F
F
Hf i - e jL2 Hh i - g jL
+
Hh i - g jL3
j He+f xL
f i-e j
Hf i - e jL Hh i - g jL2
-
6 b3 h2 p3 q3 PolyLogB4, Hh i - g jL3
+
F
h He+f xL
F
f g-e h
f i-e j
-
3 b h2 p q Ha + b Log@c Hd He + f xLp Lq DL2 PolyLogB2, 6 b3 f h p3 q3 PolyLogB3, -
f Hi+j xL
-
h He+f xL
F
f g-e h
-
j He+f xL
f i-e j
F
-
3 b3 f2 p3 q3 PolyLogB3, -
j He+f xL
f i-e j
Hf i - e jL2 Hh i - g jL
6 b3 h2 p3 q3 PolyLogB4, Hh i - g jL3
-
j He+f xL
f i-e j
F
+
F
- a3 - 3 a2 b q H- p Log@e + f xD + Log@d He + f xLp DL - 3 a b2 q2 H- p Log@e + f xD + Log@d He + f xLp DL2 - b3 q3 H- p Log@e + f xD + Log@d He + f xLp DL3 3 a2 b - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q-
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
q H- p Log@e + f xD + Log@d He + f xLp DL
F -
Log@d He + f xLp D
6 a b2 q H- p Log@e + f xD + Log@d He + f xLp DL - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q -
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
3 b3 q2 H- p Log@e + f xD + Log@d He + f xLp DL2 - q H- p Log@e + f xD + Log@d He + f xLp DL +
p DL
67
+
Hd He + f xLp L
q-
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
F -
-
F
+
68
2.2 Logarithm Functions.nb
Log@d He + f xLp D q -
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
3 a b2 - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q-
q H- p Log@e + f xD + Log@d He + f xLp DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
q-
p DL
Log@d He+f xLp D
F
2
F
2
F
3
Log@d He + f xLp D
-
3 b3 q H- p Log@e + f xD + Log@d He + f xLp DL - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
q-
Log@d He+f xLp D
b3 - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
1
Hh i - g jL2 Hi + j xL
p DL
q-
Log@d He+f xLp D
+
Log@d He + f xLp D
F -
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
-
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He+f xLp D
q H-p Log@e+f xD+Log@d He+f xLp DL
+
+
h a3 + 3 a2 b q H- p Log@e + f xD + Log@d He + f xLp DL + 3 a b2 q2 H- p Log@e + f xD + Log@d He + f xLp DL2 +
b3 q3 H- p Log@e + f xD + Log@d He + f xLp DL3 + 3 a2 b - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q -
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F +
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F +
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F +
Log@d He + f xLp D
6 a b2 q H- p Log@e + f xD + Log@d He + f xLp DL - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q -
Log@d He + f xLp D
3 b3 q2 H- p Log@e + f xD + Log@d He + f xLp DL2 - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q -
Log@d He + f xLp D
3 a b2 - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q-
- q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q -
q-
q-
q H- p Log@e + f xD + Log@d He + f xLp DL
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
q-
F
2
Log@d He + f xLp D
Log@d He+f xLp D
+
Log@d He+f xLp D
+ 3 b3 q H- p Log@e + f xD + Log@d He + f xLp DL
q H- p Log@e + f xD + Log@d He + f xLp DL
2
Log@d He+f xLp D
Log@d He + f xLp D
+
+
+
+
2.2 Logarithm Functions.nb
LogBc ãq H-p Log@e+f xD+Log@d He+f xL
1
Log@d He + f xLp D q -
Hh i - g jL3
p DL
Hd He + f xLp L
q-
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
F
2
+ b3 - q H- p Log@e + f xD + Log@d He + f xLp DL -
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
h2 a + b q H- p Log@e + f xD + Log@d He + f xLp DL + b - q H- p Log@e + f xD + Log@d He + f xLp DL -
Log@d He + f xLp D q 1
Log@g + h xD -
Hh i - g jL3
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
q H- p Log@e + f xD + Log@d He + f xLp DL
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
Log@d He + f xLp D
p DL
Hd He + f xLp L
q-
Log@d He + f xLp D
p DL
Log@d He+f xLp D
LogBc ãq H-p Log@e+f xD+Log@d He+f xL
p DL
Hd He + f xLp L
q-
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
3
Hd He + f xLp L
q H-p Log@e+f xD+Log@d He+f xLp DL
F
3
q-
Log@d He + f xLp D
2 b3 p q2 H- p Log@e + f xD + Log@d He + f xLp DL - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q -
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
b3 p q - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q LogBc ãq H-p Log@e+f xD+Log@d He+f xL
-
Hd He + f xLp L
q-
h H- j He + f xL Log@e + f xD + f Hi + j xL Log@i + j xDL
H- f i + e jL Hh i - g jL2 Hi + j xL
h2 JLog@e + f xD LogB
h2 JLog@e + f xD LogB
3
p DL
Log@d He+f xLp D
Log@d He+f xLp D
f Hg+h xL
f g-e h
F + PolyLogB2,
Hh i - g jL3
f Hi+j xL
f i-e j
F + PolyLogB2,
Hh i - g jL3
-
h He+f xL
FN
-f g+e h
j He+f xL
-f i+e j
FN
F
2
Log@d He + f xLp D
+
Hd He + f xLp L
q H- p Log@e + f xD + Log@d He + f xLp DL
q H-p Log@e+f xD+Log@d He+f xLp DL
Log@d He+f xLp D
p DL
+
F
q H- p Log@e + f xD + Log@d He + f xLp DL
F +
3
q H-p Log@e+f xD+Log@d He+f xLp DL
q-
Log@i + j xD + 3 a2 b p q + 2 a b2 p q2 H- p Log@e + f xD + Log@d He + f xLp DL + b3 p q3 H- p Log@e + f xD + Log@d He + f xLp DL2 +
2 a b2 p q - q H- p Log@e + f xD + Log@d He + f xLp DL - Log@d He + f xLp D q -
F
Hd He + f xLp L
h2 a + b q H- p Log@e + f xD + Log@d He + f xLp DL + b - q H- p Log@e + f xD + Log@d He + f xLp DL -
Log@d He + f xLp D q -
q H-p Log@e+f xD+Log@d He+f xLp DL
q-
q H-p Log@e+f xD+Log@d He+f xLp DL
+
Log@d He+f xLp D
F +
j He + f xL He j - f H2 i + j xLL Log@e + f xD + f Hi + j xL H- f i + e j + f Hi + j xL Log@i + j xDL
2 Hf i - e jL2 H- h i + g jL Hi + j xL2
-
+
69
+
70
2.2 Logarithm Functions.nb
3 a b2 p2 q2 + b3 p2 q3 H- p Log@e + f xD + Log@d He + f xLp DL + b3 p2 q2 - q H- p Log@e + f xD + Log@d He + f xLp DL Log@d He + f xLp D q -
q H- p Log@e + f xD + Log@d He + f xLp DL
Log@d He + f xLp D
- h - Log@e + f xD j He + f xL Log@e + f xD - 2 f Hi + j xL LogB
+ LogBc ãq H-p Log@e+f xD+Log@d He+f xL
f Hi + j xL
fi-ej
p DL
F + 2 f Hi + j xL PolyLogB2,
Hd He + f xLp L
j He + f xL
-f i + e j
IH- f i + e jL Hh i - g jL2 Hi + j xLM - j He + f xL He j - f H2 i + j xLL Log@e + f xD2 - 2 f2 Hi + j xL2 LogB
2 f Hi + j xL Log@e + f xD j He + f xL + f Hi + j xL LogB
I2 Hf i - e jL H- h i + g jL Hi + j xL M +
2
2
h2 JLog@e + f xD2 LogB
f Hi+j xL
f i-e j
f Hi + j xL
fi-ej
h2 JLog@e + f xD2 LogB
F + 2 Log@e + f xD PolyLogB2,
Hh i - g jL3
F + 2 f2 Hi + j xL2 PolyLogB2,
f Hg+h xL
f g-e h
j He+f xL
-f i+e j
j He + f xL
-f i + e j
F
Hh i - g jL3
F - 2 PolyLogB3,
b3 p3 q3 - h - Log@e + f xD2 j He + f xL Log@e + f xD - 3 f Hi + j xL LogB
6 f Hi + j xL PolyLogB3,
F + 2 Log@e + f xD PolyLogB2,
f Hi + j xL
fi-ej
6 f2 Hi + j xL2 PolyLogB3,
h2 Log@e + f xD3 LogB
j He + f xL
-f i + e j
f Hg + h xL
fg-eh
1
Hh i - g jL3
h2 Log@e + f xD3 LogB
f Hi + j xL
fi-ej
f Hi + j xL
fi-ej
-f i+e j
F
FN
f Hi + j xL
fi-ej
F “ I2 Hf i - e jL2 H- h i + g jL Hi + j xL2 M +
F + 3 Log@e + f xD2 PolyLogB2,
Problem ð237: Valid but suboptimal antiderivative:
h He + f xL
-f g + e h
j He + f xL
-f i + e j
f Hi + j xL
fi-ej
j He + f xL
-f i + e j
h He+f xL
F
-f g+e h
F “
Log@d He+f xLp D
“
F
F+
- 2 PolyLogB3,
h He+f xL
FN
-f g+e h
-
+
j He + f xL
-f i + e j
F-
F + 3 f Hi + j xL Log@e + f xD
+ 6 f2 Hi + j xL2 H- 1 + Log@e + f xDL PolyLogB2,
F + 3 Log@e + f xD2 PolyLogB2,
F
q H-p Log@e+f xD+Log@d He+f xLp DL
F + 6 f Hi + j xL Log@e + f xD PolyLogB2,
“ IH- f i + e jL Hh i - g jL2 Hi + j xLM -
Log@e + f xD j He + f xL He j - f H2 i + j xLL Log@e + f xD2 - 6 f2 Hi + j xL2 LogB
j He + f xL + f Hi + j xL LogB
j He+f xL
q-
1
j He + f xL
-f i + e j
Hh i - g jL3
F - 6 Log@e + f xD PolyLogB3,
F - 6 Log@e + f xD PolyLogB3,
F-
h He + f xL
-f g + e h
j He + f xL
-f i + e j
F + 6 PolyLogB4,
F + 6 PolyLogB4,
h He + f xL
-f g + e h
j He + f xL
-f i + e j
F F
2.2 Logarithm Functions.nb
:
Log@c Ha + b xLn D3
, x, 11, 0>
d x + e x2
LogA-
bx
E
a
Log@c Ha + b xLn D3
d
-
Log@c Ha + b xLn D3 LogA
6 n2 Log@c Ha + b xLn D PolyLogA3,
d
1
d
a+b x
E
a
d
+
b Hd+e xL
E
b d-a e
+
3 n Log@c Ha + b xLn D2 PolyLogA2,
6 n2 Log@c Ha + b xLn D PolyLogA3, d
bx
Log@xD Log@a + b xD - Log@xD LogB1 +
a
F - Log@a + b xD LogB
3 n2 Hn Log@a + b xD - Log@c Ha + b xLn DL LogB2 Log@a + b xD PolyLogB2,
e Ha + b xL
-b d + a e
bx
a
bx
e Ha + b xL
-b d + a e
a
b Hd + e xL
bd-ae
b Hd + e xL
e Ha+b xL
E
b d-a e
-
6 n3 PolyLogA4,
+
d
bd-ae
F - 6 Log@a + b xD PolyLogB3, 1 +
IntegrationTest@"2 Exponential Functions\\Logarithm Functions"D;
Testing Mathematica on 807 integration problems...
Problem ð179: Valid but suboptimal antiderivative:
LogA E
x
a
, x, 1, 0>
a-x
a-x
PolyLogB2,
a
F
x
x
x
- LogB F LogB1 - F - PolyLogB2, F
a
a
a
Problem ð181: Valid but suboptimal antiderivative:
x LogB
x2
a
a - x2
F
, x, 2, 0>
F - PolyLogB2, bx
a
bx
a
bx
3 n Log@c Ha + b xLn D2 PolyLogA2, -
a+b x
E
a
a
F - PolyLogB2,
b Hd + e xL
bd-ae
F + 2 PolyLogB3,
F - 3 Log@a + b xD2 PolyLogB2,
Test complete!
:
d
F Log@a + b xD2 - Log@a + b xD2 LogB
F + 2 Log@a + b xD PolyLogB2, 1 +
F Log@a + b xD3 - Log@a + b xD3 LogB
6 Log@a + b xD PolyLogB3,
:
a+b x
E
a
d
6 n3 PolyLogA4, d
e Ha+b xL
E
b d-a e
e Ha+b xL
E
b d-a e
Log@xD H- n Log@a + b xD + Log@c Ha + b xLn DL3 + Hn Log@a + b xD - Log@c Ha + b xLn DL3 Log@d + e xD + 3 n H- n Log@a + b xD + Log@c Ha + b xLn DL2
n3 LogB-
71
F-
e Ha + b xL
-b d + a e
e Ha + b xL
-b d + a e
F - 6 PolyLogB4,
e Ha + b xL
-b d + a e
F -
F - 2 PolyLogB3, 1 +
bx
a
F +
F + 3 Log@a + b xD2 PolyLogB2, 1 +
e Ha + b xL
-b d + a e
F + 6 PolyLogB4, 1 +
bx
a
F
bx
a
F+
-
72
2.2 Logarithm Functions.nb
a - x2
1
PolyLogB2,
2
a
x2
1
LogB
2
a
F LogB1 -
F
x2
a
F-
x2
1
PolyLogB2,
2
a
F
Problem ð184: Valid but suboptimal antiderivative:
:
LogA E
a
x
, x, 2, 0>
a x - x2
PolyLogA2, 1 a
2
a
LogA E
x
a
E
x
HLog@xD - Log@- a + xDL + Log@xD ILog@xD - 2 Log@- a + xD + 2 LogA1 2a
x
EM
a
+ 2 PolyLogA2,
x
E
a
Problem ð185: Valid but suboptimal antiderivative:
:
LogA
a
x2
E
, x, 2, 0>
a x - x3
PolyLogB2, -
a-x2
x2
2a
1
a
2 LogB
x2
2a
a
LogB
x2
F
F Log@xD + 2 Log@xD2 + 2 Log@xD LogB1 -
x
a
F + 2 Log@xD LogB1 +
F LogA- a + x2 E - 2 Log@xD LogA- a + x2 E + 2 PolyLogB2, -
x
a
x
a
F-
F + 2 PolyLogB2,
x
a
F
Problem ð186: Valid but suboptimal antiderivative:
:
-
LogAa x1-n E
, x, 3, 0>
a x - xn
PolyLogA2, 1 - a x1-n E
1
a H1 - nL
2 a H- 1 + nL
I- 1 + n2 M Log@xD2 + 2 Log@xD n LogAa x1-n E + H- 1 + nL LogB1 -
x-1+n
a
F - Log@- a x + xn D
- 2 LogAa x1-n E Log@- a x + xn D + 2 PolyLogB2,
x-1+n
a
F
2.2 Logarithm Functions.nb
Problem ð187: Unable to integrate:
:
LogAc -
a H1-cL x-m
b
x Ha + b
PolyLogA2,
xm L
E
H1-cL x-m Ha+b xm L
E
b
am
á
LogAc -
, x, 1, 0>
a H1-cL x-m
b
x Ha + b xm L
E
âx
Problem ð188: Unable to integrate:
:
LogA
x-m H-a+a c+b c xm L
E
b
x Ha + b xm L
PolyLogA2,
, x, 1, 0>
H1-cL x-m Ha+b xm L
E
b
am
á
x-m H-a+a c+b c xm L
LogA
E
b
x Ha + b xm L
âx
Problem ð189: Unable to integrate:
:
LogAc Ia -
Hd-a c dL x-m
ce
x Hd + e xm L
PolyLogA2,
á
ME
, x, 1, 0>
H1-a cL x-m Hd+e xm L
E
e
LogAc Ia -
dm
Hd-a c dL x-m
ce
x Hd + e
xm L
ME
âx
Problem ð190: Unable to integrate:
:
LogA
x-m H-d+a c d+a c e xm L
E
e
x Hd + e xm L
PolyLogA2,
, x, 1, 0>
H1-a cL x-m Hd+e xm L
E
e
dm
73
74
2.2 Logarithm Functions.nb
á
LogA
x-m H-d+a c d+a c e xm L
E
e
x Hd + e xm L
âx
Problem ð191: Valid but suboptimal antiderivative:
:
LogA
2a
E
a+b x
Ha - b xL Ha + b xL
PolyLogA2, 2ab
, x, 1, 0>
a-b x
E
a+b x
1
bx
4 ArcTanhB
4ab
a
F LogB
a
2a
+ xF + LogB
b
a+bx
F - LogB
a
a
+ xF Log@4D + LogB
b
bx
+ xF - 2 LogB1 -
b
a
F + 2 PolyLogB2,
a+bx
F + 2 PolyLogB2,
a+bx
2a
F
Problem ð192: Valid but suboptimal antiderivative:
:
LogA
2a
E
a+b x
, x, 2, 0>
a2 - b2 x2
PolyLogA2, 2ab
a-b x
E
a+b x
1
bx
4 ArcTanhB
4ab
a
F LogB
a
2a
+ xF + LogB
b
a+bx
F - LogB
a
a
+ xF Log@4D + LogB
b
bx
+ xF - 2 LogB1 -
b
a
2a
F
Problem ð193: Valid but suboptimal antiderivative:
:
LogA
a H1-cL+b H1+cL x
E
a+b x
Ha - b xL Ha + b xL
PolyLogA2,
2ab
, x, 1, 0>
c Ha-b xL
E
a+b x
1
bx
4 ArcTanhB
4ab
a
a-ac
2 LogB
F LogB
+ xF LogB
b+bc
a
a
+ xF - LogB
b
b
H1 + cL Ha - b xL
2a
a+bx
2 PolyLogB2,
2a
bx
2
+ xF - 4 ArcTanhB
F - 2 PolyLogB2,
a
F + 2 LogB
a-ac
+ xF LogB
b+bc
a - a c + b H1 + cL x
2a
Problem ð194: Valid but suboptimal antiderivative:
F LogB
a-ac
a
+ xF + 2 LogB
b+bc
H1 + cL Ha + b xL
2ac
F + 2 PolyLogB2, -
a-bx
+ xF LogB
b
2a
F + 4 ArcTanhB
a - a c + b H1 + cL x
2ac
F
bx
a
F LogB
F-
a - a c + b H1 + cL x
a+bx
F+
2.2 Logarithm Functions.nb
:
LogA
a H1-cL+b H1+cL x
E
a+b x
, x, 2, 0>
a2 - b2 x2
PolyLogA2,
2ab
c Ha-b xL
E
a+b x
1
bx
4 ArcTanhB
4ab
a
a-ac
2 LogB
F LogB
+ xF LogB
b+bc
a
a
+ xF - LogB
b
b
H1 + cL Ha - b xL
2a
a+bx
2 PolyLogB2,
2a
bx
2
+ xF - 4 ArcTanhB
F - 2 PolyLogB2,
a
F + 2 LogB
a-ac
F LogB
+ xF LogB
b+bc
a - a c + b H1 + cL x
2a
a-ac
a
+ xF + 2 LogB
b+bc
H1 + cL Ha + b xL
2ac
F + 2 PolyLogB2, -
a-bx
+ xF LogB
b
2a
F + 4 ArcTanhB
a - a c + b H1 + cL x
2ac
bx
a
F
F LogB
F-
a - a c + b H1 + cL x
a+bx
F+
Problem ð195: Valid but suboptimal antiderivative:
:
LogA1 -
c Ha-b xL
E
a+b x
Ha - b xL Ha + b xL
PolyLogA2,
2ab
, x, 2, 0>
c Ha-b xL
E
a+b x
1
bx
4 ArcTanhB
4ab
a
a-ac
2 LogB
F LogB
+ xF LogB
b+bc
a
a
+ xF - LogB
b
b
H1 + cL Ha - b xL
2a
a+bx
2 PolyLogB2,
2a
bx
2
+ xF - 4 ArcTanhB
F - 2 PolyLogB2,
a
F + 2 LogB
a-ac
Problem ð196: Valid but suboptimal antiderivative:
:
LogA1 -
c Ha-b xL
E
a+b x
a2 - b2 x2
PolyLogA2,
2ab
, x, 3, 0>
c Ha-b xL
E
a+b x
+ xF LogB
b+bc
a - a c + b H1 + cL x
2a
F LogB
a-ac
a
+ xF + 2 LogB
b+bc
H1 + cL Ha + b xL
2ac
F + 2 PolyLogB2, -
a-bx
+ xF LogB
b
2a
F + 4 ArcTanhB
a - a c + b H1 + cL x
2ac
F
bx
a
F LogB
F-
a - a c + b H1 + cL x
a+bx
F+
75
76
2.2 Logarithm Functions.nb
1
bx
4 ArcTanhB
4ab
a
a-ac
2 LogB
F LogB
+ xF LogB
b+bc
a
a
+ xF - LogB
b
b
H1 + cL Ha - b xL
2a
a+bx
2 PolyLogB2,
2a
bx
2
+ xF - 4 ArcTanhB
a
F + 2 LogB
a-ac
+ xF LogB
b+bc
a - a c + b H1 + cL x
F - 2 PolyLogB2,
F LogB
2a
a-ac
a
+ xF + 2 LogB
b+bc
H1 + cL Ha + b xL
2ac
F + 2 PolyLogB2, -
a-bx
+ xF LogB
b
2a
F + 4 ArcTanhB
a - a c + b H1 + cL x
2ac
bx
a
F
F LogB
F-
a - a c + b H1 + cL x
Problem ð304: Timed out after 120 seconds:
:
Log@a + b xn D
, x, 1, 0>
c+dx
Log@c + d xD Log@a + b xn D
b n IntB
x-1+n Log@c+d xD
a+b xn
-
d
, xF
d
???
Problem ð358: Valid but suboptimal antiderivative:
:
LogAc Ia + b x2 M E
n 2
, x, 4, 0>
x
b x2
1
LogB-
2
a
F LogAc Ia + b x2 M E + n LogAc Ia + b x2 M E PolyLogB2,
n 2
n
a + b x2
a
Log@xD I- n LogAa + b x2 E + LogAc Ia + b x2 M EM +
n
2
F - n2 PolyLogB3,
2 n I- n LogAa + b x2 E + LogAc Ia + b x2 M EM Log@xD LogAa + b x2 E - LogB1 +
n
1
n2 LogB-
2
b x2
a
F LogAa + b x2 E + 2 LogAa + b x2 E PolyLogB2, 1 +
2
b x2
a
b x2
a
F -
:
b n LogB-
b x2
2
a
F - 2 PolyLogB3, 1 +
, x, 4, 0>
x3
F LogAc Ia + b x2 M E
n
a
Ia + b x2 M LogAc Ia + b x2 M E
n 2
-
2 a x2
b n2 PolyLogB2,
+
a
F
PolyLogB2, -
n 2
b x2
a
a
1
Problem ð359: Valid but suboptimal antiderivative:
LogAc Ia + b x2 M E
a + b x2
a+b x2
a
F
b x2
a
F
F +
a+bx
F+
2.2 Logarithm Functions.nb
n I2 b x2 Log@xD - Ia + b x2 M LogAa + b x2 EM In LogAa + b x2 E - LogAc Ia + b x2 M EM
n
-
a x2
LogAa + b x2 E
2
2
n
-
2
1
b x
LogB1 a
a
ä
2
+ xF LogB
b
F + 4 Log@xD LogB1 +
2 LogAa + b x2 E + 4 PolyLogB2, 2
b x
ä
a
b x
ä
a
1
+ xF + 2 LogB-
b
F - 4 Log@xD LogAa + b x2 E - 2 LogBb x
ä
a
F + 2 LogB
b x
ä
-
2
b
F + 4 PolyLogB2,
2
+
2 x2
a
ä
2
+ xF + LogB
2a
ä
a
ä
b LogB-
-
x2
I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
n
-
ä
2
a
1
+ xF LogB
1
b x
ä
2
2
a
F + 2 PolyLogB2,
b
1
2
b x
ä
+
2
a
2
a
F
Problem ð360: Valid but suboptimal antiderivative:
:
LogAc Ia + b x2 M E
n 2
x5
b2 n2 Log@xD
a2
, x, 10, 0>
b2 n2 LogAa + b x2 E
2 a2
b2 n LogB-
b x2
a
b n LogAc Ia + b x2 M E
n
-
F LogAc Ia + b x2 M E
n
4 b2 n2 x4 + 2 b2 n2 x4 LogB-
b2 LogAc Ia + b x2 M E
+
b x
ä
a
a
ä
2
+ xF - 2 b2 n2 x4 LogB
1
+ xF LogB
ä
ä
a
b
b x
+
2
b
2 b2 n2 x4 LogB-
ä
a
b x
ä
a
2
a
2 a2
F - 2 b2 n2 x4 LogB-
+ xF + b2 n2 x4 LogB
ä
a
a+b x2
a
b2 n2 PolyLogB2,
4 x4
b
a
ä
-
F + 2 b2 n2 x4 LogB
b
2 b2 n2 x4 LogB
n 2
4 a2
4 a2 x4
b2 n2 x4 LogB-
LogAc Ia + b x2 M E
n 2
2 a2
1
-
2 a x2
ä
+ xF +
b
2
+ xF LogAa + b x2 E - 2 b2 n2 x4 LogB
ä
a
b
ä
a
ä
1
+ xF LogB
b
F + 4 b2 n2 x4 Log@xD LogB1 -
F
a
+ xF + 2 b2 n2 x4 LogB-
2
b
b x
a
ä
F + 4 b2 n2 x4 Log@xD LogB1 +
ä
b x
a
+ xF LogAa + b x2 E - 2 a b n x2 LogAc Ia + b x2 M E -
b x
2
F-
a
F+
n
4 b2 n x4 Log@xD LogAc Ia + b x2 M E + 2 b2 n x4 LogAa + b x2 E LogAc Ia + b x2 M E - a2 LogAc Ia + b x2 M E + 4 b2 n2 x4 PolyLogB2, n
4 b2 n2 x4 PolyLogB2,
ä
b x
a
F + 2 b2 n2 x4 PolyLogB2,
Problem ð361: Valid but suboptimal antiderivative:
n 2
n
1
ä
b x
2
2
a
F + 2 b2 n2 x4 PolyLogB2,
1
ä
b x
+
2
2
a
F
F + 4 Log@xD
+ xF LogAa + b x2 E +
a
ä
b x
ä
+
2
b
+ xF LogAa + b x2 E - 2 LogB
a
b
F + 2 PolyLogB2,
a
ä
ä
b x
a
F+
77
78
2.2 Logarithm Functions.nb
:
LogAc Ia + b x2 M E
n 2
, x, 13, 0>
x7
b2 n2
b3 n2 LogAa + b x2 E
b3 n2 Log@xD
-
-
+
6 a2 x2
a3
b3 n LogB-
b x2
a
18
-
F LogAc Ia + b x2 M E
n
b3 LogAc Ia + b x2 M E
n 2
-
ä
b x
a
a
ä
3 b3 n2 x6 LogB-
2
+ xF - 9 b3 n2 x6 LogB
a
ä
b
6 b3 n2 x6 LogB
1
+ xF LogB
ä
LogAc Ia + b x2 M E
2
a
b
b3 n2 PolyLogB2,
+
6 x6
F + 9 b3 n2 x6 LogB
+ xF + 3 b3 n2 x6 LogB
3 a3
b x
ä
a
a
ä
a+b x2
a
F - 9 b3 n2 x6 LogB-
F
a
ä
2
+ xF + 6 b3 n2 x6 LogB-
+ xF +
b
a
ä
F + 12 b3 n2 x6 Log@xD LogB1 ä
a
b
ä
1
+ xF LogB
b
+ xF LogAa + b x2 E - 6 b3 n2 x6 LogB
a
ä
b x
+
2
b
6 b3 n2 x6 LogB-
-
+
3 a2 x2
b
a
ä
+
n 2
6 a3
x6
b2 n LogAc Ia + b x2 M E
n
6 a x4
3 a b2 n2 x4 + 23 b3 n2 x6 + 9 b3 n2 x6 LogB-
a3
n
2 a3
3 a3
1
b n LogAc Ia + b x2 M E
2
b
b x
a
ä
F + 12 b3 n2 x6 Log@xD LogB1 +
ä
b x
-
b x
a
+ xF LogAa + b x2 E + 3 a2 b n x2 LogAc Ia + b x2 M E -
2
F-
a
F+
n
6 a b n x LogAc Ia + b x M E - 12 b n x Log@xD LogAc Ia + b x2 M E + 6 b3 n x6 LogAa + b x2 E LogAc Ia + b x2 M E + 3 a3 LogAc Ia + b x2 M E +
2
2 n
4
12 b3 n2 x6 PolyLogB2, -
ä
3
b x
a
n
6
F + 12 b3 n2 x6 PolyLogB2,
b x
ä
n 2
n
a
F + 6 b3 n2 x6 PolyLogB2,
1
ä
b x
-
2
2
a
F + 6 b3 n2 x6 PolyLogB2,
Problem ð366: Valid but suboptimal antiderivative:
:
LogAc Ia + b x2 M E
n 2
, x, 11, 0>
x4
8 b32 n2 ArcTanB
b x
a
3 a32
F
4 ä b32 n2 ArcTanB
a
-
4 b n LogAc Ia + b x2 M E
3 a32
4 b32 n ArcTanB
n
3ax
b x
-
b x
a
F
2
8 b32 n2 ArcTanB
a
-
F LogB
2ä
ä
a
a - b x
3 a32
F LogAc Ia + b x2 M E
3 a32
b x
n
LogAc Ia + b x2 M E
3 x3
-
4 ä b32 n2 PolyLogB2, -
n 2
-
F
3 a32
a -ä
b x
a +ä
b x
F
1
ä
b x
+
2
2
a
F
2.2 Logarithm Functions.nb
1
3
b x
ä
ä 4 b32 n2 x3 LogB-
a32
x3
a
4 ä b32 n2 x3 ArcTanB
b x
a
4 ä b32 n2 x3 ArcTanB
b x
a
2 b32 n2 x3 LogB
ä
a
F - 4 b32 n2 x3 LogB
F LogBF LogB
a
F - 4 b32 n2 x3 LogBä
+ xF + b32 n2 x3 LogB-
a
+ xF - b32 n2 x3 LogB
+
2
a
+ xF b
2
+ xF + 4 b32 n2 x3 LogB
a
ä
+ xF -
a
ä
b
2
+ xF - 2 b32 n2 x3 LogB-
a
F+4ä
ä a32 LogAc Ia + b x2 M E + 2 b32 n2 x3 PolyLogB2,
n 2
a
ä
1
+ xF LogB
b
b x
ä
a
ä
b
b
2
b
b x
b
ä
1
+ xF LogB
a
ä
ä
a b n x2 LogAc Ia + b x2 M E + 4 ä b32 n x3 ArcTanB
ä
b x
2
2
a
F - 2 b32 n2 x3 PolyLogB2,
1
ä
b x
+
2
2
ä
b x
a
a
F
b x
2
b
n
1
79
2
a
F+
F LogAc Ia + b x2 M E +
n
Problem ð372: Valid but suboptimal antiderivative:
:
LogAc Ia + b x2 M E
n 3
, x, 5, 0>
x
b x2
1
LogB-
2
a
F LogAc Ia + b x2 M E +
n 3
3
2
n LogAc Ia + b x2 M E PolyLogB2,
n 2
Log@xD I- n LogAa + b x2 E + LogAc Ia + b x2 M EM +
n
3 n I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
n
3
2
1
2
n3 LogB-
b x2
Log@xD LogAa + b x2 E - LogB1 +
2
a
b x2
a
2
F - 3 n2 LogAc Ia + b x2 M E PolyLogB3,
n
b x2
a
F -
b x2
1
PolyLogB2, 2
a
F LogAa + b x2 E + 2 LogAa + b x2 E PolyLogB2, 1 +
2
F LogAa + b x2 E + 3 LogAa + b x2 E PolyLogB2, 1 +
3
a
3
n2 In LogAa + b x2 E - LogAc Ia + b x2 M EM LogBn
a + b x2
b x2
a
F - 6 LogAa + b x2 E PolyLogB3, 1 +
a
F + 3 n3 PolyLogB4,
F -
b x2
a
a + b x2
F - 2 PolyLogB3, 1 +
b x2
a
b x2
F + 6 PolyLogB4, 1 +
a
F +
b x2
a
F
Problem ð373: Valid but suboptimal antiderivative:
:
LogAc Ia + b x2 M E
n 3
, x, 5, 0>
x3
3 b n LogB-
b x2
a
F LogAc Ia + b x2 M E
n 2
2a
Ia + b x2 M LogAc Ia + b x2 M E
-
2 a x2
3 b n2 LogAc Ia + b x2 M E PolyLogB2,
n
n 3
+
a
a+b x2
a
F
3 b n3 PolyLogB3,
a
a+b x2
a
F
a + b x2
a
F
80
2.2 Logarithm Functions.nb
1
2
In LogAa + b x2 E - LogAc Ia + b x2 M EM
3
n
+
x2
6 b n Log@xD I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
3 b n LogAa + b x2 E I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
2
n
n
-
a
LogAa + b x2 E
2
2
1
x2
a
ä
b LogB-
-
+ xF + LogB
2a
ä
b x
LogB1 a
b
F + 4 Log@xD LogB1 +
2
2
- 3 b x2 LogB-
b x2
a
ä
2
b x
ä
a
b x
ä
a
a
+ xF + 2 LogB-
b
2 LogAa + b x2 E + 4 PolyLogB2, -
n3 LogAa + b x2 E
a
ä
2
+ 6 n2 I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
n
x2
2
-
-
a
3 n LogAa + b x2 E I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
n
2
1
+ xF LogB
2
b
F - 4 Log@xD LogAa + b x2 E - 2 LogB-
F + 4 PolyLogB2,
b x
ä
a
b x
ä
-
ä
2
1
ä
b x
2
ä
a
1
+ xF LogB
2
F + Ia + b x2 M LogAa + b x2 E - 6 b x2 LogAa + b x2 E PolyLogB2, 1 +
a
F + 2 PolyLogB2,
b x2
a
a
ä
b
1
ä
2
2
a
b x
a
F + 6 b x2 PolyLogB3, 1 +
F
b x2
a
Problem ð374: Valid but suboptimal antiderivative:
:
LogAc Ia + b x2 M E
n 3
, x, 11, 0>
x5
3 b2 n2 LogB-
b x2
a
F LogAc Ia + b x2 M E
n
n 2
-
2 a2
LogAc Ia + b x2 M E
n 3
4 x4
3 b n Ia + b x2 M LogAc Ia + b x2 M E
3 b2 n3 PolyLogB2,
+
2 a2
3 b2 n LogB-
b x2
a
4 a2 x2
a+b x2
a
F
n 2
3 b2 n2 LogAc Ia + b x2 M E PolyLogB2,
2 a2
a+b x2
a
F
b2 LogAc Ia + b x2 M E
n 3
+
4 a2
n
-
F LogAc Ia + b x2 M E
3 b2 n3 PolyLogB3,
+
2 a2
4 a2
a+b x2
a
F
F + 4 Log@xD
+ xF LogAa + b x2 E +
+
2
b x
ä
+
2
b
+ xF LogAa + b x2 E - 2 LogB
a
b
F + 2 PolyLogB2,
a
F + 2 LogB
-
1
a x2
F
2.2 Logarithm Functions.nb
1
4
In LogAa + b x2 E - LogAc Ia + b x2 M EM
3
n
3 b n I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
x4
2
n
3 b2 n LogAa + b x2 E I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
n
+
a2
3 n LogAa + b x2 E I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
1
+
x4
1
a2
2 b x2 LogB
a
ä
+ xF + b x2 LogB
ä
b x
a
ä
a
b
4 b x2 PolyLogB2,
n
F + 2 b x2 LogB
b x
ä
F + 4 b x2 Log@xD LogB1 +
b x2
a
a
a
F - 2 b x2 LogB1
+ xF LogB
ä
a
b
1
ä
b x
ä
a
2
ä
a
a
b
F + 2 b x2 LogB
ä
a
1
+ xF LogB
F - 2 a LogAa + b x2 E - 4 b x2 Log@xD LogAa + b x2 E 2
b x
a
F + 2 b x2 PolyLogB2,
1
ä
b x
+
2
2
a
F
b x2
a
F + 6 b2 x4 PolyLogB3, 1 +
b x2
a
+
F
Problem ð375: Valid but suboptimal antiderivative:
:
n 3
, x, 20, 0>
x7
b3 n3 Log@xD
a3
b3 n3 LogAa + b x2 E
2 a3
b n LogAc Ia + b x2 M E
n 2
4 a x4
LogAc Ia + b x2 M E
n 3
6 x6
b2 n2 LogAc Ia + b x2 M E
n
-
3 b3 n2 LogB-
2 a2 x2
b2 n Ia + b x2 M LogAc Ia + b x2 M E
b3 n LogB+
b x2
a
2 a3 x2
3 b3 n3 PolyLogB2,
2 a3
a+b x2
a
F
n
F LogAc Ia + b x2 M E
n 2
2 a3
b3 n2 LogAc Ia + b x2 M E PolyLogB2,
n
+
F LogAc Ia + b x2 M E
2 a3
n 2
+
b x2
a
a3
a+b x2
a
F
b3 n LogAc Ia + b x2 M E
n 2
+
4 a3
b3 LogAc Ia + b x2 M E
n 3
-
6 a3
b3 n3 PolyLogB3,
a3
a+b x2
a
ä
F
-
-
b x
+
2
b
F I- 2 + LogAa + b x2 EM - Ia + b x2 M LogAa + b x2 E I3 b x2 + Ia - b x2 M LogAa + b x2 EM -
6 b2 x4 I- 1 + LogAa + b x2 EM PolyLogB2, 1 +
LogAc Ia + b x2 M E
2
+ xF -
+ xF LogAa + b x2 E + 2 b x2 LogAa + b x2 E + 4 b x2 PolyLogB2, -
2
2
+ xF + b x2 LogB-
b
b x
ä
a
ä
2
b
F + 2 b x2 PolyLogB2,
n3 LogAa + b x2 E - 3 b2 x4 LogB-
b x
ä
ä
+ xF + 2 b x2 LogB-
+ xF LogAa + b x2 E - 2 b x2 LogB
a
a2 x4
2
-
3 n2 I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
b
4 b x2 Log@xD LogB1 -
2 b x2 LogB-
a
ä
x4
b x
a
b
1
ä
b x2 4 b x2 + 2 b x2 LogB-
2
a2
2
n
2
-
a x2
6 b2 n Log@xD I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
- LogAa + b x2 E +
2
n
-
2
ä
a
b x
a
F+
F+
81
82
2.2 Logarithm Functions.nb
1
12
2 In LogAa + b x2 E - LogAc Ia + b x2 M EM
n
3
3 b n I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
x6
2
n
-
6 n LogAa + b x2 E I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
n
6 b3 n LogAa + b x2 E I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
b x
a
3 b3 x6 LogB
a
ä
2
+ xF + 6 b3 x6 LogB-
2
b
b x
ä
a
6 b3 x6 LogB-
a
ä
b
ä
b x
a
1
a
n3 - 6 b3 x6 LogB-
a3 x6
b x2
a
b x
ä
a
1
+ xF LogB
b x
ä
2
a
ä
F + 12 b3 x6 PolyLogB2,
2
Problem ð412: Valid but suboptimal antiderivative:
-
, x, 2, 0>
x
PolyLog@2, - b xm D
m
Log@- b
xm D
Log@1 + b xm D + PolyLog@2, 1 + b xm D
m
+ xF + 3 b3 x6 LogB-
ä
ä
a
2
+ xF - 9 b3 x6 LogB
ä
a
1
+ xF LogB
ä
2
b
b x
+
2
a
a
+ xF +
b
a
b
F + 12 b3 x6 Log@xD LogB1 -
b
ä
+ xF LogAa + b x2 E + 3 a3 LogAa + b x2 E + 6 b3 x6 LogAa + b x2 E +
2
b x
a
F + 6 b3 x6 PolyLogB2,
1
b x2
a
ä
b x
2
F + 6 a b2 x4 LogAa + b x2 E + 6 b3 x6 LogAa + b x2 E + 18 b3 x6 LogB-
3
Log@1 + b xm D
a
b
F + 6 b3 x6 LogB
2
b x2
a
a
2
F + 6 b3 x6 PolyLogB2,
2
b x2
a
1
ä
b x
+
2
2
a
F -
F LogAa + b x2 E + 3 a2 b x2 LogAa + b x2 E -
F LogAa + b x2 E + 2 a3 LogAa + b x2 E +
2 b3 x6 LogAa + b x2 E - 6 b3 x6 I- 3 + 2 LogAa + b x2 EM PolyLogB2, 1 +
:
ä
F + 3 a2 b x2 LogAa + b x2 E - 6 a b2 x4 LogAa + b x2 E - 12 b3 x6 Log@xD LogAa + b x2 E -
6 a b2 x4 LogAa + b x2 E - 9 b3 x6 LogAa + b x2 E - 6 b3 x6 LogB2
F - 9 b3 x6 LogB-
2
+ xF LogAa + b x2 E - 6 b3 x6 LogB
12 b3 x6 PolyLogB2, -
-
n
a3 x6
b
12 b3 x6 Log@xD LogB1 +
2 n2 In LogAa + b x2 E - LogAc Ia + b x2 M EM
1
+
F + 9 b3 x6 LogB
ä
2
a3
x6
ä
+
a2 x2
n
a3
2
n
+
a x4
12 b3 n Log@xD I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
3 a b2 x4 + 23 b3 x6 + 9 b3 x6 LogB-
6 b2 n I- n LogAa + b x2 E + LogAc Ia + b x2 M EM
2
n
-
F + 12 b3 x6 PolyLogB3, 1 +
3
b x2
a
F
2
ä
b x
a
F+
2.2 Logarithm Functions.nb
83
Problem ð417: Valid but suboptimal antiderivative:
:
Log@c Ha + b xm Ln D2
, x, 4, 0>
x
LogA-
b xm
a
E Log@c Ha + b xm Ln D2
+
m
2 n Log@c Ha + b xm Ln D PolyLogA2,
a+b xm
a
m
E
2 n2 PolyLogA3,
-
a+b xm
a
m
E
Log@xD H- n Log@a + b x D + Log@c Ha + b x L DL + 2 n H- n Log@a + b x D + Log@c Ha + b x L DL Log@xD Log@a + b x D - LogB1 +
n2 ILogA-
b xm
a
2
m n
m
m n
m
E Log@a + b xm D2 + 2 Log@a + b xm D PolyLogA2, 1 +
m
b xm
a
E - 2 PolyLogA3, 1 +
b xm
a
m
EM
b xm
a
F -
PolyLogA2, -
b xm
a
m
E
Problem ð418: Valid but suboptimal antiderivative:
:
Log@c Ha + b xm Ln D3
, x, 5, 0>
x
LogA-
b xm
a
E Log@c Ha + b xm Ln D3
m
1
m
+
3 n Log@c Ha + b xm Ln D2 PolyLogA2,
m
- m n3 Log@xD Log@a + b xm D3 + n3 LogB3 n2 LogB-
b xm
a
a+b xm
a
b
xm
a
E
-
6 n2 Log@c Ha + b xm Ln D PolyLogA3,
m
F Log@a + b xm D3 + 3 m n2 Log@xD Log@a + b xm D2 Log@c Ha + b xm Ln D -
F Log@a + b xm D2 Log@c Ha + b xm Ln D - 3 m n Log@xD Log@a + b xm D Log@c Ha + b xm Ln D2 + 3 n LogB-
m Log@xD Log@c Ha + b xm Ln D3 + 3 n Log@c Ha + b xm Ln D2 PolyLogB2, 1 +
b xm
a
a+b xm
a
b xm
a
E
6 n3 PolyLogA4,
+
a+b xm
a
m
E
F Log@a + b xm D Log@c Ha + b xm Ln D2 +
F - 6 n2 Log@c Ha + b xm Ln D PolyLogB3, 1 +
b xm
a
F + 6 n3 PolyLogB4, 1 +
b xm
a
Problem ð419: Valid but suboptimal antiderivative:
: a + b LogBc d +
4 b e p LogB-
-
p
e
f+gx
e
F
d Hf+g xL
F
4
, x, 5, 0>
Ja + b LogBc Jd +
dg
12 b2 e p2 Ja + b LogBc Jd +
2
p
e
N FN
f+g x
dg
3
p
e
N FN
f+g x
+
dg
d+
PolyLogB2,
He + d Hf + g xLL Ja + b LogBc Jd +
e
f+g x
d
F
+
4
p
e
N FN
f+g x
24 b3 e p3 Ja + b LogBc Jd +
p
e
N FN
f+g x
dg
d+
PolyLogB3,
e
f+g x
d
F
24 b4 e p4 PolyLogB4,
dg
d+
e
f+g x
d
F
F
+
84
2.2 Logarithm Functions.nb
4bp
- d f Log@f + g xD + He + d fL Log@e + d f + d g xD
e+df+dgx
+ x LogB
dg
e
x a - b p LogBd +
f+gx
f
d f LogB
F + b LogBc d +
p
e
f+gx
f
2
+ xF - 2 d f LogB
g
4
1
f
d Hf + g xL
e
e+df+dgx
e LogB
dg
e
F LogB
f+gx
f
F - 2 d f LogB
e+df+dgx
dg
F + d f LogB
2
e+df+dgx
dg
e+df+dgx
f+gx
e
dg
f+gx
e
6 e LogBd +
f+gx
F PolyLogB2, 1 +
e
b4 p4 - 4 e LogB-
F - b LogBc d +
df+dgx
e
f+gx
df+dgx
g
e
2
f+gx
e+df+dgx
f+gx
F
df+dgx
e+df+dgx
dg
e+df+dgx
2
f+gx
F
e
e
- 3 e LogB-
df+dgx
df+dgx
F + d f LogBd +
e
f+gx
F +
e
4
F + 24 e LogBd +
3 b e p LogB-
-
p
e
f+gx
e
F
d Hf+g xL
F
f+gx
1
4
F PolyLogB3, 1 +
dg
6 b2 e p2 Ja + b LogBc Jd +
p
e
N FN
f+g x
dg
d+
PolyLogB2,
+
He + d Hf + g xLL Ja + b LogBc Jd +
dg
e
f+g x
d
F
6 b3 e p3 PolyLogB3,
+
dg
d+
e
f+g x
d
F
d Hf + g xL
e
+
F-
e+df+dgx
dg
e+df+dgx
f+gx
F - 2 d f PolyLogB2,
F + He + d f + d g xL LogBd +
F + d g x LogBd +
e
df+dgx
, x, 4, 0>
2
p
e
N FN
f+g x
3
F+
F+
e+df+dgx
e
e
f+gx
F -
dg
3
Ja + b LogBc Jd +
dg
F + 2 e Log@e + d f + d g xD LogB
Problem ð420: Valid but suboptimal antiderivative:
: a + b LogBc d +
2
F - 2 d f Log@e + d f + d g xD LogB
2
f+gx
e
f+gx
e+df+dgx
F - 2 He + d fL PolyLogB2, -
e
LogBd +
F + 6 e PolyLogB3, 1 +
e
F
f+gx
F
+ xF Log@e + d f + d g xD -
F + 2 d f Log@f + g xD LogB
F - 2 d f Log@f + g xD LogB
F + e LogBd +
3
f+gx
F PolyLogB2, 1 +
2
12 e LogBd +
F LogBd +
e
e
e+df+dgx
p
f+gx
p
p
e
g
+ xF LogB
e
e
f
f
F + d g x LogB
F + b LogBc d +
F + b LogBc d +
+ xF Log@e + d f + d g xD + 2 d f LogB
F - 2 e Log@e + d f + d g xD LogB
2 d f Log@e + d f + d g xD LogB
4 b3 p3 - a + b p LogBd +
e
g
e+df+dgx
2 d f LogB-
f+gx
dg
+ xF Log@f + g xD + 2 e LogB
+ xF LogB
g
e
a - b p LogBd +
6 b2 p2 a - b p LogBd +
+
g
2 e LogB
1
F
f+gx
F
3
p
e
N FN
f+g x
-
e
f+gx
F 4
F - 24 e PolyLogB4, 1 +
e
df+dgx
F
F -
2.2 Logarithm Functions.nb
1
g
3 b p Hf + g xL LogBd +
e
f+gx
Hf + g xL a - b p LogBd +
3 b2 p2 a - b p LogBd +
F a - b p LogBd +
e
f+gx
e
f+gx
e
f+gx
F + b LogBc d +
F + b LogBc d +
F + b LogBc d +
p
e
f+gx
p
e
f+gx
e
2 Log@f + g xD - LogB
e
+ f + g xF + LogBd +
d
1
e
b3 p3 LogBd +
d
F
f+gx
e
2
f+gx
F
F
- 3 e LogBdf+dgx
e
6 e PolyLogB3, 1 +
df+dgx
F
3
+
e
f+gx
p
F
2
+
3 b e p Ja - b p LogBd +
Hf + g xL LogB
e
F
f+g x
e+df+dgx
f+gx
F +
2
+ b LogBc Jd +
d
1
e
f+gx
2
p
e
N FN
f+g x
e
e LogB
d
+
2
d
F - 6 e LogBd +
Log@e + d Hf + g xLD
+ f + g xF +
F Log@e + d Hf + g xLD - 2 Log@f + g xD LogB1 +
F + He + d f + d g xL LogBd +
e
f+gx
d Hf + g xL
e
F + PolyLogB2, -
F PolyLogB2, 1 +
e
df+dgx
d Hf + g xL
e
F+
Problem ð421: Valid but suboptimal antiderivative:
: a + b LogBc d +
2 b e p LogB-
1
g
p
e
f+gx
e
F
d Hf+g xL
F
2
dg
Hf + g xL a - b p LogBd +
e
f+gx
e
2 b p a - b p LogBd +
f+gx
b2 p2 Hf + g xL LogB
, x, 3, 0>
Ja + b LogBc Jd +
p
e
N FN
f+g x
F + b LogBc d +
F + b LogBc d +
e+df+dgx
f+gx
e
2 Log@f + g xD - LogB
+
He + d Hf + g xLL Ja + b LogBc Jd +
dg
f+gx
p
e
f+gx
F + 1  de LogB
2
p
e
e
F
F
Problem ð426: Unable to integrate:
8Log@c Hd + e Hf + g xLp Lq D, x, 3, 0<
2 b2 e p2 PolyLogB2,
dg
2
e+df+dgx
f+gx
F+
e Log@e + d Hf + g xLD
f+gx
e
f+g x
d
F
+
d
d
e
d+
+
+ f + g xF +
+ f + g xF + LogBd +
d
2
p
e
N FN
f+g x
2
Hf + g xL LogB
85
F Log@e + d Hf + g xLD - 2 Log@f + g xD LogB1 +
d Hf + g xL
e
F + PolyLogB2, -
d Hf + g xL
e
F
F
+
86
2.2 Logarithm Functions.nb
-p q x +
p q Hf + g xL Hypergeometric2F1B1,
1
,
p
1+
1
,
p
-
e Hf+g xLp
d
g
F
+
Hf + g xL Log@c Hd + e Hf + g xLp Lq D
g
p q
à Log@c Hd + e Hf + g xL L D â x
Problem ð444: Valid but suboptimal antiderivative:
9xm LogAd Ia + b x + c x2 M E, x, 5, 0=
n
2cx
2 c n x2+m Hypergeometric2F1B1, 2 + m, 3 + m, b-
b-
b2 - 4 a c
1
c
b2
- 4 a c m H1 + mL
2
-b + 4 a c + b
2
b -4ac
b2 - 4 a c
b2 -4 a c
H1 + mL H2 + mL
F
x1+m LogAd Ia + b x + c x2 M E
n
+
1+m
b2 - 4 a c + 2 c x
H1 + mL n
Hypergeometric2F1B- m, - m, 1 - m,
b+
b2 - 4 a c + 2 c x
b2 - 4 a c
cx
2
b -4ac mx
b+
b2 - 4 a c + 2 c x
b-
H1 + mL n Hypergeometric2F1B- m, - m, 1 - m,
H- 2 n + H1 + mL Log@d Ha + x Hb + c xLLn DL
Problem ð471: Valid but suboptimal antiderivative:
:LogAd Ia + b x + c x2 M E , x, 24, 0>
b2 - 4 a c
b-
cx
b2 - 4 a c + b
n 2
b+
-m
b+
-4ac +2cx
c
-
cx
m
1+m
b+
-m
b2 - 4 a c + 2 c x
2cx
2 c n x2+m Hypergeometric2F1B1, 2 + m, 3 + m, -
m
2
m
b-
F
cx
b-
cx
b2
H1 + mL H2 + mL
2-1-m xm
2
b2 -4 a c
b2 - 4 a c + 2 c x
b+
b+
b2
F+
b2 - 4 a c
-4ac +2cx
F+
2.2 Logarithm Functions.nb
4
b2 - 4 a c n2 ArcTanhB
b+2 c x
b2 -4
8 n2 x -
ac
c
b+
b2 - 4 a c
b2 -4 a c +2 c x
b-
n2 LogB-
b2 -4
2
ac
c
b-
b2 - 4 a c
n2 LogBb -
F
2
b-
b2 - 4 a c
n2 LogBb -
-
2c
F LogBb +
n2 LogBb +
b2 - 4 a c + 2 c xF
-
2c
b2 - 4 a c + 2 c xF LogB
b2 -4 a c +2 c x
b+
b2 -4 a c
F
-
2 b n2 LogAa + b x + c x2 E
c
b2 - 4 a c + 2 c xF LogAd Ia + b x + c x2 M E
n
n LogBb -
b2 - 4 a c
b+
-
c
b2 - 4 a c
2
b2 - 4 a c + 2 c xF
2
b-
b2 - 4 a c + 2 c xF
b2 - 4 a c
b+
- 4 n x LogAd Ia + b x + c x2 M E +
n
b2 - 4 a c + 2 c xF LogAd Ia + b x + c x2 M E
n LogBb +
+
c
x LogAd Ia + b x + c x M E -
b2 - 4 a c
b-
n2 PolyLogB2, -
2 n x LogAa + b x + c x E +
b2 -4 a c
2
2 n 2
c
-4 c x + 2
- b2 + 4 a c ArcTanB
b+2 c x
-b2 +4 a c
2
2c
F
b+
b2 - 4 a c
1
2
32 a c
- 16 c
- Ib2 - 4 a cM
2
2c
b2 - 4 a c ArcTanB
b+2cx
- b2 + 4 a c
4 b2
b2 - 4 a c ArcTanB
b+2cx
- b2
b
- Ib2 - 4 a cM
2
b-
+4ac
b2 - 4 a c
LogB
F-8c
F LogB
b-
2
- Ib2 - 4 a cM
2
b+2cx
b2 - 4 a c ArcTanB
b-
+ xF 2c
+ xF + 16 a c
b2 - 4 a c ArcTanB
2c
b+2cx
- b2
b-
b2 - 4 a c
+4ac
F LogB
2
+ xF - 4 a c
2c
-
F+
b2 - 4 a c
x LogB
b2 - 4 a c
2c
F
H- n Log@a + x Hb + c xLD + Log@d Ha + x Hb + c xLLn DL +
- b2 + 4 a c
- b2 + 4 a c LogB
b2 -4 a c
c
x - 8 b2
2
+ xF + b2
b2 -4 a c +2 c x
b+
-
F + b Log@a + x Hb + c xLD
- Ib2 - 4 a cM
n2 PolyLogB2,
2
x H- n Log@a + x Hb + c xLD + Log@d Ha + x Hb + c xLLn DL2 +
n2 x LogAa + b x + c x2 E -
+
c
b2 -4 a c +2 c x
b-
n
- b2 + 4 a c LogB
b-
b2 - 4 a c
+ xF 2c
b-
b2 - 4 a c
2
+ xF +
2c
+
87
88
2.2 Logarithm Functions.nb
8c
- Ib2 - 4 a cM
x LogB
2c
b+2cx
ArcTanB
- b2 + 4 a c
2 b2
- b2 + 4 a c LogB
F LogB
b2 - 4 a c + 2 c x
LogB
2c
- b2 + 4 a c LogB
4ac
b+
2c
b2
F-b
-4ac
2
b2 - 4 a c + 2 c x
- b2 + 4 a c LogB
b-
- Ib2 - 4 a cM
16 a c
- Ib2 - 4 a cM
b+
b2 - 4 a c + 2 c x
+ xF LogB
2 b
2 b
2
b+2cx
b2 - 4 a c ArcTanB
- Ib2 - 4 a cM
b+
2
+4ac
b2 - 4 a c + 2 c x
2c
- Ib2 - 4 a cM
2
- Ib2 - 4 a cM
2
+ b2
b2
-4ac
- Ib2 - 4 a cM
2
- b2 + 4 a c - 4 a c
F - b2
- b2 + 4 a c + 4 a c
- b2 + 4 a c
Problem ð474: Valid but suboptimal antiderivative:
- b2 + 4 a c LogB
b+
b+
F + 16 a c
2c
b2
-4ac
b2 - 4 a c + 2 c x
2c
b2 - 4 a c
b2 - 4 a c + 2 c x
b+
+ xF LogB
2c
F+8ac
2
- b2 + 4 a c LogB
b-
b2 - 4 a c
b2 - 4 a c
2
b2 - 4 a c
2c
2
b2 - 4 a c - 2 c x
-b +
b2
-4ac
b2 - 4 a c + 2 c x
b+
PolyLogB2,
2
b2 - 4 a c
F
2
b2 - 4 a c + 2 c x
2
b+2cx
F-
+4ac
b2
-4ac
F+
F Log@a + x Hb + c xLD -
+ xF Log@a + x Hb + c xLD +
Log@a + x Hb + c xLD2 -
PolyLogB2,
F +
b+
- b2
LogB
- Ib2 - 4 a cM
F
+ xF LogB
b2 - 4 a c ArcTanB
b-
F+
F-
2c
- Ib2 - 4 a cM
b2 - 4 a c
b2 - 4 a c + 2 c x
b2 - 4 a c - 2 c x
-b +
2
2
- b2
F LogB
2
LogB
F Log@a + x Hb + c xLD - 2 b
- b2 + 4 a c
- b2 + 4 a c LogB
x Log@a + x Hb + c xLD + 4 b2
F Log@a + x Hb + c xLD + 2 b
LogB
F-8ac
b-
2
2c
b2 - 4 a c
2
b2 - 4 a c + 2 c x
b+
b2 - 4 a c + 2 c x
b+
LogB
LogB
2
b2 - 4 a c
- b2
2b
2c
F LogB
b2 - 4 a c - 2 c x
-b +
2
F -2b
Log@a + x Hb + c xLD + 8 c
2
- Ib2 - 4 a cM
2c
2c
4b
- b2 + 4 a c
b2 - 4 a c + 2 c x
b+
b+2cx
b2 - 4 a c ArcTanB
F-2b
F LogB
- Ib2 - 4 a cM
2c
2 b2
F - 4 b2
b2 - 4 a c + 2 c x
b+
b2 - 4 a c - 2 c x
-b +
2
b+
b2 - 4 a c + 2 c x
b-
2
2.2 Logarithm Functions.nb
:
LogA- 1 + x + x2 E
2
, x, 30, 0>
x3
1
Log@xD 2
1
4
1
2
1
2
J3 +
J3 +
J3 +
J1 +
5 N LogB1 -
5 N LogB1 5 N LogB1 5 N LogB1 -
2x
2
2
J1 -
1
5 + 2 xF 2
1+
J3 -
2
5 N LogB2
5 N LogB1 +
5 +2x
5 + 2 xF LogB
5
5
F+
1
2
J3 -
5 F LogB1 1
5 + 2 xF -
4
F + 3 Log@xD LogB
5 + 2 xF LogA- 1 + x + x E +
2
3 PolyLogB2, 1+
1
5 + 2 xF -
1
2
J3 -
5 N PolyLogB2, -
1-
J3 -
1+
5 +2x
2
5
F-
2
5 N LogB1 +
5 +2x
1+
5 N LogB1 +
1
5 + 2 xF + 3 LogB
5
F+
J- 1 +
2
5 + 2 xF -
LogA- 1 + x + x2 E
x
5 + 2 xF LogA- 1 + x + x E 2
1
2
J3 +
5 N PolyLogB2, -
5 NF LogB1 -
5 + 2 xF -
- 3 Log@xD LogA- 1 + x + x2 E +
LogA- 1 + x + x2 E
2
+
2 x2
1-
5 +2x
2
5
F - 3 PolyLogB2,
1-
5 +2x
1-
5
F
89
90
2.2 Logarithm Functions.nb
1
20
- 10 LogA- 1 + x + x2 E +
2
x2
x - 10 x LogB- 1 +
1
5 - 2 xF - 10
5 x LogB- 1 +
5 - 2 xF + 20 x Log@xD + 2
5 x Log@100D LogB
2
1
LogB
5
1
+ xF - 10
2
5 x LogB- 1 +
2
5
1
2
+ xF + 5
2
5 x LogB
5
2
5 x LogB- 1 +
5 - 2 xF LogB
2
J1 +
5 + 2 xF - 30 x LogB
1
2
J1 +
5 N + xF LogB1 +
1
6
5 x LogB
5
2
+ xF LogB1 +
1
10
5 x LogB
2
J1 +
5 +2x
20 LogA- 1 + x + x2 E + 30 x LogB- 1 +
30 x LogB1 +
5
1
10
J5 -
-1 +
5 -2x
-1 +
5
5 x LogB
5 -2
1
2
J1 +
Log@x-n Ha + xn LD
J1 +
5 xNF - 4
1
5 x LogB
5 - 2 xF LogA- 1 + x + x2 E + 10
2x
1+
5
, x, 2, 0>
n
2
a + xn
a
F -
1
10
2
1
5
5
PolyLogA2, n
xn
a
E
J1 +
5
1
5 - 2 xF LogB
2
J1 +
5 N + xF - 10 x LogB1 +
2
+ xF LogB1 +
-
1
5
+ xF +
2
2
5 N + xF -
5 + 2 xF +
5 + 2 xF -
2
1
5 + 2 xF + 30 x LogB
5 -2
5
1+
5 +2x
+ xF LogB
2
J5 -
2
2
5
2x
5 +2
5 xF + 60 x Log@xD LogB1 +
2
5 x LogB- 1 +
F-
5 xNF +
+ xF LogB5 +
-
F + 30 x PolyLogB2,
x
Log@xD n Log@xD + 2 Log@1 + a x-n D - 2 LogB
1
1+
5
F+
5 - 2 xF LogA- 1 + x + x2 E - 60 x Log@xD LogA- 1 + x + x2 E +
5 + 2 xF LogA- 1 + x + x2 E - 10 J- 3 +
5 x LogB1 +
F + 60 x PolyLogB2, -
-1 +
5 x LogB
5 x LogB
5 N + xF LogB
2
PolyLog@2, - a x-n D
1
2
5 N + xF LogB1 +
Problem ð477: Valid but suboptimal antiderivative:
:
2
2
F + 30 x LogB
5 + 2 xF LogA- 1 + x + x2 E - 10
60 x PolyLogB2,
5 N + xF - 2
5 - 2 xF
F LogB
2x
+ xF - 60 x LogB
5 N + xF - 30 x LogB- 1 +
2
2
5 N + xF LogB
2
J1 +
5 + 2 xF + 10
1
2
1
5
5 + 2 xF + 7
1+
2
2
-
+ xF LogB
-
J1 +
1
+ xF - 30 x LogB- 1 +
2
5
-
2
5 x Log@8D LogB
5 N + xF + 15 x LogB
2
30 x LogB
2
2
1
5 x LogB1 +
1
+ xF + 60 x Log@xD LogB
2
+ xF +
-
2
1
10
5
-
2
1
15 x LogB
10
5 - 2 xF LogB
5
-
1+
5 +2x
2
5
5 N x PolyLogB2,
F + 10
-1 +
2
5 -2x
5
1+
F-
5 +2x
5 x PolyLogB2,
2
5
F
2.2 Logarithm Functions.nb
Problem ð484: Valid but suboptimal antiderivative:
:LogBe
a+bx
F , x, 6, 0>
n 4
c+dx
Ha + b xL LogAe I
b
a+b x n 4
M E
c+d x
24 Hb c - a dL n3 LogAe I
n
a+bx
x LogBe
c+dx
4 n I- LogAe I
a+b x n
M E
c+d x
c+dx
c
2
F
+
LogB
b c-a d
F
b Hc+d xL
+
12 Hb c - a dL n2 LogAe I
bd
Ia d Log@a + b xD + b d x LogA
bd
a+b x
E
c+d x
- b c Log@c + d xDM
d
bd
6 n2 LogBe
bd
c
+ xF Log@a + b xD - 2 a d LogB
d
a+bx
F + 2 b c LogB
2
a+bx
c+dx
c
+ xF Log@a + b xD + 2 a d LogB
b
F + b d x LogB
1
+
a
2
a+bx
d Ha+b xL
F
b Hc+d xL
PolyLogB2,
-
-
+ xF - 2 a d LogB
2 a d Log@a + b xD LogB
d Ha+b xL
F
b Hc+d xL
24 Hb c - a dL n4 PolyLogB4,
a+b x n 2
M E
c+d x
4
3
a+b x
EM
c+d x
+ xF + b c LogB
b
n
F - n LogB
+ xF LogB
d
a
a+bx
c+dx
d Ha + b xL
-b c + a d
c
a+bx
4 n3 - LogBe
bd
c+dx
6 Hb c - a dL LogB
n4 a d LogB
a+bx
c+dx
PolyLogB2,
n
F + n LogB
a+bx
c+dx
c+dx
F PolyLogB2,
F + b d x LogB
4
a+bx
d Ha + b xL
b Hc + d xL
a+bx
c+dx
F
a+bx
LogB
d Ha + b xL
b Hc + d xL
c+dx
F - 24 Hb c - a dL LogB
a+bx
c+dx
a+bx
c+dx
a+bx
c+dx
F , x, 4, 0>
n 3
F LogB
3
bc-ad
bc+bdx
F PolyLogB3,
Problem ð485: Valid but suboptimal antiderivative:
:LogBe
d Ha + b xL LogB
2
a+bx
c+dx
F + H- 6 b c + 6 a dL PolyLogB3,
F + 4 b c LogB
4
F
+ xF Log@c + d xD - 2 b c LogB
F+
F
2
+ xF Log@c + d xD c+dx
b
d
a+bx
a
b Hc + d xL
d Ha + b xL
b Hc + d xL
2 b c LogB
F Log@c + d xD - 2 b c LogB + xF LogB
F - 2 b c PolyLogB2,
F - 2 a d PolyLogB2,
F c+dx
b
bc-ad
-b c + a d
bc-ad
c+dx
1
d Ha+b xL
F
b Hc+d xL
PolyLogB3,
a+bx
+ n LogA
a+b x n 3
M E
c+d x
bd
bd
F - n LogB
a+b x n
M E
c+d x
a
a d LogB
+
4 Hb c - a dL n LogAe I
F + 3 Hb c - a dL LogB
d Ha + b xL
b Hc + d xL
F - 4 a d LogB
d Ha + b xL
b Hc + d xL
F +
a+bx
c+dx
bc-ad
bc+bdx
1
F +
bd
F LogB
3
F + 24 b c PolyLogB4,
bc-ad
bc+bdx
d Ha + b xL
b Hc + d xL
F + 12 Hb c - a dL LogB
F - 24 a d PolyLogB4,
a+bx
c+dx
F
2
d Ha + b xL
b Hc + d xL
F
91
92
2.2 Logarithm Functions.nb
Ha + b xL LogAe I
b
a+b x n 3
M E
c+d x
6 Hb c - a dL n2 LogAe I
+
3 Hb c - a dL n LogAe I
a+b x n
M E
c+d x
bd
PolyLogB2,
bd
3 a n Log@a + b xD ILogAe
a+b x n
I
M E
c+d x
-n
b
n
a+bx
x LogBe
c+dx
1
F - n LogB
bd
c+dx
c
LogB
+ xF LogB
d
a+bx
c+dx
n3 LogB
bd
a+bx
c+dx
d Ha + b xL
a+bx
c+dx
F
2
d Ha+b xL
F
b Hc+d xL
2
a+b x
LogA
EM
c+d x
F
3
-
F + n LogB
-b c + a d
2 b c LogB
1
n
a+bx
3 n2 - LogBe
-
a+bx
c+dx
F
LogB
a+bx
c+dx
d Ha + b xL
b Hc + d xL
F
+
bd
a+bx
+ 3 n x LogB
c+dx
a+b x n
M E
c+d x
a
a d LogB
F LogBe
- n LogA
d
b
n
F - n LogB
+ xF LogB
a+bx
bc-ad
F + 3 Hb c - a dL LogB
bc+bdx
2
+
a
2
c
+ xF Log@a + b xD + 2 a d LogB
b
a+bx
c+dx
2
a
c
+ xF Log@c + d xD - 2 b c LogB
b
d Ha + b xL
-b c + a d
F + 6 Hb c - a dL LogB
+ xF Log@a + b xD - 2 a d
d
F + 2 b c LogB
F - 2 b c PolyLogB2,
bc-ad
c+dx
F
-
+ xF - 2 a d LogB
F + b d x LogB
c+dx
b Hc + d xL
a+bx
Log@c + d xD
d
a
b
c+dx
c
2
d Ha+b xL
F
b Hc+d xL
a+bx
2
a+b x
EM
c+d x
+ xF + b c LogB
F + 2 a d Log@a + b xD LogB
d Ha + b xL LogB
b c-a d
F
b Hc+d xL
6 Hb c - a dL n3 PolyLogB3,
3 c n ILogAe I
F Log@c + d xD - 2 b c LogB
H- 6 b c + 6 a dL PolyLogB3,
a+b x n 2
M E
c+d x
F - 2 a d PolyLogB2,
a+bx
c+dx
F PolyLogB2,
d
b Hc + d xL
bc-ad
d Ha + b xL
b Hc + d xL
F+
+ xF Log@c + d xD F +
Problem ð486: Valid but suboptimal antiderivative:
:LogBe
c+dx
Ha + b xL LogAe I
b
1
bd
a d n2 LogB
F , x, 3, 0>
n 2
a+bx
a+b x n 2
M E
c+d x
a
+
2 Hb c - a dL n LogAe I
a+b x n
M E
c+d x
bd
2
+ xF + b c n2 LogB
b
c
2
+ xF - 2 a d n2 LogB
d
a+bx
2 a d n Log@a + b xD LogBe
c+dx
a+bx
2 b c n LogBe
c+dx
LogB
n
a
b c-a d
F
b Hc+d xL
+
2 Hb c - a dL n2 PolyLogB2,
bd
+ xF Log@a + b xD + 2 a d n2 LogB
b
n
F + b d x LogBe
F Log@c + d xD - 2 b c n2 LogB
a+bx
c+dx
a
Problem ð490: Valid but suboptimal antiderivative:
+ xF Log@a + b xD - 2 a d n2 LogB
d
F + 2 b c n2 LogB
n 2
+ xF LogB
b
c
d Ha+b xL
F
b Hc+d xL
b Hc + d xL
bc-ad
a
F - 2 b c n2 PolyLogB2,
+ xF LogB
d
+ xF Log@c + d xD - 2 b c n2 LogB
b
c
d Ha + b xL
-b c + a d
c
d Ha + b xL
-b c + a d
+ xF Log@c + d xD d
F - 2 a d n2 PolyLogB2,
b Hc + d xL
bc-ad
F+
F
2.2 Logarithm Functions.nb
:
LogAe I
a+b x n 3
M E
c+d x
, x, 11, 0>
x
a+bx
- LogBe
c+dx
F LogB
n 3
c+dx
n
a+bx
6 n2 LogBe
c+dx
n
a+bx
c+dx
n
a+bx
3 n LogBe
c+dx
c+dx
bx
LogBa
F LogB
F - n LogB
F - n LogB
n
a+bx
a
b Hc + d xL
c+dx
c+dx
F - n LogB
c+dx
dx
2
b
c
a
c
+ xF - LogB
LogB
2
1
a Hc + d xL
c Ha + b xL
bx
LogB2
a
LogB
c Ha + b xL
PolyLogB3, 1 +
a+bx
c+dx
F LogB
3
a+bx
c+dx
a+bx
6 LogB
c+dx
a
F
LogBdx
bx
a
bx
a Hc + d xL
F PolyLogB3,
c
c
-b c + a d
d Ha + b xL
dx
c
F - LogB
F - 2 LogB
a+bx
c+dx
F - 6 LogB
b Hc + d xL
d Ha + b xL
F - PolyLogB3,
F LogB
3
c
bc-ad
bc+bdx
a+bx
c+dx
F + 6 PolyLogB4,
c+dx
F + 3 LogB
F PolyLogB3,
a Hc + d xL
a
F + LogB
d Ha + b xL
c Ha + b xL
bx
F + LogB
b Hc + d xL
b Hc + d xL
a+bx
c
bx
a
bx
a
d
a
+ xF + LogB
b
c+dx
c Ha + b xL
a Hc + d xL
F PolyLogB2,
2
F+
F - 6 PolyLogB4,
d Ha + b xL
b Hc + d xL
F
bx
a
a
dx
c
dx
c
a
a
b
F LogB
F LogB
a Hc + d xL
c Ha + b xL
a Hc + d xL
a+bx
c+dx
c
a Hc + d xL
c Ha + b xL
+ xF +
d
F LogB1 +
F PolyLogB2, 1 +
F PolyLogB2, 1 +
F-
F +
+ xF + LogB
+ xF LogB
F - 2 PolyLogB3, 1 +
c Ha + b xL
c
d
F +
bx
dx
c
+ xF + LogB
b
c Ha + b xL
c
F-
F - PolyLogB2, -
+ 2 - LogB
a Hc + d xL
dx
a Hc + d xL
2
F + LogB-
+ xF - LogB
c Ha + b xL
F
F - 2 LogB-
F - PolyLogB3, 1 +
a+bx
F
F + PolyLogB2, -
F + - LogB-
dx
+ xF + LogB1 +
F + PolyLogB2,
c Ha + b xL
ac+bcx
a
b
c
F - 2 PolyLogB3, 1 +
bcx-adx
d Ha + b xL
+ xF + LogB
F - PolyLogB2, dx
F+
F + PolyLogB2, -
dx
d
c
a Hc + d xL
b Hc + d xL
dx
d
c Ha + b xL
b Hc + d xL
F + LogB1 +
a Hc + d xL
c
+ xF + LogB
+ xF PolyLogB2, 1 +
a Hc + d xL
d Ha + b xL
c+dx
a
bx
c+dx
c Ha + b xL
F - LogB1 +
a+bx
b
F + LogB
F - LogB
F - LogB
F PolyLogB2,
n 2
a+bx
F - 6 n3 PolyLogB4,
a Hc + d xL
d
F + 2 LogB
d Ha + b xL
c Ha + b xL
2
a
F + PolyLogB3,
F + 3 n LogBe
F PolyLogB3,
+ xF + Log@xD - LogB
F LogB1 +
-b c x + a d x
c+dx
Log@xD LogB1 +
c
n
a+bx
a
F - PolyLogB2,
F PolyLogB2,
2
c
a Hc + d xL
F + 6 n3 PolyLogB4,
2
F LogB
a
Hb c - a dL x
-
F
bx
2
F - LogB-
a Hc + d xL
3
F - 6 n2 LogBe
d
bx
1
F
c+dx
+ xF - LogB1 +
+ xF PolyLogB2, 1 +
b
F
a+bx
a
3 LogB
d Ha + b xL
a+bx
b
n3 LogB
b Hc + d xL
a+bx
F LogB-
n 3
a+bx
d Ha + b xL
+ xF + LogB-
Log@xD LogB
2 LogB
F + LogBe
F PolyLogB3,
Log@xD LogBe
3 n2 LogBe
b Hc + d xL
F PolyLogB2,
n 2
a+bx
3 n LogBe
bc-ad
dx
c
bx
a
dx
c
F +
dx
c
F+
F-
F+
F
93
94
2.2 Logarithm Functions.nb
Problem ð491: Valid but suboptimal antiderivative:
:
LogAe I
a+b x n 2
M E
c+d x
, x, 7, 0>
x
F LogB
n 2
a+bx
- LogBe
c+dx
a+bx
2 n LogBe
n
c+dx
n
a+bx
c+dx
n
a+bx
2 n - LogBe
c+dx
bx
a
F LogB
b Hc + d xL
F PolyLogB2,
Log@xD LogBe
n2 LogB-
bc-ad
a
F - n LogB
F + n LogB
b Hc + d xL
a+bx
c+dx
a+bx
c+dx
dx
2
b
c
a
c
+ xF - LogB
b
a Hc + d xL
c Ha + b xL
2
1
bx
LogB2
LogB
a
a
F
c Ha + b xL
PolyLogB3, 1 +
bx
Log@xD LogB1 +
a
F LogB
c
LogB-
a
dx
c
F - PolyLogB2,
bx
a
a Hc + d xL
F - LogB
c
F + LogB1 +
dx
c
a+bx
c+dx
F - LogB1 +
dx
d
c
-b c + a d
d Ha + b xL
dx
F - LogB
F - 2 LogB
c Ha + b xL
a
a Hc + d xL
c
b Hc + d xL
c Ha + b xL
d Ha + b xL
F - PolyLogB3,
b Hc + d xL
a+bx
c+dx
bx
a
F + LogB
F + LogB
b Hc + d xL
d Ha + b xL
F
c
a
bx
a
+ xF - LogB
d
a
+ xF + LogB
b
F - PolyLogB3, 1 +
dx
c
dx
c
a
b
F LogB
F LogB
a Hc + d xL
c Ha + b xL
c
F +
a+bx
+ xF + LogB
d
a
bx
dx
c
+ xF + LogB
F +
c Ha + b xL
c
a
b
a Hc + d xL
dx
a
F-
F - PolyLogB2, -
+ 2 - LogB
F - 2 LogB-
F + LogB-
bx
2
F + PolyLogB2, bx
a Hc + d xL
F
F + PolyLogB2, -
+ xF + LogB
F + - LogB-
dx
+ xF + LogB1 +
F + PolyLogB2,
c
F - 2 PolyLogB3, 1 +
ac+bcx
b
dx
c Ha + b xL
F PolyLogB2,
d Ha + b xL
d
bcx-adx
n
c+dx
c
+ xF + LogB
F - PolyLogB2, -
+ xF PolyLogB2, 1 +
a+bx
F + 2 n2 PolyLogB3,
b
bx
c
F + 2 n LogBe
a
2
a Hc + d xL
F + PolyLogB3,
c Ha + b xL
d
F + LogB
F LogB1 +
a Hc + d xL
+ xF + Log@xD - LogB
F + 2 LogB
bx
2
F - LogB-
a Hc + d xL
+
a
bx
LogB
F - 2 n2 PolyLogB3,
+ xF - LogB1 +
+ xF PolyLogB2, 1 +
1
2
c+dx
d
a
b
F
F
Hb c - a dL x
F LogB-
n 2
a+bx
d Ha + b xL
+ xF + LogB-
Log@xD LogB
2 LogB
F + LogBe
c+dx
F
c
+ xF LogB
a Hc + d xL
c Ha + b xL
+ xF +
d
F LogB1 +
F PolyLogB2, 1 +
F PolyLogB2, 1 +
F - 2 PolyLogB3, 1 +
dx
c
bx
a
dx
c
F
dx
c
F+
F+
F-
Problem ð502: Valid but suboptimal antiderivative:
:Ha + b xL3 LogB
-
e Ha + b xL
5 Hb c - a dL3 x
12 d3
c+dx
+
Hb c - a dL4 LogB
F , x, 13, 0>
2
Hb c - a dL2 Ha + b xL2
-
12 b d2
b c-a d
F
b Hc+d xL
2 b d4
LogA
e Ha+b xL
E
c+d x
Hb c - a dL3 Ha + b xL LogA
2 b d3
+
Ha + b xL4 LogA
4b
e Ha+b xL 2
E
c+d x
e Ha+b xL
E
c+d x
+
+
Hb c - a dL2 Ha + b xL2 LogA
4 b d2
11 Hb c - a dL4 Log@c + d xD
12 b d4
-
e Ha+b xL
E
c+d x
-
Hb c - a dL Ha + b xL3 LogA
Hb c - a dL4 PolyLogB2,
2 b d4
6bd
d Ha+b xL
F
b Hc+d xL
e Ha+b xL
E
c+d x
-
2.2 Logarithm Functions.nb
1
- 5 b4 c3 d x + 17 a b3 c2 d2 x - 19 a2 b2 c d3 x + 7 a3 b d4 x + b4 c2 d2 x2 - 2 a b3 c d3 x2 + a2 b2 d4 x2 + 3 a4 d4 LogB
12 b d4
a
2
+ xF b
3 b4 c4 LogB
c
2
+ xF + 12 a b3 c3 d LogB
d
c
2
+ xF - 18 a2 b2 c2 d2 LogB
d
c
2
+ xF + 12 a3 b c d3 LogB
d
c
2
+ xF - 6 a b3 c3 d Log@a + b xD +
d
21 a2 b2 c2 d2 Log@a + b xD - 26 a3 b c d3 Log@a + b xD + 11 a4 d4 Log@a + b xD - 6 a4 d4 LogB
a
+ xF Log@a + b xD + 6 a4 d4 LogB
c
+ xF Log@a + b xD d
c
d Ha + b xL
e Ha + b xL
e Ha + b xL
6 a4 d4 LogB + xF LogB
F - 6 b4 c3 d x LogB
F + 24 a b3 c2 d2 x LogB
F - 36 a2 b2 c d3 x LogB
F+
d
-b c + a d
c+dx
c+dx
c+dx
e Ha + b xL
e Ha + b xL
e Ha + b xL
e Ha + b xL
18 a3 b d4 x LogB
F + 3 b4 c2 d2 x2 LogB
F - 12 a b3 c d3 x2 LogB
F + 9 a2 b2 d4 x2 LogB
Fc+dx
c+dx
c+dx
c+dx
e Ha + b xL
e Ha + b xL
e Ha + b xL
e Ha + b xL 2
2 b4 c d3 x3 LogB
F + 2 a b3 d4 x3 LogB
F + 6 a4 d4 Log@a + b xD LogB
F + 12 a3 b d4 x LogB
F +
c+dx
c+dx
c+dx
c+dx
e Ha + b xL 2
e Ha + b xL 2
e Ha + b xL 2
18 a2 b2 d4 x2 LogB
F + 12 a b3 d4 x3 LogB
F + 3 b4 d4 x4 LogB
F + 11 b4 c4 Log@c + d xD - 38 a b3 c3 d Log@c + d xD +
c+dx
c+dx
c+dx
a
a
45 a2 b2 c2 d2 Log@c + d xD - 18 a3 b c d3 Log@c + d xD - 6 b4 c4 LogB + xF Log@c + d xD + 24 a b3 c3 d LogB + xF Log@c + d xD b
b
a
a
c
c
36 a2 b2 c2 d2 LogB + xF Log@c + d xD + 24 a3 b c d3 LogB + xF Log@c + d xD + 6 b4 c4 LogB + xF Log@c + d xD - 24 a b3 c3 d LogB + xF Log@c + d xD +
b
b
d
d
c
c
e Ha + b xL
36 a2 b2 c2 d2 LogB + xF Log@c + d xD - 24 a3 b c d3 LogB + xF Log@c + d xD + 6 b4 c4 LogB
F Log@c + d xD d
d
c+dx
e Ha + b xL
e Ha + b xL
e Ha + b xL
24 a b3 c3 d LogB
F Log@c + d xD + 36 a2 b2 c2 d2 LogB
F Log@c + d xD - 24 a3 b c d3 LogB
F Log@c + d xD +
c+dx
c+dx
c+dx
a
b Hc + d xL
a
b Hc + d xL
a
b Hc + d xL
6 b4 c4 LogB + xF LogB
F - 24 a b3 c3 d LogB + xF LogB
F + 36 a2 b2 c2 d2 LogB + xF LogB
Fb
bc-ad
b
bc-ad
b
bc-ad
a
b Hc + d xL
d Ha + b xL
b Hc + d xL
24 a3 b c d3 LogB + xF LogB
F + 6 b c Ib3 c3 - 4 a b2 c2 d + 6 a2 b c d2 - 4 a3 d3 M PolyLogB2,
F - 6 a4 d4 PolyLogB2,
F
b
bc-ad
-b c + a d
bc-ad
b
e Ha + b xL
Problem ð503: Valid but suboptimal antiderivative:
:Ha + b xL2 LogB
Hb c - a dL2 x
3 d2
+
e Ha + b xL
c+dx
F , x, 10, 0>
2
2 Hb c - a dL2 Ha + b xL LogA
2 Hb c - a dL3 LogB
b c-a d
F
b Hc+d xL
3 b d3
3 b d2
LogA
e Ha+b xL
E
c+d x
e Ha+b xL
E
c+d x
+
-
Hb c - a dL Ha + b xL2 LogA
3bd
Ha + b xL3 LogA
3b
e Ha+b xL 2
E
c+d x
-
e Ha+b xL
E
c+d x
+
Hb c - a dL3 Log@c + d xD
b d3
+
2 Hb c - a dL3 PolyLogB2,
3 b d3
d Ha+b xL
F
b Hc+d xL
95
96
2.2 Logarithm Functions.nb
1
b3 c2 d x - 2 a b2 c d2 x + a2 b d3 x + a3 d3 LogB
3 b d3
a
2
+ xF + b3 c3 LogB
b
c
2
+ xF - 3 a b2 c2 d LogB
d
c
2
+ xF + 3 a2 b c d2 LogB
d
2 a b2 c2 d Log@a + b xD - 5 a2 b c d2 Log@a + b xD + 3 a3 d3 Log@a + b xD - 2 a3 d3 LogB
a
+ xF Log@a + b xD + 2 a3 d3 LogB
c
2
+ xF +
d
c
+ xF Log@a + b xD d
c
d Ha + b xL
e Ha + b xL
e Ha + b xL
e Ha + b xL
2 a3 d3 LogB + xF LogB
F + 2 b3 c2 d x LogB
F - 6 a b2 c d2 x LogB
F + 4 a2 b d3 x LogB
Fd
-b c + a d
c+dx
c+dx
c+dx
e Ha + b xL
e Ha + b xL
e Ha + b xL
e Ha + b xL 2
b3 c d2 x2 LogB
F + a b2 d3 x2 LogB
F + 2 a3 d3 Log@a + b xD LogB
F + 3 a2 b d3 x LogB
F +
c+dx
c+dx
c+dx
c+dx
e Ha + b xL 2
e Ha + b xL 2
3 a b2 d3 x2 LogB
F + b3 d3 x3 LogB
F - 3 b3 c3 Log@c + d xD + 7 a b2 c2 d Log@c + d xD - 4 a2 b c d2 Log@c + d xD +
c+dx
c+dx
a
a
a
c
2 b3 c3 LogB + xF Log@c + d xD - 6 a b2 c2 d LogB + xF Log@c + d xD + 6 a2 b c d2 LogB + xF Log@c + d xD - 2 b3 c3 LogB + xF Log@c + d xD +
b
b
b
d
c
c
e Ha + b xL
e Ha + b xL
6 a b2 c2 d LogB + xF Log@c + d xD - 6 a2 b c d2 LogB + xF Log@c + d xD - 2 b3 c3 LogB
F Log@c + d xD + 6 a b2 c2 d LogB
F Log@c + d xD d
d
c+dx
c+dx
e Ha + b xL
a
b Hc + d xL
a
b Hc + d xL
6 a2 b c d2 LogB
F Log@c + d xD - 2 b3 c3 LogB + xF LogB
F + 6 a b2 c2 d LogB + xF LogB
Fc+dx
b
bc-ad
b
bc-ad
a
b Hc + d xL
d Ha + b xL
b Hc + d xL
6 a2 b c d2 LogB + xF LogB
F - 2 b c Ib2 c2 - 3 a b c d + 3 a2 d2 M PolyLogB2,
F - 2 a3 d3 PolyLogB2,
F
b
bc-ad
-b c + a d
bc-ad
b
Problem ð504: Valid but suboptimal antiderivative:
:Ha + b xL LogB
-
e Ha + b xL
c+dx
F , x, 7, 0>
Hb c - a dL Ha + b xL LogA
bd
Ha + b xL2 LogA
2b
e Ha+b xL 2
E
c+d x
2
e Ha+b xL
E
c+d x
+
-
Hb c - a dL2 LogB
Hb c - a dL2 Log@c + d xD
b d2
-
b c-a d
F
b Hc+d xL
b d2
LogA
e Ha+b xL
E
c+d x
+
Hb c - a dL2 PolyLogB2,
b d2
d Ha+b xL
F
b Hc+d xL
2.2 Logarithm Functions.nb
ae+bex
a x LogB
c+dx
F +
2
a2 LogA
b Hb c - a dL
1
b x2 LogB
2
c+dx
2
a
b
+
bd
2 b2 Hb c - a dL
b2 Hb c - a dL
c2 LogA
a
b
c2 LogA
+ xE
a2 Log@a + b xD
x
2
+ xE
+
-b J
c2 Log@c + d xD
d I +xM
a
b
ad
b
c
2
a
+ xF LogB
b
bc-ad
b2
b
a+b x
E
b
a
b
ad
b
F
-d J
ae
c Log@c+d xD
+ xE LogB1 -
b I +xM
d
-a+
bc
d
d2
N + x LogA
bd
c+dx
c
c
d
-
bex
c+dx
a2 LogA
x
d
+
F +
F + PolyLogB2,
b2 Hb c - a dL
-
a
b I +xM
c
d
-a+
bc
d
c+d x
E
d
F
c
+ xF Log@a + b xD - 2 a d LogB
b
F - 2 b c LogB
-
+ xF + LogB
d
d I +xM
-c+
N + x LogA
c
+ xF + LogB
2
c+dx
b Hc + d xL
a Log@a+b xD
bd
+ xF + 2 a d LogB
e Ha + b xL
-
a
d
2 a d Log@a + b xD LogB
x
b
- LogB
F + PolyLogB2,
+ xF - b c LogB
b
2 b c LogB
2
d2 H- b c + a dL
a
bd
F -
2 d2 H- b c + a dL
-
-c+
a - a d LogB
c
d
d2 Hb c - a dL
-
+ xE LogB1 -
1
ae+bex
c
b
F + 2 b c PolyLogB2,
d Ha + b xL
-b c + a d
+ xF Log@c + d xD + 2 b c LogB
d
F + 2 a d PolyLogB2,
+ xF LogB
d
c
+ xF Log@c + d xD + 2 b c LogB
-
+ xF Log@a + b xD + 2 a d LogB
d
a
+
b Hc + d xL
bc-ad
e Ha + b xL
c+dx
F
d Ha + b xL
-b c + a d
F Log@c + d xD +
Problem ð505: Valid but suboptimal antiderivative:
:LogB
e Ha + b xL
c+dx
F , x, 3, 0>
2 Hb c - a dL LogB
1
a
a d LogB
bd
2
b c-a d
F
b Hc+d xL
bd
e Ha+b xL
E
c+d x
c
2
+ xF + b c LogB
b
+
Ha + b xL LogA
2
e Ha + b xL
c+dx
b
e Ha + b xL
c+dx
e Ha+b xL 2
E
c+d x
:
e Ha+b xL 2
E
c+d x
a+bx
F + b d x LogB
d Ha+b xL
F
b Hc+d xL
c
b
F Log@c + d xD - 2 b c LogB
, x, 3, 0>
bd
+ xF Log@a + b xD + 2 a d LogB
e Ha + b xL
c+dx
a
b
c
+ xF Log@a + b xD - 2 a d LogB
d
F + 2 b c LogB
+ xF LogB
Problem ð506: Valid but suboptimal antiderivative:
LogA
+
2 Hb c - a dL PolyLogB2,
a
+ xF - 2 a d LogB
d
2 a d Log@a + b xD LogB
2 b c LogB
LogA
2
b Hc + d xL
bc-ad
d
a
c
+ xF Log@c + d xD - 2 b c LogB
b
F - 2 b c PolyLogB2,
+ xF LogB
d Ha + b xL
-b c + a d
d Ha + b xL
-b c + a d
+ xF Log@c + d xD d
F - 2 a d PolyLogB2,
F-
F+
b Hc + d xL
bc-ad
F
97
98
2.2 Logarithm Functions.nb
LogB-
b c-a d
F
d Ha+b xL
LogA
b
1
a
c
3
LogB
3b
e Ha+b xL 2
E
c+d x
+ xF + 3 LogB
b
2 LogA
+
2
+ xF LogB
d
a
3 LogB
b
d Ha + b xL
-b c + a d
c
+ xF - LogB
e Ha+b xL
E
c+d x
+ xF - LogB
d
e Ha + b xL
c+dx
b Hc + d xL
PolyLogB2,
b
b Hc+d xL
F
d Ha+b xL
2 PolyLogB3,
+
b
F + 3 Log@a + b xD - LogB
F
a
LogB
a
c
+ xF + LogB
b
+ xF - 2 LogB
b
+ xF + LogB
d
c
2
b Hc+d xL
F
d Ha+b xL
+ xF LogB
d
d Ha + b xL
-b c + a d
e Ha + b xL
c+dx
F
F - 2 PolyLogB2,
2
b Hc + d xL
bc-ad
F +
F+
d
bc-ad
2
a
c
b Hc + d xL
a
d Ha + b xL
d Ha + b xL
b Hc + d xL
3 LogB + xF - LogB + xF + LogB
F + 2 LogB + xF PolyLogB2,
F - 2 PolyLogB3,
F - 6 PolyLogB3,
F
b
d
bc-ad
b
-b c + a d
-b c + a d
bc-ad
c
6 LogB
+ xF PolyLogB2,
Problem ð509: Valid but suboptimal antiderivative:
:Ha + b xL2 LogB
e Ha + b xL
c+dx
Hb c - a dL2 Ha + b xL LogA
b d2
F , x, 16, 0>
e Ha+b xL
E
c+d x
Hb c - a dL Ha + b xL2 LogA
2bd
3 Hb c - a dL3 PolyLogB2,
b d3
3
+
e Ha+b xL 2
E
c+d x
d Ha+b xL
F
b Hc+d xL
3 Hb c - a dL3 LogB
+
+
b c-a d
F
b Hc+d xL
LogA
b d3
Hb c - a dL3 LogB
b c-a d
F
b Hc+d xL
2 Hb c - a dL3 LogA
b d3
LogA
e Ha+b xL
E
c+d x
b d3
e Ha+b xL
E
c+d x
+
b d2
e Ha+b xL 2
E
c+d x
PolyLogB2,
Hb c - a dL2 Ha + b xL LogA
+
Ha + b xL3 LogA
d Ha+b xL
F
b Hc+d xL
3b
-
e Ha+b xL 3
E
c+d x
e Ha+b xL 2
E
c+d x
-
-
Hb c - a dL3 Log@c + d xD
2 Hb c - a dL3 PolyLogB3,
b d3
b d3
d Ha+b xL
F
b Hc+d xL
+
2.2 Logarithm Functions.nb
1
6 b3 c3 LogB
6 b d3
Hb c - a dL e
c+dx
e Ha + b xL
F - 18 a b2 c2 d LogB
c+dx
e Ha + b xL
F + 18 a2 b c d2 LogB
c+dx
e Ha + b xL
F + 6 b3 c2 d x LogB
Hb c - a dL e
e Ha + b xL
c+dx
F - 6 a3 d3 LogB
F - 12 a b2 c d2 x LogB
Hb c - a dL e
c+dx
e Ha + b xL
F + 6 a b2 c2 d LogB
Problem ð523: Valid but suboptimal antiderivative:
:Hc + d xL3 LogB
5 Hb c - a dL3 x
e Ha + b xL
c+dx
+
12 b3
F , x, 13, 0>
2
Hb c - a dL2 Hc + d xL2
12 b2 d
Hb c - a dL2 Hc + d xL2 LogA
4 b2 d
Hc + d xL4 LogA
4d
e Ha+b xL 2
E
c+d x
+
e Ha+b xL
E
c+d x
-
+
5 Hb c - a dL4 Log@a + b xD
12 b4 d
Hb c - a dL Hc + d xL3 LogA
6bd
Hb c - a dL4 Log@c + d xD
2 b4 d
-
-
Hb c - a dL3 Ha + b xL LogA
2 b4
e Ha+b xL
E
c+d x
+
Hb c - a dL4 LogB-
Hb c - a dL4 PolyLogB2,
2 b4 d
b Hc+d xL
F
d Ha+b xL
e Ha+b xL
E
c+d x
b c-a d
F
d Ha+b xL
2 b4 d
-
LogA
e Ha+b xL
E
c+d x
+
F + 6 a2 b d3 x LogB
e Ha + b xL
c+dx
e Ha + b xL
F-
F+
c+dx
c+dx
c+dx
c+dx
2
e Ha + b xL 2
e Ha + b xL 2
e Ha + b xL 2
e Ha + b xL 2
6 a b2 c2 d LogB
F - 15 a2 b c d2 LogB
F + 9 a3 d3 LogB
F + 6 b3 c2 d x LogB
F - 18 a b2 c d2 x LogB
F +
c+dx
c+dx
c+dx
c+dx
c+dx
e Ha + b xL 2
e Ha + b xL 2
e Ha + b xL 2
e Ha + b xL 3
12 a2 b d3 x LogB
F - 3 b3 c d2 x2 LogB
F + 3 a b2 d3 x2 LogB
F + 2 a3 d3 LogB
F +
c+dx
c+dx
c+dx
c+dx
e Ha + b xL 3
e Ha + b xL 3
e Ha + b xL 3
e Ha + b xL
bc-ad
6 a2 b d3 x LogB
F + 6 a b2 d3 x2 LogB
F + 2 b3 d3 x3 LogB
F + 18 b3 c3 LogB
F LogB
Fc+dx
c+dx
c+dx
c+dx
bc+bdx
e Ha + b xL
bc-ad
e Ha + b xL
bc-ad
e Ha + b xL
bc-ad
54 a b2 c2 d LogB
F LogB
F + 54 a2 b c d2 LogB
F LogB
F - 18 a3 d3 LogB
F LogB
F+
c+dx
bc+bdx
c+dx
bc+bdx
c+dx
bc+bdx
e Ha + b xL 2
bc-ad
e Ha + b xL 2
bc-ad
e Ha + b xL 2
bc-ad
6 b3 c3 LogB
F LogB
F - 18 a b2 c2 d LogB
F LogB
F + 18 a2 b c d2 LogB
F LogB
Fc+dx
bc+bdx
c+dx
bc+bdx
c+dx
bc+bdx
e Ha + b xL 2
bc-ad
e Ha + b xL
d Ha + b xL
d Ha + b xL
6 a3 d3 LogB
F LogB
F + 6 Hb c - a dL3 3 + 2 LogB
F PolyLogB2,
F - 12 Hb c - a dL3 PolyLogB3,
F
c+dx
bc+bdx
c+dx
b Hc + d xL
b Hc + d xL
12 a2 b c d2 LogB
F + 6 a3 d3 LogB
Hb c - a dL e
99
100
2.2 Logarithm Functions.nb
1
7 b4 c3 d x - 19 a b3 c2 d2 x + 17 a2 b2 c d3 x - 5 a3 b d4 x + b4 c2 d2 x2 - 2 a b3 c d3 x2 + a2 b2 d4 x2 + 12 a b3 c3 d LogB
12 b4 d
a
2
+ xF - 18 a2 b2 c2 d2 LogB
b
12 a3 b c d3 LogB
a
2
+ xF - 3 a4 d4 LogB
b
a
2
+ xF + 3 b4 c4 LogB
b
c
b
c
b
2
+ xF - 18 a b3 c3 d Log@a + b xD + 45 a2 b2 c2 d2 Log@a + b xD a
+ xF Log@a + b xD + 36 a2 b2 c2 d2 LogB
b
a
2
+ xF +
d
38 a3 b c d3 Log@a + b xD + 11 a4 d4 Log@a + b xD - 24 a b3 c3 d LogB
24 a3 b c d3 LogB
a
+ xF Log@a + b xD + 6 a4 d4 LogB
a
b
c
a
+ xF Log@a + b xD b
+ xF Log@a + b xD + 24 a b3 c3 d LogB
c
+ xF Log@a + b xD - 36 a2 b2 c2 d2 LogB
d
c
c
+ xF Log@a + b xD +
d
d Ha + b xL
F+
-b c + a d
c
d Ha + b xL
c
d Ha + b xL
c
d Ha + b xL
36 a2 b2 c2 d2 LogB + xF LogB
F - 24 a3 b c d3 LogB + xF LogB
F + 6 a4 d4 LogB + xF LogB
Fd
-b c + a d
d
-b c + a d
d
-b c + a d
e Ha + b xL
e Ha + b xL
e Ha + b xL
e Ha + b xL
18 b4 c3 d x LogB
F + 36 a b3 c2 d2 x LogB
F - 24 a2 b2 c d3 x LogB
F + 6 a3 b d4 x LogB
Fc+dx
c+dx
c+dx
c+dx
e Ha + b xL
e Ha + b xL
e Ha + b xL
e Ha + b xL
9 b4 c2 d2 x2 LogB
F + 12 a b3 c d3 x2 LogB
F - 3 a2 b2 d4 x2 LogB
F - 2 b4 c d3 x3 LogB
F+
c+dx
c+dx
c+dx
c+dx
e Ha + b xL
e Ha + b xL
e Ha + b xL
2 a b3 d4 x3 LogB
F + 24 a b3 c3 d Log@a + b xD LogB
F - 36 a2 b2 c2 d2 Log@a + b xD LogB
F+
c+dx
c+dx
c+dx
e Ha + b xL
e Ha + b xL
e Ha + b xL 2
e Ha + b xL 2
24 a3 b c d3 Log@a + b xD LogB
F - 6 a4 d4 Log@a + b xD LogB
F + 12 b4 c3 d x LogB
F + 18 b4 c2 d2 x2 LogB
F +
c+dx
c+dx
c+dx
c+dx
e Ha + b xL 2
e Ha + b xL 2
12 b4 c d3 x3 LogB
F + 3 b4 d4 x4 LogB
F + 11 b4 c4 Log@c + d xD - 26 a b3 c3 d Log@c + d xD + 21 a2 b2 c2 d2 Log@c + d xD c+dx
c+dx
a
c
e Ha + b xL
6 a3 b c d3 Log@c + d xD + 6 b4 c4 LogB + xF Log@c + d xD - 6 b4 c4 LogB + xF Log@c + d xD - 6 b4 c4 LogB
F Log@c + d xD b
d
c+dx
a
b Hc + d xL
d Ha + b xL
b Hc + d xL
6 b4 c4 LogB + xF LogB
F - 6 b4 c4 PolyLogB2,
F + 6 a d I- 4 b3 c3 + 6 a b2 c2 d - 4 a2 b c d2 + a3 d3 M PolyLogB2,
F
b
bc-ad
-b c + a d
bc-ad
24 a3 b c d3 LogB
+ xF Log@a + b xD - 6 a4 d4 LogB
d
+ xF Log@a + b xD - 24 a b3 c3 d LogB
d
+ xF LogB
d
Problem ð524: Valid but suboptimal antiderivative:
:Hc + d xL2 LogB
Hb c - a dL x
2
3 b2
+
e Ha + b xL
c+dx
F , x, 10, 0>
2
Hb c - a dL3 Log@a + b xD
2 Hb c - a dL3 LogB-
3 b3 d
b c-a d
F
d Ha+b xL
3 b3 d
LogA
-
2 Hb c - a dL2 Ha + b xL LogA
e Ha+b xL
E
c+d x
3 b3
+
Hc + d xL3 LogA
3d
e Ha+b xL
E
c+d x
e Ha+b xL 2
E
c+d x
+
-
Hb c - a dL Hc + d xL2 LogA
3bd
2 Hb c - a dL3 Log@c + d xD
3 b3 d
-
e Ha+b xL
E
c+d x
+
2 Hb c - a dL3 PolyLogB2,
3 b3 d
b Hc+d xL
F
d Ha+b xL
2.2 Logarithm Functions.nb
1
b3 c2 d x - 2 a b2 c d2 x + a2 b d3 x + 3 a b2 c2 d LogB
3 b3 d
a
2
+ xF - 3 a2 b c d2 LogB
b
a
2
+ xF + a3 d3 LogB
b
a
2
+ xF + b3 c3 LogB
b
4 a b2 c2 d Log@a + b xD + 7 a2 b c d2 Log@a + b xD - 3 a3 d3 Log@a + b xD - 6 a b2 c2 d LogB
a
c
d
+ xF Log@a + b xD + 6 a2 b c d2 LogB
b
2 a3 d3 LogB
a
+ xF Log@a + b xD + 6 a b2 c2 d LogB
b
d Ha + b xL
c
+ xF Log@a + b xD - 6 a2 b c d2 LogB
d
d Ha + b xL
+ xF Log@a + b xD b
+ xF Log@a + b xD + 2 a3 d3 LogB
d
c
+ xF LogB
c
+ xF LogB
F - 2 a3 d3 LogB
a
d Ha + b xL
c
+ xF Log@a + b xD d
Fd
-b c + a d
d
-b c + a d
d
-b c + a d
e Ha + b xL
e Ha + b xL
e Ha + b xL
e Ha + b xL
e Ha + b xL
4 b3 c2 d x LogB
F + 6 a b2 c d2 x LogB
F - 2 a2 b d3 x LogB
F - b3 c d2 x2 LogB
F + a b2 d3 x2 LogB
F+
c+dx
c+dx
c+dx
c+dx
c+dx
e Ha + b xL
e Ha + b xL
e Ha + b xL
6 a b2 c2 d Log@a + b xD LogB
F - 6 a2 b c d2 Log@a + b xD LogB
F + 2 a3 d3 Log@a + b xD LogB
F+
c+dx
c+dx
c+dx
e Ha + b xL 2
e Ha + b xL 2
e Ha + b xL 2
3 b3 c2 d x LogB
F + 3 b3 c d2 x2 LogB
F + b3 d3 x3 LogB
F + 3 b3 c3 Log@c + d xD - 5 a b2 c2 d Log@c + d xD +
c+dx
c+dx
c+dx
a
c
e Ha + b xL
2 a2 b c d2 Log@c + d xD + 2 b3 c3 LogB + xF Log@c + d xD - 2 b3 c3 LogB + xF Log@c + d xD - 2 b3 c3 LogB
F Log@c + d xD b
d
c+dx
a
b Hc + d xL
d Ha + b xL
b Hc + d xL
2 b3 c3 LogB + xF LogB
F - 2 b3 c3 PolyLogB2,
F - 2 a d I3 b2 c2 - 3 a b c d + a2 d2 M PolyLogB2,
F
b
bc-ad
-b c + a d
bc-ad
6 a b2 c2 d LogB
F + 6 a2 b c d2 LogB
c
2
+ xF -
Problem ð525: Valid but suboptimal antiderivative:
:Hc + d xL LogB
-
e Ha + b xL
c+dx
F , x, 7, 0>
Hb c - a dL Ha + b xL LogA
b2
Hc + d xL2 LogA
2d
e Ha+b xL 2
E
c+d x
2
e Ha+b xL
E
c+d x
+
+
Hb c - a dL2 LogB-
Hb c - a dL2 Log@c + d xD
b2 d
-
b c-a d
F
d Ha+b xL
b2 d
LogA
e Ha+b xL
E
c+d x
+
Hb c - a dL2 PolyLogB2,
b2 d
b Hc+d xL
F
d Ha+b xL
c
+ xF LogB
101
102
2.2 Logarithm Functions.nb
ae+bex
c x LogB
c+dx
F +
2
a2 LogA
d Hb c - a dL
1
d x2 LogB
2
c+dx
2
a
b
+
bd
2 b2 Hb c - a dL
b2 Hb c - a dL
c2 LogA
a
b
c2 LogA
+ xE
a2 Log@a + b xD
x
2
+ xE
+
-b J
c2 Log@c + d xD
d I +xM
a
b
ad
b
c
2
a
+ xF LogB
b
bc-ad
b2
b
a+b x
E
b
a
b
ad
b
F
-d J
ae
c Log@c+d xD
+ xE LogB1 -
b I +xM
d
-a+
bc
d
d2
N + x LogA
bd
c+dx
c
c
d
-
bex
c+dx
a2 LogA
x
d
+
F +
F + PolyLogB2,
b2 Hb c - a dL
-
a
b I +xM
c
d
-a+
bc
d
c+d x
E
d
F
c
+ xF Log@a + b xD - 2 a d LogB
b
F - 2 b c LogB
-
+ xF + LogB
d
d I +xM
-c+
N + x LogA
c
+ xF + LogB
2
c+dx
b Hc + d xL
a Log@a+b xD
bd
+ xF + 2 a d LogB
e Ha + b xL
-
a
d
2 a d Log@a + b xD LogB
x
b
- LogB
F + PolyLogB2,
+ xF - b c LogB
b
2 b c LogB
2
d2 H- b c + a dL
a
bd
F -
2 d2 H- b c + a dL
-
-c+
c - a d LogB
c
d
d2 Hb c - a dL
-
+ xE LogB1 -
1
ae+bex
c
b
F + 2 b c PolyLogB2,
d Ha + b xL
-b c + a d
+ xF Log@c + d xD + 2 b c LogB
d
F + 2 a d PolyLogB2,
+ xF LogB
d
c
+ xF Log@c + d xD + 2 b c LogB
-
+ xF Log@a + b xD + 2 a d LogB
d
a
+
b Hc + d xL
bc-ad
e Ha + b xL
c+dx
F
d Ha + b xL
-b c + a d
F Log@c + d xD +
Problem ð526: Valid but suboptimal antiderivative:
:LogB
e Ha + b xL
c+dx
F , x, 3, 0>
2 Hb c - a dL LogB
1
a
a d LogB
bd
2
b c-a d
F
b Hc+d xL
bd
e Ha+b xL
E
c+d x
c
2
+ xF + b c LogB
b
+
Ha + b xL LogA
2
e Ha + b xL
c+dx
b
e Ha + b xL
c+dx
e Ha+b xL 2
E
c+d x
:
e Ha+b xL 2
E
c+d x
c+dx
F + b d x LogB
d Ha+b xL
F
b Hc+d xL
c
b
F Log@c + d xD - 2 b c LogB
, x, 3, 0>
bd
+ xF Log@a + b xD + 2 a d LogB
e Ha + b xL
c+dx
a
b
c
+ xF Log@a + b xD - 2 a d LogB
d
F + 2 b c LogB
+ xF LogB
Problem ð527: Valid but suboptimal antiderivative:
LogA
+
2 Hb c - a dL PolyLogB2,
a
+ xF - 2 a d LogB
d
2 a d Log@a + b xD LogB
2 b c LogB
LogA
2
b Hc + d xL
bc-ad
d
a
c
+ xF Log@c + d xD - 2 b c LogB
b
F - 2 b c PolyLogB2,
+ xF LogB
d Ha + b xL
-b c + a d
d Ha + b xL
-b c + a d
+ xF Log@c + d xD d
F - 2 a d PolyLogB2,
F-
F+
b Hc + d xL
bc-ad
F
2.2 Logarithm Functions.nb
LogB
-
b c-a d
F
b Hc+d xL
1
d
c
LogB
3d
LogA
e Ha+b xL 2
E
c+d x
2 LogA
-
a
3
+ xF + 3 - LogB
b
a
b
+ xF - LogB
d
d Ha + b xL
6 PolyLogB3,
-b c + a d
d
+ xF + LogB
d
c
+ xF - LogB
PolyLogB2,
c
+ xF + LogB
d
3 LogB
e Ha+b xL
E
c+d x
e Ha + b xL
c+dx
F + 3 LogB
c
2
+ xF
d Ha+b xL
F
b Hc+d xL
e Ha + b xL
c+dx
F
c
- LogB
+
d
2
a
Log@c + d xD + 3 LogB
a
2
+ xF LogB
b
a
+ xF + LogB
b
2
+ xF LogB
b
+ xF + 2 LogB
d
- LogB
d
F
d Ha+b xL
F
b Hc+d xL
2 PolyLogB3,
d Ha + b xL
-b c + a d
b Hc + d xL
bc-ad
F + 2 LogB
c
b Hc + d xL
bc-ad
F + 6 LogB
F + 2 PolyLogB2,
+ xF PolyLogB2,
d
a
+ xF PolyLogB2,
b
d Ha + b xL
-b c + a d
b Hc + d xL
bc-ad
F - 2 PolyLogB3,
Problem ð530: Valid but suboptimal antiderivative:
:Hc + d xL2 LogB
e Ha + b xL
c+dx
Hb c - a dL2 Ha + b xL LogA
b3
2 Hb c - a dL3 LogB
Hb c - a dL3 LogB-
F , x, 16, 0>
3
e Ha+b xL
E
c+d x
b c-a d
F
b Hc+d xL
LogA
b3 d
b c-a d
F
d Ha+b xL
b3 d
Hb c - a dL3 PolyLogB2,
b3 d
LogA
-
Hb c - a dL3 LogB-
e Ha+b xL
E
c+d x
e Ha+b xL 2
E
c+d x
b Hc+d xL
F
d Ha+b xL
-
-
b c-a d
F
d Ha+b xL
b3 d
LogA
e Ha+b xL
E
c+d x
Hb c - a dL2 Ha + b xL LogA
b3
+
Hc + d xL3 LogA
2 Hb c - a dL3 LogA
3d
e Ha+b xL 3
E
c+d x
e Ha+b xL
E
c+d x
b3 d
-
e Ha+b xL 2
E
c+d x
-
-
Hb c - a dL Hc + d xL2 LogA
2bd
Hb c - a dL3 Log@c + d xD
PolyLogB2,
b3 d
b Hc+d xL
F
d Ha+b xL
-
-
e Ha+b xL 2
E
c+d x
+
2 Hb c - a dL3 PolyLogB2,
2 Hb c - a dL3 PolyLogB3,
b3 d
b3 d
b Hc+d xL
F
d Ha+b xL
d Ha + b xL
-b c + a d
F -
d Ha+b xL
F
b Hc+d xL
+
103
b Hc + d xL
bc-ad
F
F-
104
2.2 Logarithm Functions.nb
1
6 b3 c3 LogB
6 b3 d
Hb c - a dL e
c+dx
e Ha + b xL
F - 18 a b2 c2 d LogB
c+dx
e Ha + b xL
F + 18 a2 b c d2 LogB
c+dx
e Ha + b xL
F + 6 b3 c2 d x LogB
Hb c - a dL e
e Ha + b xL
c+dx
F - 6 a3 d3 LogB
F - 12 a b2 c d2 x LogB
Hb c - a dL e
c+dx
e Ha + b xL
F + 6 a b2 c2 d LogB
e Ha + b xL
c+dx
F+
c+dx
c+dx
c+dx
e Ha + b xL 2
e Ha + b xL 2
e Ha + b xL 2
6 a2 b d3 x LogB
F - 12 a b2 c2 d LogB
F + 21 a2 b c d2 LogB
F - 9 a3 d3 LogB
F c+dx
c+dx
c+dx
c+dx
e Ha + b xL 2
e Ha + b xL 2
e Ha + b xL 2
e Ha + b xL 2
12 b3 c2 d x LogB
F + 18 a b2 c d2 x LogB
F - 6 a2 b d3 x LogB
F - 3 b3 c d2 x2 LogB
F +
c+dx
c+dx
c+dx
c+dx
e Ha + b xL 2
e Ha + b xL 3
e Ha + b xL 3
e Ha + b xL 3
3 a b2 d3 x2 LogB
F + 6 a b2 c2 d LogB
F - 6 a2 b c d2 LogB
F + 2 a3 d3 LogB
F +
c+dx
c+dx
c+dx
c+dx
e Ha + b xL 3
e Ha + b xL 3
e Ha + b xL 3
e Ha + b xL
bc-ad
6 b3 c2 d x LogB
F + 6 b3 c d2 x2 LogB
F + 2 b3 d3 x3 LogB
F - 18 b3 c3 LogB
F LogB
F+
c+dx
c+dx
c+dx
c+dx
bc+bdx
e Ha + b xL
bc-ad
e Ha + b xL
bc-ad
e Ha + b xL
bc-ad
54 a b2 c2 d LogB
F LogB
F - 54 a2 b c d2 LogB
F LogB
F + 18 a3 d3 LogB
F LogB
F+
c+dx
bc+bdx
c+dx
bc+bdx
c+dx
bc+bdx
e Ha + b xL 2
bc-ad
e Ha + b xL 2
bc-ad
e Ha + b xL 2
bc-ad
6 b3 c3 LogB
F LogB
F - 18 a b2 c2 d LogB
F LogB
F + 18 a2 b c d2 LogB
F LogB
Fc+dx
bc+bdx
c+dx
bc+bdx
c+dx
bc+bdx
e Ha + b xL 2
bc-ad
e Ha + b xL
d Ha + b xL
d Ha + b xL
6 a3 d3 LogB
F LogB
F + 6 Hb c - a dL3 - 3 + 2 LogB
F PolyLogB2,
F - 12 Hb c - a dL3 PolyLogB3,
F
c+dx
bc+bdx
c+dx
b Hc + d xL
b Hc + d xL
12 a2 b c d2 LogB
F + 6 a3 d3 LogB
Hb c - a dL e
Problem ð538: Valid but suboptimal antiderivative:
:
LogB
d Ha+b xL
F
b Hc+d xL
, x, 1, 0>
cf+dfx
PolyLogB2,
df
1
b c-a d
F
b Hc+d xL
c
- LogB
2df
2 LogB
a
2
+ xF - 2 LogB
d
d Ha + b xL
b Hc + d xL
c
+ xF Log@c + d xD + 2 LogB
b
F Log@c + d xD + 2 LogB
+ xF Log@c + d xD +
d
a
+ xF LogB
b
b Hc + d xL
bc-ad
Problem ð549: Valid but suboptimal antiderivative:
:Hf + g xL3 LogBe
a+bx
c+dx
F , x, 15, 0>
n 2
F + 2 PolyLogB2,
d Ha + b xL
-b c + a d
F
F-
2.2 Logarithm Functions.nb
-
Hb c - a dL2 Hb c + a dL g3 n2 x
6 b3 d3
+
Hb c - a dL2 g2 H4 b d f - b c g - a d gL n2 x
4 b3 d3
a2 Hb c - a dL g2 H4 b d f - b c g - a d gL n2 Log@a + b xD
4 b4 d2
Hb c - a dL g3 n x3 LogAe I
6bd
Hb f - a gL4 n LogB-
a+b x n
M E
c+d x
b c-a d
F
d Ha+b xL
2 b4 g
-
LogAe I
a+b x n
M E
c+d x
4 b2 d4
2 d4 g
1
d Ha+b xL
F
b Hc+d xL
Hb c - a dL2 g3 n2 x2
a3 Hb c - a dL g3 n2 Log@a + b xD
-
12 b2 d2
Hb c - a dL g2 H4 b d f - b c g - a d gL n x2 LogAe I
4 b2 d2
2 b4 d3
+
Hf + g xL4 LogAe I
4g
-
+
a+b x n 2
M E
c+d x
-
Hd f - c gL4 n LogAe I
a+b x n
M E
c+d x
a+b x n
M E
c+d x
+
6 b4 d
-
Hb c - a dL g Ia2 d2 g2 - a b d g H4 d f - c gL + b2 I6 d2 f2 - 4 c d f g + c2 g2 MM n Ha + b xL LogAe I
c2 Hb c - a dL g2 H4 b d f - b c g - a d gL n2 Log@c + d xD
Hd f - c gL4 n2 PolyLogB2,
-
+
LogB
2 d4 g
b c-a d
F
b Hc+d xL
+
a+b x n
M E
c+d x
+
c3 Hb c - a dL g3 n2 Log@c + d xD
6 b d4
Hb c - a dL2 g Ia2 d2 g2 - a b d g H4 d f - c gL + b2 I6 d2 f2 - 4 c d f g + c2 g2 MM n2 Log@c + d xD
Hb f - a gL4 n2 PolyLogB2,
2 b4 g
105
-
2 b4 d4
b Hc+d xL
F
d Ha+b xL
12 b4 c2 d2 f g2 n2 x - 24 a b3 c d3 f g2 n2 x + 12 a2 b2 d4 f g2 n2 x - 5 b4 c3 d g3 n2 x + 5 a b3 c2 d2 g3 n2 x + 5 a2 b2 c d3 g3 n2 x - 5 a3 b d4 g3 n2 x +
12 b4 d4
b4 c2 d2 g3 n2 x2 - 2 a b3 c d3 g3 n2 x2 + a2 b2 d4 g3 n2 x2 + 12 a b3 d4 f3 n2 LogB
a
2
+ xF - 18 a2 b2 d4 f2 g n2 LogB
b
4
4
3
2
3 a d g n LogB
a
2
4
3
3
2
c
+ xF + 12 b c d f n LogB
2
4
2
2
2
2
a
2
+ xF + 12 a3 b d4 f g2 n2 LogB
b
c
+ xF - 18 b c d f g n LogB
2
4
3
2
2
+ xF b
c
2
a
+ xF + 12 b c d f g n LogB
2
4
4
3
2
c
+ xF - 3 b c g n LogB
2
+ xF -
b
d
d
d
d
36 a b3 c d3 f2 g n2 Log@a + b xD + 36 a2 b2 d4 f2 g n2 Log@a + b xD + 24 a b3 c2 d2 f g2 n2 Log@a + b xD + 12 a2 b2 c d3 f g2 n2 Log@a + b xD 36 a3 b d4 f g2 n2 Log@a + b xD - 6 a b3 c3 d g3 n2 Log@a + b xD - 3 a2 b2 c2 d2 g3 n2 Log@a + b xD - 2 a3 b c d3 g3 n2 Log@a + b xD + 11 a4 d4 g3 n2 Log@a + b xD a
a
a
24 a b3 d4 f3 n2 LogB + xF Log@a + b xD + 36 a2 b2 d4 f2 g n2 LogB + xF Log@a + b xD - 24 a3 b d4 f g2 n2 LogB + xF Log@a + b xD +
b
b
b
a
c
c
6 a4 d4 g3 n2 LogB + xF Log@a + b xD + 24 a b3 d4 f3 n2 LogB + xF Log@a + b xD - 36 a2 b2 d4 f2 g n2 LogB + xF Log@a + b xD +
b
d
d
c
c
c
d Ha + b xL
24 a3 b d4 f g2 n2 LogB + xF Log@a + b xD - 6 a4 d4 g3 n2 LogB + xF Log@a + b xD - 24 a b3 d4 f3 n2 LogB + xF LogB
F+
d
d
d
-b c + a d
c
d Ha + b xL
c
d Ha + b xL
c
d Ha + b xL
36 a2 b2 d4 f2 g n2 LogB + xF LogB
F - 24 a3 b d4 f g2 n2 LogB + xF LogB
F + 6 a4 d4 g3 n2 LogB + xF LogB
Fd
-b c + a d
d
-b c + a d
d
-b c + a d
a+bx n
a+bx n
a+bx n
36 b4 c d3 f2 g n x LogBe
F + 36 a b3 d4 f2 g n x LogBe
F + 24 b4 c2 d2 f g2 n x LogBe
Fc+dx
c+dx
c+dx
24 a2 b2 d4 f g2 n x LogBe
a+bx
n
c+dx
12 a b3 d4 f g2 n x2 LogBe
a+bx
c+dx
2 a b3 d4 g3 n x3 LogBe
a+bx
c+dx
n
n
F - 6 b4 c3 d g3 n x LogBe
F + 3 b4 c2 d2 g3 n x2 LogBe
a+bx
c+dx
a+bx
c+dx
F + 24 a b3 d4 f3 n Log@a + b xD LogBe
-
n
F + 6 a3 b d4 g3 n x LogBe
n
a+bx
c+dx
F - 3 a2 b2 d4 g3 n x2 LogBe
a+bx
c+dx
n
n
F - 12 b4 c d3 f g2 n x2 LogBe
a+bx
c+dx
n
F - 2 b4 c d3 g3 n x3 LogBe
F - 36 a2 b2 d4 f2 g n Log@a + b xD LogBe
+
a+bx
c+dx
+
n
F+
a+bx
c+dx
a+bx
c+dx
n
F+
n
F+
-
106
2.2 Logarithm Functions.nb
24 a3 b d4 f g2 n Log@a + b xD LogBe
a+bx
c+dx
a+bx
18 b4 d4 f2 g x2 LogBe
n
F - 6 a4 d4 g3 n Log@a + b xD LogBe
F + 12 b4 d4 f g2 x3 LogBe
n 2
c+dx
a+bx
c+dx
a+bx
c+dx
n
F + 12 b4 d4 f3 x LogBe
F + 3 b4 d4 g3 x4 LogBe
n 2
a+bx
c+dx
a+bx
F +
n 2
c+dx
F + 36 b4 c2 d2 f2 g n2 Log@c + d xD -
n 2
36 a b3 c d3 f2 g n2 Log@c + d xD - 36 b4 c3 d f g2 n2 Log@c + d xD + 12 a b3 c2 d2 f g2 n2 Log@c + d xD + 24 a2 b2 c d3 f g2 n2 Log@c + d xD +
11 b4 c4 g3 n2 Log@c + d xD - 2 a b3 c3 d g3 n2 Log@c + d xD - 3 a2 b2 c2 d2 g3 n2 Log@c + d xD - 6 a3 b c d3 g3 n2 Log@c + d xD +
a
a
a
24 b4 c d3 f3 n2 LogB + xF Log@c + d xD - 36 b4 c2 d2 f2 g n2 LogB + xF Log@c + d xD + 24 b4 c3 d f g2 n2 LogB + xF Log@c + d xD b
b
b
a
c
c
4 4 3 2
4
3 3 2
4 2 2 2
2
6 b c g n LogB + xF Log@c + d xD - 24 b c d f n LogB + xF Log@c + d xD + 36 b c d f g n LogB + xF Log@c + d xD b
d
d
c
c
a+bx n
24 b4 c3 d f g2 n2 LogB + xF Log@c + d xD + 6 b4 c4 g3 n2 LogB + xF Log@c + d xD - 24 b4 c d3 f3 n LogBe
F Log@c + d xD +
d
d
c+dx
c+dx
24 b4 c d3 f3 n2 LogB
n
a+bx
36 b4 c2 d2 f2 g n LogBe
a
+ xF LogB
b
F Log@c + d xD - 24 b4 c3 d f g2 n LogBe
b Hc + d xL
F + 36 b4 c2 d2 f2 g n2 LogB
n
a+bx
c+dx
a
+ xF LogB
F Log@c + d xD + 6 b4 c4 g3 n LogBe
b Hc + d xL
F - 24 b4 c3 d f g2 n2 LogB
a+bx
c+dx
a
n
F Log@c + d xD -
+ xF LogB
bc-ad
b
bc-ad
b
a
b Hc + d xL
d Ha + b xL
6 b4 c4 g3 n2 LogB + xF LogB
F + 6 b4 c I- 4 d3 f3 + 6 c d2 f2 g - 4 c2 d f g2 + c3 g3 M n2 PolyLogB2,
F+
b
bc-ad
-b c + a d
b Hc + d xL
6 a d4 I- 4 b3 f3 + 6 a b2 f2 g - 4 a2 b f g2 + a3 g3 M n2 PolyLogB2,
F
bc-ad
b Hc + d xL
bc-ad
Problem ð550: Valid but suboptimal antiderivative:
:Hf + g xL2 LogBe
a+bx
c+dx
Hb c - a dL2 g2 n2 x
3 b2 d2
+
F , x, 12, 0>
n 2
a2 Hb c - a dL g2 n2 Log@a + b xD
-
3 b3 d
Hb c - a dL g2 n x2 LogAe I
3bd
2 Hb c - a dL g H3 b d f - b c g - a d gL n Ha + b xL LogAe I
3 b3 d2
Hf + g xL3 LogAe I
3g
a+b x n 2
M E
c+d x
-
2 Hd f - c gL3 n LogAe I
a+b x n
M E
c+d x
3 d3 g
2 Hb c - a dL2 g H3 b d f - b c g - a d gL n2 Log@c + d xD
3 b3 d3
a+b x n
M E
c+d x
-
+
LogB
a+b x n
M E
c+d x
2 Hb f - a gL3 n LogB-
b c-a d
F
d Ha+b xL
3 b3 g
b c-a d
F
b Hc+d xL
-
LogAe I
a+b x n
M E
c+d x
c2 Hb c - a dL g2 n2 Log@c + d xD
2 Hd f - c gL3 n2 PolyLogB2,
3 d3 g
+
+
3 b d3
d Ha+b xL
F
b Hc+d xL
-
2 Hb f - a gL3 n2 PolyLogB2,
3 b3 g
b Hc+d xL
F
d Ha+b xL
F+
2.2 Logarithm Functions.nb
1
b3 c2 d g2 n2 x - 2 a b2 c d2 g2 n2 x + a2 b d3 g2 n2 x + 3 a b2 d3 f2 n2 LogB
3 b3 d3
a
2
+ xF - 3 a2 b d3 f g n2 LogB
b
3 b3 c d2 f2 n2 LogB
c
2
+ xF - 3 b3 c2 d f g n2 LogB
d
c
2
+ xF + b3 c3 g2 n2 LogB
d
c
a
2
+ xF + a3 d3 g2 n2 LogB
b
a
2
+ xF +
b
2
+ xF - 6 a b2 c d2 f g n2 Log@a + b xD + 6 a2 b d3 f g n2 Log@a + b xD +
d
2 a b2 c2 d g2 n2 Log@a + b xD + a2 b c d2 g2 n2 Log@a + b xD - 3 a3 d3 g2 n2 Log@a + b xD - 6 a b2 d3 f2 n2 LogB
a
+ xF Log@a + b xD +
b
6 a2 b d3 f g n2 LogB
a
+ xF Log@a + b xD - 2 a3 d3 g2 n2 LogB
b
c
a
b
c
+ xF Log@a + b xD + 6 a b2 d3 f2 n2 LogB
c
+ xF Log@a + b xD d
c
d Ha + b xL
F+
-b c + a d
d Ha + b xL
c
d Ha + b xL
a+bx n
6 a2 b d3 f g n2 LogB + xF LogB
F - 2 a3 d3 g2 n2 LogB + xF LogB
F - 6 b3 c d2 f g n x LogBe
F+
d
-b c + a d
d
-b c + a d
c+dx
6 a2 b d3 f g n2 LogB
+ xF Log@a + b xD + 2 a3 d3 g2 n2 LogB
d
c
d
6 a b2 d3 f g n x LogBe
a+bx
c+dx
a b2 d3 g2 n x2 LogBe
+ xF Log@a + b xD - 6 a b2 d3 f2 n2 LogB
a+bx
n
c+dx
2 a3 d3 g2 n Log@a + b xD LogBe
n
F + 2 b3 c2 d g2 n x LogBe
d
n
a+bx
c+dx
F + 6 a b2 d3 f2 n Log@a + b xD LogBe
a+bx
n
c+dx
F + 3 b3 d3 f2 x LogBe
+ xF LogB
F - 2 a2 b d3 g2 n x LogBe
a+bx
n
c+dx
a+bx
c+dx
a+bx
c+dx
F - b3 c d2 g2 n x2 LogBe
F - 6 a2 b d3 f g n Log@a + b xD LogBe
F + 3 b3 d3 f g x2 LogBe
n 2
n
a+bx
c+dx
n
a+bx
c+dx
a+bx
c+dx
F+
F + b3 d3 g2 x3 LogBe
n 2
n
a+bx
c+dx
F+
F +
n 2
6 b3 c2 d f g n2 Log@c + d xD - 6 a b2 c d2 f g n2 Log@c + d xD - 3 b3 c3 g2 n2 Log@c + d xD + a b2 c2 d g2 n2 Log@c + d xD + 2 a2 b c d2 g2 n2 Log@c + d xD +
a
a
a
6 b3 c d2 f2 n2 LogB + xF Log@c + d xD - 6 b3 c2 d f g n2 LogB + xF Log@c + d xD + 2 b3 c3 g2 n2 LogB + xF Log@c + d xD b
b
b
c
c
c
6 b3 c d2 f2 n2 LogB + xF Log@c + d xD + 6 b3 c2 d f g n2 LogB + xF Log@c + d xD - 2 b3 c3 g2 n2 LogB + xF Log@c + d xD d
d
d
a+bx n
a+bx n
a+bx n
6 b3 c d2 f2 n LogBe
F Log@c + d xD + 6 b3 c2 d f g n LogBe
F Log@c + d xD - 2 b3 c3 g2 n LogBe
F Log@c + d xD c+dx
c+dx
c+dx
6 b3 c d2 f2 n2 LogB
a
+ xF LogB
b
b Hc + d xL
bc-ad
F + 6 b3 c2 d f g n2 LogB
2 b3 c I3 d2 f2 - 3 c d f g + c2 g2 M n2 PolyLogB2,
d Ha + b xL
-b c + a d
Problem ð551: Valid but suboptimal antiderivative:
:Hf + g xL LogBe
a+bx
c+dx
F , x, 9, 0>
n 2
a
+ xF LogB
b
b Hc + d xL
bc-ad
F - 2 b3 c3 g2 n2 LogB
a
+ xF LogB
b
F - 2 a d3 I3 b2 f2 - 3 a b f g + a2 g2 M n2 PolyLogB2,
b Hc + d xL
b Hc + d xL
bc-ad
bc-ad
F
F-
107
108
2.2 Logarithm Functions.nb
-
Hb c - a dL g n Ha + b xL LogAe I
b2 d
Hd f - c gL2 n LogAe I
a+b x n
M E
c+d x
a+b x n
M E
c+d x
LogB
d2 g
n
a+bx
f x LogBe
c+dx
F - n LogB
a+bx
2 f n LogBe
n
c+dx
a+bx
n
2 g n LogBe
c+dx
2
1
gn
a+bx
2
x LogB
2
c+dx
-d J
x
d
-
b c-a d
F
b Hc+d xL
a+bx
c+dx
F - n LogB
F - n LogB
a+bx
c+dx
d I +xM
f n2 x LogB
b
-c+
a+bx
c+dx
F -
1
2
bd
d
a+bx
2 b c LogB
c+dx
a+bx
c+dx
1
x2 LogB
2
F+
a+bx
c+dx
a
b
2
-
+
b2
bd
b
-c+
ad
b
c
2
+ xF - b c LogB
-b c + a d
F-
Hb c - a dL
1
2
c
d
Hb c - a dL
a
2
+ xE
F
+
2g
d Ha+b xL
F
b Hc+d xL
Hd f - c gL2 n2 PolyLogB2,
a+bx
c+dx
F
a+bx
Ha + b xL LogAe I
b
F , x, 3, 0>
a+b x n 2
M E
c+d x
d2
a2 Log@a + b xD
x
+
bd
-b J
x
b
-
b2 Hb c - a dL
a Log@a+b xD
b2
c
d
a
2
a+b x
E
b
a
b I +xM
c
d
bc
d
a
+ xF LogB
b
c+dx
b Hc + d xL
bc-ad
a
+
a+b x n
M E
c+d x
bd
LogB
b c-a d
F
b Hc+d xL
+
bx
+ xF + LogB
+
c+dx
F + PolyLogB2,
b2 Hb c - a dL
b I +xM
c
d
-a+
bc
d
F
c+dx
F +
+
c
+ xF Log@a + b xD - 2 a d LogB
F - 2 b c LogB
-
d
b
a+bx
+
c
+ xF + LogB
b
-a+
+ xF + 2 a d LogB
d2 Hb c - a dL
N + x LogA
- LogB
+ xE LogB1 -
-
c2 Log@c + d xD
-
bd
Hb c - a dL
a2 LogA
F - 2 a d Log@a + b xD LogB
2 Hb c - a dL n LogAe I
b2 g
+
+ xF Log@a + b xD +
d
a
c
+ xF Log@c + d xD + 2 b c LogB
b
F + 2 b c PolyLogB2,
d Ha + b xL
-b c + a d
2 Hb c - a dL n2 PolyLogB2,
bd
+ xF Log@c + d xD +
d
F + 2 a d PolyLogB2,
n 2
c+dx
Hb f - a gL2 n2 PolyLogB2,
+
Problem ð552: Valid but suboptimal antiderivative:
:LogBe
-
-
2
c2 Log@c + d xD
-
d
F Log@c + d xD + 2 b c LogB
+
a+b x n 2
M E
c+d x
b2 c d - a b d2
2 d2 H- b c + a dL
d I +xM
Hf + g xL2 LogAe I
d2 g
F - n LogB
a2 Log@a + b xD
x
+
F + PolyLogB2,
d Ha + b xL
-
a+b x n
M E
c+d x
Hb c - a dL Ha d Log@a + b xD - b c Log@c + d xDL
c2 LogA
+ xE
b
+ xF LogB
n
c+dx
2 b2 Hb c - a dL
a
b2 g
a+bx
g x2 LogBe
a2 LogA
- a d LogB
LogAe I
b2 d2
x LogB
F
b c-a d
F
d Ha+b xL
Hb c - a dL2 g n2 Log@c + d xD
d2 H- b c + a dL
c
2 a d LogB
ad
b
F
c+d x
E
d
a
+ xE LogB1 -
+
2
c+dx
N + x LogA
1
+
a+bx
bd
a
b
2
F - Hb c - a dL
d2
c2 LogA
F
2
c Log@c+d xD
+
Hb f - a gL2 n LogB-
d Ha+b xL
F
b Hc+d xL
b Hc + d xL
bc-ad
F
b Hc+d xL
F
d Ha+b xL
2.2 Logarithm Functions.nb
1
a d n2 LogB
bd
a
2
+ xF + b c n2 LogB
b
c
2
+ xF - 2 a d n2 LogB
d
a+bx
2 a d n Log@a + b xD LogBe
c+dx
a+bx
2 b c n LogBe
c+dx
n
a
+ xF Log@a + b xD + 2 a d n2 LogB
b
n
F + b d x LogBe
a+bx
c+dx
F Log@c + d xD - 2 b c n2 LogB
a
+ xF Log@a + b xD - 2 a d n2 LogB
d
F + 2 b c n2 LogB
n 2
+ xF LogB
b
c
b Hc + d xL
bc-ad
a
F - 2 b c n2 PolyLogB2,
d Ha + b xL
-b c + a d
c
:
-
a+b x n 2
M E
c+d x
F - 2 a d n2 PolyLogB2,
, x, 7, 0>
f+gx
LogAe I
a+b x n 2
M E
c+d x
2 n LogAe I
LogB
g
a+b x n
M E
c+d x
b c-a d
F
b Hc+d xL
+
PolyLogB2,
g
LogAe I
a+b x n 2
M E
c+d x
LogB
g
a Hd f-c gL+b d f x-b c g x
Hb f-a gL Hc+d xL
F
Hb c-a dL Hf+g xL
Hb f-a gL Hc+d xL
F
-
2 n2 PolyLogB3,
+
g
2 n LogAe I
d Ha+b xL
F
b Hc+d xL
a+b x n
M E
c+d x
PolyLogB2,
g
2 n2 PolyLogB3,
-
d Ha+b xL
F
b Hc+d xL
+
a Hd f-c gL+b d f x-b c g x
g
d Ha + b xL
-b c + a d
+ xF Log@c + d xD d
Problem ð553: Valid but suboptimal antiderivative:
LogAe I
+ xF LogB
d
+ xF Log@c + d xD - 2 b c n2 LogB
b
c
Hb f-a gL Hc+d xL
F
b Hc + d xL
bc-ad
F+
F
109
110
2.2 Logarithm Functions.nb
1
- n2 LogB
g
-b c + a d
d Ha + b xL
a
2 n LogB
F LogB
a
n2 LogB
2
g Hc + d xL
-d f + c g
n2 LogB
b Hf + g xL
bf-ag
F LogB
2
Hd f - c gL Ha + b xL
c
d
n2 LogB
g Hc + d xL
-d f + c g
n2 LogB
F LogB
2
n
c+dx
F LogB
2
Hd f - c gL Ha + b xL
a+bx
n
2 n LogBe
c+dx
F LogB
F + n LogB
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
b
b
df-cg
F - 2 n2 LogB
a+bx
d
c+dx
n
a+bx
-d f + c g
a
b
-d f + c g
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
c
+ xF LogB
b Hf + g xL
bf-ag
c
+ xF LogB
+ xF LogB
b
F PolyLogB2,
Hd f - c gL Ha + b xL
g Hc + d xL
F LogB
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
F + 2 n LogBe
Hb f - a gL Hc + d xL
d Hf + g xL
-d f + c g
F LogB
F LogB
df-cg
a
a+bx
c+dx
g Hc + d xL
-d f + c g
d
F + 2 n2 LogB
Hd f - c gL Ha + b xL
d
+ xF Log@f + g xD + n2 LogB
F Log@f + g xD + LogBe
Hb f - a gL Hc + d xL
+ xF LogB
g Hc + d xL
Hd f - c gL Ha + b xL
F LogB
F LogB
F - 2 n2 LogB
H- b c + a dL Hf + g xL
n
+ xF LogBe
g Hc + d xL
a
b
c
F + 2 n2 LogB
d Hf + g xL
F PolyLogB2,
2
+ xF Log@f + g xD - 2 n2 LogB
c+dx
F + 2 n2 LogB
F LogB
a
+ xF LogBe
bf-ag
df-cg
2
2
a
b Hf + g xL
d Hf + g xL
Hb f - a gL Hc + d xL
2 n2 LogB
F + 2 n LogB
bf-ag
a+bx
+ xF LogBe
F + n2 LogB
F Log@f + g xD + 2 n LogB
b Hf + g xL
Hb f - a gL Hc + d xL
2 n LogB
n
c+dx
+ xF LogB
b
Hd f - c gL Ha + b xL
a+bx
+ xF LogBe
b
n2 LogB
Hb f - a gL Hc + d xL
n
F + n LogB
F - 2 n2 LogB
F + 2 n2 PolyLogB3,
F Log@f + g xD -
c+dx
+ xF LogB
b
b Hf + g xL
bf-ag
df-cg
F LogB
d
a
d Hf + g xL
g Hc + d xL
-d f + c g
F-
c
2
+ xF LogB
d
df-cg
F+
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
d Ha + b xL
F LogB
b Hf + g xL
d Hf + g xL
df-cg
F+
d Hf + g xL
b Hc + d xL
2
+ xF Log@f + g xD -
n 2
a+bx
F - n2 LogB
c
F PolyLogB2,
F PolyLogB2,
F - 2 n2 PolyLogB3,
bf-ag
F-
g Ha + b xL
-b f + a g
b Hc + d xL
d Ha + b xL
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
Problem ð554: Valid but suboptimal antiderivative:
:
LogAe I
a+b x n 2
M E
c+d x
Hf + g xL2
Ha + b xL LogAe I
, x, 3, 0>
a+b x n 2
M E
c+d x
Hb f - a gL Hf + g xL
+
2 Hb c - a dL n LogAe I
- b d f2 n2 LogB
a
2
+ xF + b c f g n2 LogB
LogB
Hb f - a gL Hd f - c gL
1
g H- b f + a gL H- d f + c gL Hf + g xL
a+b x n
M E
c+d x
a
2
Hb c-a dL Hf+g xL
Hb f-a gL Hc+d xL
+ xF - b d f g n2 x LogB
a
F
+
2 Hb c - a dL n2 PolyLogB2,
Hd f-c gL Ha+b xL
Hb f-a gL Hc+d xL
Hb f - a gL Hd f - c gL
2
+ xF + b c g2 n2 x LogB
a
2
+ xF + 2 b d f2 n2 LogB
F
a
c
+ xF d
2
a
c
a
c
a
c
c
2 a d f g n2 LogB + xF LogB + xF + 2 b d f g n2 x LogB + xF LogB + xF - 2 a d g2 n2 x LogB + xF LogB + xF - b d f2 n2 LogB + xF +
b
d
b
d
b
d
d
2
2
2
c
c
c
a
a+bx n
a d f g n2 LogB + xF - b d f g n2 x LogB + xF + a d g2 n2 x LogB + xF + 2 b d f2 n LogB + xF LogBe
Fd
d
d
b
c+dx
b
b
b
+
b
-
F-
+ xF LogB
b
-
F-
F+
F
2.2 Logarithm Functions.nb
a
+ xF LogBe
b
2 b d f2 n LogB
c+dx
c
a+bx
n
+ xF LogBe
d
2 a d g2 n x LogB
c+dx
c
a+bx
+ xF LogBe
d
a c g2 LogBe
n
a+bx
2 b c f g n LogB
c+dx
a
+ xF LogB
-d f + c g
-b c + a d
2 a d f g n2 LogB
2
F LogB
d Ha + b xL
g Hc + d xL
2 a d g2 n2 x LogB
g Hc + d xL
a
+ xF LogB
b
Hd f - c gL Ha + b xL
a+bx
n
c+dx
a+bx
2 b c g2 n x LogBe
F LogB
n
c+dx
2 b d f g n2 x LogB
g Hc + d xL
-d f + c g
2 a d f g n2 LogB
a
+ xF LogB
b
2 b d f2 n LogBe
a+bx
n
c+dx
2 a d g2 n x LogBe
a+bx
c+dx
F LogB
bf-ag
n
df-cg
F LogB
df-cg
b
g Hc + d xL
-d f + c g
2
F + b c f g n2 LogB
+ xF LogB
b
a
g Hc + d xL
-d f + c g
g Hc + d xL
-d f + c g
F + 2 b d f2 n2 LogB
n
-d f + c g
-d f + c g
F LogB
bf-ag
n
F LogB
g Hc + d xL
-d f + c g
c+dx
g Hc + d xL
g Hc + d xL
-d f + c g
Hd f - c gL Ha + b xL
F - a d f g n2 LogB
2
a
+ xF LogB
b
2
F+
F+
F+
-d f + c g
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
b Hf + g xL
+ xF LogB
b
F-
b Hf + g xL
bf-ag
F + 2 b c f g n2 LogB
a+bx
-d f + c g
a
d Hf + g xL
df-cg
F + 2 b d f g n x LogBe
F - 2 b c f g n2 LogB
F LogB
b
+ xF LogB
a+bx
c+dx
g Hc + d xL
-d f + c g
F-
F LogB
+ xF LogB
a
b
n
c+dx
g Hc + d xL
F - 2 b d f2 n2 LogB
+
g Hc + d xL
F +
2
F+
F - 2 b d f g n x LogBe
d Hf + g xL
F+
F - a d f g n2 LogB
bf-ag
a
F-
F -
n 2
c+dx
Hd f - c gL Ha + b xL
F + 2 a d g2 n2 x LogB
df-cg
a+bx
Hb f - a gL Hc + d xL
Hb f - a gL Hc + d xL
bf-ag
df-cg
F-
Hd f - c gL Ha + b xL
b Hf + g xL
d Hf + g xL
F LogB
d
Hb f - a gL Hc + d xL
bf-ag
n
a+bx
+ xF LogBe
Hd f - c gL Ha + b xL
b Hf + g xL
d Hf + g xL
c
F - 2 a d g2 n2 x LogB
F LogB
df-cg
c+dx
F LogB
b Hf + g xL
F LogB
c+dx
Hb f - a gL Hc + d xL
F + 2 b d f2 n2 LogB
g Hc + d xL
a+bx
F LogB
2
F LogB
g Hc + d xL
b
F LogB
Hd f - c gL Ha + b xL
b Hf + g xL
b
-d f + c g
Hb f - a gL Hc + d xL
c+dx
+ xF LogB
b
d Ha + b xL
bf-ag
a+bx
+ xF LogB
F + b c f g n2 LogB
d Ha + b xL
Hd f - c gL Ha + b xL
a
a
n
a+bx
+ xF LogBe
F + a d f g LogBe
c+dx
-b c + a d
a
n 2
a+bx
-b c + a d
Hb f - a gL Hc + d xL
F + 2 b c g2 n2 x LogB
-
F - 2 b d f g n x LogB
F + 2 a d f g n2 LogB
+ xF LogB
F - 2 a d f g n LogBe
d Hf + g xL
n
F - 2 b c g2 n x LogB
F + b c f g LogBe
n 2
F - 2 b c f g n2 LogB
F - 2 b d f g n2 x LogB
d Hf + g xL
a
F - 2 b d f2 n2 LogB
b Hf + g xL
df-cg
a+bx
F + 2 b c f g n LogBe
bf-ag
d Hf + g xL
c+dx
F + 2 b d f g n2 x LogB
b Hf + g xL
F LogB
d
F - 2 b c f g n2 LogB
F - a d g2 n2 x LogB
2
bf-ag
a+bx
+ xF LogBe
F - 2 b c g2 n2 x LogB
Hd f - c gL Ha + b xL
b Hf + g xL
F LogB
c
F - 2 b c g2 n2 x LogB
Hb f - a gL Hc + d xL
bf-ag
c+dx
g Hc + d xL
-d f + c g
Hd f - c gL Ha + b xL
b Hf + g xL
b
c+dx
g Hc + d xL
n
a+bx
+ xF LogBe
F + 2 a d g2 n2 x LogB
Hb f - a gL Hc + d xL
F LogB
a
-d f + c g
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
2 b d f2 n LogBe
b
Hd f - c gL Ha + b xL
Hb f - a gL Hc + d xL
2 a d f g n2 LogB
+ xF LogB
Hb f - a gL Hc + d xL
F LogB
F LogB
-d f + c g
b c g2 n2 x LogB
a
F - a d g2 n2 x LogB
-b c + a d
-d f + c g
g Hc + d xL
-d f + c g
d Ha + b xL
2 a d g2 n2 x LogB
F - b d f2 LogBe
F - 2 b c f g n2 LogB
g Hc + d xL
2 a d f g n2 LogB
n
n 2
b
b c g2 n2 x LogB
F + 2 a d f g n LogB
c+dx
a+bx
2 b c g2 n2 x LogB
F + 2 b d f g n x LogB
n
F +
2
b Hf + g xL
bf-ag
b Hf + g xL
bf-ag
d Hf + g xL
df-cg
F+
F LogB
F LogB
F+
F-
d Hf + g xL
df-cg
d Hf + g xL
df-cg
F+
F-
F+
111
112
2.2 Logarithm Functions.nb
2 b d f g n2 x LogB
g Hc + d xL
-d f + c g
F LogB
d Hf + g xL
df-cg
2 Hb c - a dL g n2 Hf + g xL PolyLogB2,
2 a d f g n2 PolyLogB2,
b Hc + d xL
d Ha + b xL
F - 2 b c g2 n2 x LogB
g Ha + b xL
-b f + a g
g Hc + d xL
-d f + c g
F LogB
d Hf + g xL
df-cg
F - 2 Hb c - a dL g n2 Hf + g xL PolyLogB2,
b Hc + d xL
F - 2 b c g2 n2 x PolyLogB2,
d Ha + b xL
F+
g Hc + d xL
-d f + c g
F + 2 a d g2 n2 x PolyLogB2,
F - 2 b c f g n2 PolyLogB2,
b Hc + d xL
d Ha + b xL
F
Problem ð555: Valid but suboptimal antiderivative:
:
LogAe I
a+b x n 2
M E
c+d x
Hf + g xL3
, x, 17, 0>
Hb c - a dL g n Ha + b xL LogAe I
a+b x n
M E
c+d x
Hb f - a gL2 Hd f - c gL Hf + g xL
d2 n LogAe I
a+b x n
M E
c+d x
LogB
g Hd f - c gL2
b c-a d
F
b Hc+d xL
-
b2 n LogB-
LogAe I
g Hb f - a gL2
-
Hb c - a dL2 g n2 Log@c + d xD
Hb f - a gL2 Hd f - c gL2
Hb c - a dL H2 b d f - b c g - a d gL n2 LogB-
Hb f - a gL Hd f - c gL
2
Hb c - a dL H2 b d f - b c g - a d gL n2 LogB-
g Ha+b xL
b f-a g
2
g Hc+d xL
Hb f - a gL2 Hd f - c gL2
d f-c g
Hb c - a dL H2 b d f - b c g - a d gL n2 PolyLogB2,
* * *
b c-a d
F
d Ha+b xL
Hb f - a gL2 Hd f - c gL2
F Log@f + g xD
F Log@f + g xD
b Hf+g xL
b f-a g
F
+
+
+
a+b x n
M E
c+d x
-
LogAe I
2 g Hf + g xL2
:Hf + g xL2 LogBe
a+bx
c+dx
F , x, 21, 0>
n 3
+
Hb c - a dL2 g n2 Log@f + g xD
Hb f - a gL2 Hd f - c gL2
-
Hb c - a dL H2 b d f - b c g - a d gL n LogAe I
Hb f - a gL Hd f - c gL
2
d2 n2 PolyLogB2,
+
d Ha+b xL
F
b Hc+d xL
g Hd f - c gL2
2
+
Hb f - a gL2 Hd f - c gL2
* * *
a+b x n
M E
c+d x
b2 n2 PolyLogB2,
Log@f + g xD
b Hc+d xL
F
d Ha+b xL
g Hb f - a gL2
Hb c - a dL H2 b d f - b c g - a d gL n2 PolyLogB2,
Result of integration not displayed since its leaf count is 18299
Problem ð556: Valid but suboptimal antiderivative:
a+b x n 2
M E
c+d x
d Hf+g xL
d f-c g
F
+
-
b Hc + d xL
d Ha + b xL
F+
2.2 Logarithm Functions.nb
Hb c - a dL2 g2 n2 Ha + b xL LogAe I
a+b x n
M E
c+d x
b3 d2
Hb c - a dL g2 n x2 LogAe I
2bd
Hb f - a gL3 n LogB-
a+b x n 2
M E
c+d x
b c-a d
F
d Ha+b xL
b3 g
-
-
a2 Hb c - a dL g2 n2 LogB-
b3 d
a+b x n 2
M E
c+d x
Hf + g xL3 LogAe I
+
3g
b3 d3
+
2 Hd f - c gL3 n2 LogAe I
2 Hb f - a gL3 n2 LogAe I
a+b x n
M E
c+d x
PolyLogB2,
d3 g
a+b x n
M E
c+d x
PolyLogB2,
b3 g
d Ha+b xL
F
b Hc+d xL
a+bx
c+dx
g x2 ILogAe I
n
F - n LogB
a+b x n
M E
c+d x
a+bx
c+dx
a+bx
c+dx
- n LogA
F LogBe
F
2
a+b x
EM
c+d x
bd
a+bx
c+dx
c
LogB
+ xF LogB
d
a+bx
c+dx
b2
d2
d Ha + b xL
a+bx
c+dx
a+bx
c+dx
n
F - n LogB
a+bx
2bd
a+b x n
M E
c+d x
a+bx
c+dx
- n LogA
F
2
a+b x
EM
c+d x
n
a+bx
c+dx
F + n LogB
+ xF LogB
b
a+bx
c+dx
-
-
F
b Hc+d xL
F
d Ha+b xL
d Ha+b xL
F
b Hc+d xL
-
d Ha+b xL
F
b Hc+d xL
-
2 Hb f - a gL3 n3 PolyLogB3,
b3 g
b Hc+d xL
F
d Ha+b xL
+
2
1
+
g2 x3 LogBe
3
a+bx
c+dx
n
F - n LogB
a+bx
c+dx
F
F + n Hb c - a dL g H- 3 b d f + b c g + a d gL - b2 d2 f2 LogB
a+b x n
M E
c+d x
- n LogA
a+b x
EMM
c+d x
3
1
+
b2
d2
a+bx
c+dx
F
+
-
c
2
+ xF + b c LogB
a
2
+ xF - 2 a d LogB
d
a+bx
F + b d x LogB
c+dx
b Hc + d xL
bc-ad
F
b c-a d
F
b Hc+d xL
b c-a d
F
b Hc+d xL
b3 d3
2
a+b x
EM
c+d x
b
a
LogB
LogB
Log@c + d xD
a
a d LogB
F + 2 a d Log@a + b xD LogB
-
-
I- b c g n + a d g n + 2 b d f ILogAe I
F Log@c + d xD - 2 b c LogB
3 f g n2 - LogBe
n
a+b x n 2
M E
c+d x
a+b x n
M E
c+d x
2 Hb c - a dL2 g H3 b d f - b c g - a d gL n3 PolyLogB2,
2 Hd f - c gL3 n3 PolyLogB3,
- n LogA
+
d3 g
d Ha+b xL
F
b Hc+d xL
c+dx
F + n LogB
-b c + a d
2 b c LogB
1
n
Hd f - c gL3 n LogAe I
a2 Hb c - a dL g2 n3 PolyLogB2,
a+b x n
M E
c+d x
a+b x n 2
M E
c+d x
b d3
d3 g
b2 d2 f2 LogBe
d3
3 f2 n2 - LogBe
+
2
c I3 d2 f2 - 3 c d f g + c2 g2 M n ILogAe I
1
-
+
-
c2 Hb c - a dL g2 n2 LogAe I
b3 d
b Hc+d xL
F
d Ha+b xL
b3
n x I3 f2 + 3 f g x + g2 x2 M LogB
+
a+b x n 3
M E
c+d x
b c-a d
F
b Hc+d xL
c2 Hb c - a dL g2 n3 PolyLogB2,
a I3 b2 f2 - 3 a b f g + a2 g2 M n Log@a + b xD ILogAe I
x LogBe
LogB
b d3
a+b x n
M E
c+d x
a+b x n
M E
c+d x
Hb c - a dL g H3 b d f - b c g - a d gL n Ha + b xL LogAe I
2 Hb c - a dL2 g H3 b d f - b c g - a d gL n2 LogAe I
b3 d3
LogAe I
b3 d2
LogAe I
Hb c - a dL3 g2 n3 Log@c + d xD
b c-a d
F
d Ha+b xL
113
- a2 d2 LogB
a
b
a+bx
c+dx
F + 2 b c LogB
2
F - 2 b c PolyLogB2,
2
+ xF - b2 c2 LogB
b
c
+ xF Log@a + b xD + 2 a d LogB
c
a
b
d Ha + b xL
-b c + a d
2
+ xF Log@a + b xD - 2 a d
d
c
+ xF Log@c + d xD - 2 b c LogB
F - 2 a d PolyLogB2,
d
b Hc + d xL
bc-ad
F -
+ xF - 2 a b c d Log@a + b xD + 2 a2 d2 Log@a + b xD +
d
+
+ xF Log@c + d xD -
-
+
114
2.2 Logarithm Functions.nb
d Ha + b xL
F+
d
-b c + a d
c+dx
a+bx
a+bx
a+bx 2
2 a b d2 x LogB
F - 2 a2 d2 Log@a + b xD LogB
F + b2 d2 x2 LogB
F + 2 b2 c2 Log@c + d xD - 2 a b c d Log@c + d xD c+dx
c+dx
c+dx
a
c
a+bx
a
b Hc + d xL
2 b2 c2 LogB + xF Log@c + d xD + 2 b2 c2 LogB + xF Log@c + d xD + 2 b2 c2 LogB
F Log@c + d xD + 2 b2 c2 LogB + xF LogB
F+
b
d
c+dx
b
bc-ad
d Ha + b xL
b Hc + d xL
1
a+bx n
a+bx
2 b2 c2 PolyLogB2,
F + 2 a2 d2 PolyLogB2,
F g2 n2 - LogBe
F + n LogB
F
-b c + a d
bc-ad
c+dx
c+dx
b3 d3
2
2
a
c
b3 c2 d x - 2 a b2 c d2 x + a2 b d3 x + a3 d3 LogB + xF + b3 c3 LogB + xF + 2 a b2 c2 d Log@a + b xD + a2 b c d2 Log@a + b xD - 3 a3 d3 Log@a + b xD b
d
2 a2 d2 LogB
a
+ xF Log@a + b xD - 2 a2 d2 LogB
b
+ xF Log@a + b xD + 2 a2 d2 LogB
c
+ xF LogB
d
d Ha + b xL
F - 2 b2 c d x LogB
a+bx
F-b c + a d
c+dx
a+bx
a+bx
a+bx
a+bx 2
2 a2 b d3 x LogB
F - b3 c d2 x2 LogB
F + a b2 d3 x2 LogB
F + 2 a3 d3 Log@a + b xD LogB
F + b3 d3 x3 LogB
F c+dx
c+dx
c+dx
c+dx
c+dx
a
c
3 b3 c3 Log@c + d xD + a b2 c2 d Log@c + d xD + 2 a2 b c d2 Log@c + d xD + 2 b3 c3 LogB + xF Log@c + d xD - 2 b3 c3 LogB + xF Log@c + d xD b
d
a+bx
a
b Hc + d xL
d Ha + b xL
b Hc + d xL
2 b3 c3 LogB
F Log@c + d xD - 2 b3 c3 LogB + xF LogB
F - 2 b3 c3 PolyLogB2,
F - 2 a3 d3 PolyLogB2,
F +
c+dx
b
bc-ad
-b c + a d
bc-ad
2 a3 d3 LogB
a
+ xF Log@a + b xD + 2 a3 d3 LogB
b
1
f2 n3 LogB
bd
a+bx
c+dx
f g n3 LogB
a+bx
c+dx
F
2
d Ha + b xL LogB
a+bx
c+dx
d Ha + b xL
b Hc + d xL
F d2 Ia2 - b2 x2 M LogB
F -
b3
+ xF Log@a + b xD - 2 a3 d3 LogB
g2 n3 6 b3 c3 LogB
bc-ad
d3
c+dx
bc+bdx
2
c+dx
+ xF LogB
F + 6 Hb c - a dL LogB
F + 2 b3 c2 d x LogB
a+bx
c+dx
F PolyLogB2,
d2
F + 6 Hb c - a dL2 LogB
a+bx
F PolyLogB2,
F - 18 a b2 c2 d LogB
bc-ad
c+dx
bc-ad
bc+bdx
d Ha + b xL
b Hc + d xL
F + 3 Hb c - a dL LogB
c+dx
bc-ad
c+dx
F - 6 a3 d3 LogB
a+bx
c+dx
a+bx
a+bx
a+bx
F + 6 b3 c2 d x LogB
d Ha + b xL
b Hc + d xL
F+
F d Ha + b xL + Hb c + a dL LogB
F + I- 6 b2 c2 + 6 a2 d2 M PolyLogB3,
F + 18 a2 b c d2 LogB
F + 6 a3 d3 LogB
a+bx
a+bx
d Ha + b xL
b Hc + d xL
bc-ad
c+dx
F+
-
a+bx
F - 12 a b2 c d2 x LogB
F +
F+
c+dx
c+dx
c+dx
c+dx
a+bx 2
a+bx 2
a+bx 2
a+bx 2
6 a2 b d3 x LogB
F + 6 a b2 c2 d LogB
F + 3 a2 b c d2 LogB
F - 9 a3 d3 LogB
F + 6 b3 c2 d x LogB
F c+dx
c+dx
c+dx
c+dx
c+dx
a+bx 2
a+bx 2
a+bx 2
a+bx 3
a+bx 3
6 a2 b d3 x LogB
F - 3 b3 c d2 x2 LogB
F + 3 a b2 d3 x2 LogB
F + 2 a3 d3 LogB
F + 2 b3 d3 x3 LogB
F +
c+dx
c+dx
c+dx
c+dx
c+dx
a+bx
bc-ad
a+bx
bc-ad
a+bx
bc-ad
18 b3 c3 LogB
F LogB
F - 18 a b2 c2 d LogB
F LogB
F - 18 a2 b c d2 LogB
F LogB
F+
c+dx
bc+bdx
c+dx
bc+bdx
c+dx
bc+bdx
a+bx
bc-ad
a+bx 2
bc-ad
a+bx 2
bc-ad
18 a3 d3 LogB
F LogB
F + 6 b3 c3 LogB
F LogB
F - 6 a3 d3 LogB
F LogB
F+
c+dx
bc+bdx
c+dx
bc+bdx
c+dx
bc+bdx
6 a b2 c2 d LogB
F - 12 a2 b c d2 LogB
bc-ad
1
c+dx
c
d
F + 3 Hb c - a dL LogB
b2
a+bx
6 Hb c - a dL b c - a d + Hb c + a dL LogB
1
c
d
a+bx
H- 6 b c + 6 a dL PolyLogB3,
6
c
a+bx
bc-ad
bc+bdx
F
+
2.2 Logarithm Functions.nb
6 3 Hb c - a dL2 Hb c + a dL + 2 Ib3 c3 - a3 d3 M LogB
a+bx
c+dx
F PolyLogB2,
d Ha + b xL
b Hc + d xL
F - 12 Ib3 c3 - a3 d3 M PolyLogB3,
d Ha + b xL
b Hc + d xL
F
Problem ð557: Valid but suboptimal antiderivative:
:Hf + g xL LogBe
-
a+bx
c+dx
F , x, 12, 0>
n 3
3 Hb c - a dL g n Ha + b xL LogAe I
2 b2 d
Hf + g xL2 LogAe I
2g
a+b x n 3
M E
c+d x
-
3 Hb f - a gL2 n2 LogAe I
d Ha+b xL
F
b Hc+d xL
-
b c-a d
F
d Ha+b xL
2 b2 g
a+b x n
M E
c+d x
LogB
b2 d2
a+b x n
M E
c+d x
b2 g
+
3 Hb f - a gL2 n LogB-
3 Hb c - a dL2 g n2 LogAe I
3 Hb c - a dL2 g n3 PolyLogB2,
b2 d2
a+b x n 2
M E
c+d x
3 Hd f - c gL2 n2 LogAe I
PolyLogB2,
b Hc+d xL
F
d Ha+b xL
+
LogAe I
b c-a d
F
b Hc+d xL
a+b x n
M E
c+d x
-
a+b x n 2
M E
c+d x
3 Hd f - c gL2 n LogAe I
d2 g
3 Hd f - c gL2 n3 PolyLogB3,
a+b x n 2
M E
c+d x
2 d2 g
PolyLogB2,
d2 g
+
d Ha+b xL
F
b Hc+d xL
d Ha+b xL
F
b Hc+d xL
-
LogB
b c-a d
F
b Hc+d xL
-
3 Hb f - a gL2 n3 PolyLogB3,
b2 g
b Hc+d xL
F
d Ha+b xL
115
116
2.2 Logarithm Functions.nb
1
2
3 Hb c - a dL g n x ILogAe I
bd
a+b x n
M E
c+d x
3 a2 g n Log@a + b xD ILogAe I
b2
3 g n x2 LogB
a+bx
c+dx
6 c f n ILogAe I
1
F LogBe
a+b x n
M E
c+d x
6 f n2 - LogBe
bd
a+bx
n
c
+ xF LogB
d
a+bx
c+dx
1
3 g n2 - LogBe
b2 d2
c+dx
2 a2 d2 LogB
a
n
a+bx
+ 6 f n x LogB
a+bx
c+dx
+
a+bx
c+dx
F
c+dx
F
2
F LogBe
c+dx
3 c2 g n ILogAe I
a
a d LogB
a+b x n
M E
c+d x
c
2
+ xF + b c LogB
a+bx
c+dx
a
+ xF LogB
F
b
a+bx
n
c+dx
F - n LogB
- n LogA
d2
a
a+bx
c+dx
2
a+b x
EM
c+d x
F
-
a+bx
c+dx
3
F
2
+
+ g x2 LogBe
a+bx
Log@c + d xD
c+dx
2
+ xF - b2 c2 LogB
b
c
a+bx
c+dx
F
2
d Ha + b xL LogB
H- 6 b c + 6 a dL PolyLogB3,
g n3 LogB
a+bx
c+dx
a+bx
c+dx
d Ha + b xL
b Hc + d xL
F d2 Ia2 - b2 x2 M LogB
F + 3 Hb c - a dL LogB
F -
a+bx
c+dx
6 Hb c - a dL b c - a d + Hb c + a dL LogB
bc-ad
bc+bdx
1
a
2
b
d Ha + b xL
-b c + a d
d
b Hc + d xL
F - 2 a d PolyLogB2,
bc-ad
a+bx
c+dx
F PolyLogB2,
Problem ð558: Valid but suboptimal antiderivative:
bc+bdx
d Ha + b xL
b Hc + d xL
+ xF Log@c + d xD F -
+ xF - 2 a b c d Log@a + b xD + 2 a2 d2 Log@a + b xD +
c
+ xF LogB
d Ha + b xL
F + 6 Hb c - a dL LogB
bc-ad
-
c
+ xF Log@c + d xD - 2 b c LogB
F - 2 b2 c d x LogB
a+bx
c+dx
F PolyLogB2,
b2 d2
F + 6 Hb c - a dL2 LogB
3
+ xF Log@a + b xD - 2 a d
a+bx
d
-b c + a d
c+dx
a+bx
a+bx
a+bx 2
2 a b d2 x LogB
F - 2 a2 d2 Log@a + b xD LogB
F + b2 d2 x2 LogB
F + 2 b2 c2 Log@c + d xD c+dx
c+dx
c+dx
a
c
a+bx
2 a b c d Log@c + d xD - 2 b2 c2 LogB + xF Log@c + d xD + 2 b2 c2 LogB + xF Log@c + d xD + 2 b2 c2 LogB
F Log@c + d xD +
b
d
c+dx
a
b Hc + d xL
d Ha + b xL
b Hc + d xL
1
2 b2 c2 LogB + xF LogB
F + 2 b2 c2 PolyLogB2,
F + 2 a2 d2 PolyLogB2,
F +
b
bc-ad
-b c + a d
bc-ad
bd
2 f n3 LogB
c+dx
F
d
2
d
+ xF Log@a + b xD + 2 a2 d2 LogB
a+bx
c
+ xF Log@a + b xD + 2 a d LogB
F + 2 b c LogB
2
F - n LogB
-
b
a+bx
n
c+dx
a
F - 2 b c PolyLogB2,
d
2
a+b x
EM
c+d x
F - n LogB
2
F + b d x LogB
c+dx
b Hc + d xL
- a2 d2 LogB
+ xF Log@a + b xD - 2 a2 d2 LogB
a+bx
d
bc-ad
c
- n LogA
+ xF - 2 a d LogB
b
b
n
a+bx
+ 2 f x LogBe
F + 2 a d Log@a + b xD LogB
F + n LogB
a+b x n
M E
c+d x
b
Log@c + d xD
F Log@c + d xD - 2 b c LogB
a+bx
6 a f n Log@a + b xD ILogAe I
+
2
a+b x
EM
c+d x
F - n LogB
F + n LogB
-b c + a d
2 b c LogB
n
2
a+b x
EM
c+d x
d Ha + b xL
2
a+b x
EM
c+d x
- n LogA
c+dx
c+dx
LogB
a+b x n
M E
c+d x
- n LogA
d
a+bx
- n LogA
F + 3 Hb c - a dL LogB
a+bx
c+dx
d Ha + b xL
b Hc + d xL
F+
F+
F d Ha + b xL + Hb c + a dL LogB
F + I- 6 b2 c2 + 6 a2 d2 M PolyLogB3,
d Ha + b xL
b Hc + d xL
F
bc-ad
bc+bdx
F
+
2.2 Logarithm Functions.nb
:LogBe
F , x, 4, 0>
n 3
a+bx
c+dx
Ha + b xL LogAe I
b
a+b x n 3
M E
c+d x
6 Hb c - a dL n2 LogAe I
+
3 Hb c - a dL n LogAe I
a+b x n
M E
c+d x
bd
PolyLogB2,
bd
3 a n Log@a + b xD ILogAe
a+b x n
I
M E
c+d x
-n
b
a+bx
n
x LogBe
c+dx
1
F - n LogB
a+bx
3 n2 - LogBe
bd
c+dx
c
LogB
+ xF LogB
d
a+bx
c+dx
n3 LogB
bd
a+bx
c+dx
d Ha + b xL
a+bx
c+dx
F
2
d Ha+b xL
F
b Hc+d xL
2
a+b x
LogA
EM
c+d x
F
F + n LogB
-b c + a d
2 b c LogB
1
n
3
-
-
a+bx
c+dx
F
LogB
a+bx
c+dx
d Ha + b xL
b Hc + d xL
F
+
bd
F LogBe
a+bx
+ 3 n x LogB
c+dx
a+b x n
M E
c+d x
a
a d LogB
- n LogA
d
c
2
b
a
+ xF LogB
b
d Ha+b xL
F
b Hc+d xL
a+bx
c+dx
2
a+b x
EM
c+d x
n
F - n LogB
bc-ad
F + 3 Hb c - a dL LogB
bc+bdx
+
c
+ xF Log@a + b xD + 2 a d LogB
b
a+bx
c+dx
2
a
-b c + a d
c
+ xF Log@c + d xD - 2 b c LogB
b
d Ha + b xL
F + 6 Hb c - a dL LogB
F - 2 a d PolyLogB2,
a+bx
c+dx
F PolyLogB2,
Problem ð559: Valid but suboptimal antiderivative:
:
-
LogAe I
a+b x n 3
M E
c+d x
, x, 11, 0>
f+gx
LogAe I
a+b x n 3
M E
c+d x
3 n LogAe I
LogB
g
a+b x n 2
M E
c+d x
6 n2 LogAe I
a+b x n
M E
c+d x
b c-a d
F
b Hc+d xL
+
PolyLogB2,
g
PolyLogB3,
g
LogAe I
a+b x n 3
M E
c+d x
LogB
g
a Hd f-c gL+b d f x-b c g x
Hb f-a gL Hc+d xL
a Hd f-c gL+b d f x-b c g x
Hb f-a gL Hc+d xL
F
F
Hb c-a dL Hf+g xL
Hb f-a gL Hc+d xL
+
F
6 n2 LogAe I
-
3 n LogAe I
a+b x n
M E
c+d x
6 n3 PolyLogB4,
g
a+b x n 2
M E
c+d x
PolyLogB3,
g
d Ha+b xL
F
b Hc+d xL
PolyLogB2,
g
d Ha+b xL
F
b Hc+d xL
+ xF Log@a + b xD - 2 a d
d
F + 2 b c LogB
F - 2 b c PolyLogB2,
bc-ad
2
a
+ xF - 2 a d LogB
F + b d x LogB
c+dx
b Hc + d xL
c+dx
F
-
d
a+bx
a+bx
Log@c + d xD
2
+ xF + b c LogB
F + 2 a d Log@a + b xD LogB
d Ha + b xL LogB
b c-a d
F
b Hc+d xL
6 Hb c - a dL n3 PolyLogB3,
3 c n ILogAe I
F Log@c + d xD - 2 b c LogB
H- 6 b c + 6 a dL PolyLogB3,
a+b x n 2
M E
c+d x
d Ha+b xL
F
b Hc+d xL
+
-
6 n3 PolyLogB4,
+
g
Hd f-c gL Ha+b xL
Hb f-a gL Hc+d xL
F
d
b Hc + d xL
bc-ad
d Ha + b xL
b Hc + d xL
F+
+ xF Log@c + d xD F +
117
118
2.2 Logarithm Functions.nb
1
n
a+bx
LogBe
g
c+dx
F - n LogB
n
a+bx
3 n LogBe
c+dx
a
LogB
+ xF LogB
b
a+bx
c+dx
F - n LogB
b Hf + g xL
bf-ag
3 n2 - LogBe
n
a+bx
c+dx
F
3
Log@f + g xD +
a+bx
c+dx
F
F - LogB
F + n LogB
2
a
- LogB
b
c
+ xF LogB
d
a+bx
c+dx
c
d Hf + g xL
df-cg
F
a+bx
+ xF Log@f + g xD + LogB
-b c + a d
LogB
d Ha + b xL
+ xF Log@f + g xD + LogB
d
g Ha + b xL
F + PolyLogB2,
F LogB
-b f + a g
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
c+dx
F - PolyLogB2,
F - LogB
2
a
F Log@f + g xD +
g Hc + d xL
-d f + c g
2
F +
+ xF Log@f + g xD +
b
F Log@f + g xD c+dx
2
a+bx 2
a
b Hf + g xL
a
a+bx
b Hf + g xL
2 LogB + xF LogB
F Log@f + g xD - LogB
F Log@f + g xD + LogB + xF LogB
F - 2 LogB + xF LogB
F LogB
Fd
c+dx
c+dx
b
bf-ag
b
c+dx
bf-ag
a
2 LogB
c
+ xF LogB
b
c
d
a+bx
a
2 LogB
+ xF LogB
b
LogB
b Hf + g xL
bf-ag
c
LogB
2
g Hc + d xL
-d f + c g
LogB
F + LogB
F LogB
2
c+dx
2 LogB
df-cg
F LogB
2
c+dx
3
a+bx
c+dx
a+bx
6 LogB
c+dx
c
d
F + 2 LogB
F PolyLogB2,
2
F PolyLogB3,
2
F - LogB
-d f + c g
b Hf + g xL
bf-ag
c+dx
g Hc + d xL
-d f + c g
F LogB
F LogB
c+dx
Hd f - c gL Ha + b xL
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
Hb f - a gL Hc + d xL
b Hf + g xL
bf-ag
a
df-cg
b
F + 2 LogB
Hd f - c gL Ha + b xL
c+dx
-d f + c g
F + LogB
F + 2 LogB
F - 2 PolyLogB3,
Hb f - a gL Hc + d xL
a+bx
c+dx
F + 6 PolyLogB4,
c
a
+ xF LogB
b
d Hf + g xL
g Hc + d xL
-d f + c g
d Hf + g xL
df-cg
F-
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
d Ha + b xL
a+bx
c+dx
F LogB
df-cg
b Hc + d xL
F PolyLogB3,
b Hc + d xL
-d f + c g
+ xF LogB
F LogB
F + 3 LogB
d Ha + b xL
g Hc + d xL
d
Hb f - a gL Hc + d xL
a+bx
F - 2 LogB
+ xF LogB
d Hf + g xL
Hb c - a dL Hf + g xL
F - 6 LogB
Problem ð560: Valid but suboptimal antiderivative:
2
g Hc + d xL
Hd f - c gL Ha + b xL
3
F LogB
F - 2 LogB
F - 2 LogB
Hb f - a gL Hc + d xL
F LogB
a+bx
+ xF LogB
b
F PolyLogB2,
a+bx
a
g Hc + d xL
a+bx
Hd f - c gL Ha + b xL
F PolyLogB2,
bc+bdx
F LogB
H- b c + a dL Hf + g xL
Hd f - c gL Ha + b xL
bc-ad
F + LogB
+ xF LogB
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
F LogB
bf-ag
F + 2 LogB
d Hf + g xL
Hb f - a gL Hc + d xL
a+bx
3 LogB
F + LogB
b Hf + g xL
Hd f - c gL Ha + b xL
df-cg
Hd f - c gL Ha + b xL
a+bx
F LogB
Hb f - a gL Hc + d xL
d Hf + g xL
Hb f - a gL Hc + d xL
2 LogB
n3 LogB
g Hc + d xL
2
+ xF Log@f + g xD + 2 LogB
d
-d f + c g
+ xF LogB
d
LogB
c
+ xF Log@f + g xD - LogB
b Hc + d xL
F+
F - 6 PolyLogB4,
F LogB
d Hf + g xL
F PolyLogB2,
F PolyLogB2,
d Ha + b xL
Hd f - c gL Ha + b xL
df-cg
F-
g Ha + b xL
F PolyLogB2,
F + 2 PolyLogB3,
2
F+
Hb f - a gL Hc + d xL
-b f + a g
b Hc + d xL
d Ha + b xL
F+
F-
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
d Ha + b xL
b Hc + d xL
Hd f - c gL Ha + b xL
Hb f - a gL Hc + d xL
F-
F
F -
F
2.2 Logarithm Functions.nb
:
LogAe I
a+b x n 3
M E
c+d x
Hf + g xL2
Ha + b xL LogAe I
, x, 4, 0>
a+b x n 3
M E
c+d x
Hb f - a gL Hf + g xL
6 Hb c - a dL n2 LogAe I
* * *
+
3 Hb c - a dL n LogAe I
a+b x n
M E
c+d x
a+b x n 2
M E
c+d x
LogB
Hb f - a gL Hd f - c gL
PolyLogB2,
Hb f - a gL Hd f - c gL
a Hd f-c gL+b d f x-b c g x
Hb f-a gL Hc+d xL
Hb c-a dL Hf+g xL
Hb f-a gL Hc+d xL
F
-
F
+
6 Hb c - a dL n3 PolyLogB3,
a Hd f-c gL+b d f x-b c g x
Hb f-a gL Hc+d xL
Hb f - a gL Hd f - c gL
Result of integration not displayed since its leaf count is 5537
F
* * *
Problem ð561: Valid but suboptimal antiderivative:
:
LogAe I
a+b x n 3
M E
c+d x
Hf + g xL3
, x, 19, 0>
3 Hb c - a dL g n Ha + b xL LogAe I
a+b x n 2
M E
c+d x
2 Hb f - a gL2 Hd f - c gL Hf + g xL
3 b2 n LogB-
3 Hb c - a dL H2 b d f - b c g - a d gL n LogAe I
a+b x n 2
M E
c+d x
2 Hb f - a gL2 Hd f - c gL2
3 Hb c - a dL H2 b d f - b c g - a d gL n LogAe I
a+b x n 2
M E
c+d x
2 Hb f - a gL2 Hd f - c gL2
3 Hb c - a dL H2 b d f - b c g - a d gL n2 LogAe I
3 b2 n2 LogAe I
a+b x n
M E
c+d x
Hb f - a gL2 Hd f - c gL2
PolyLogB2,
g Hb f - a gL2
3 d2 n3 PolyLogB3,
d Ha+b xL
F
b Hc+d xL
g Hd f - c gL2
3 b2 n3 PolyLogB3,
b Hc+d xL
F
d Ha+b xL
g Hb f - a gL2
3 H- b c + a dL n ILogAe I
a+b x n
M E
c+d x
+
-
a+b x n
M E
c+d x
b Hc+d xL
F
d Ha+b xL
+
b c-a d
F
d Ha+b xL
LogAe I
2 g Hb f - a gL2
LogB
LogB
b c-a d
F
b Hc+d xL
+
Hb f-a gL Hc+d xL
F
2 g Hf + g xL2
+
d Ha+b xL
F
b Hc+d xL
3 d2 n2 LogAe I
+
+
-
LogB
g Hd f - c gL2
Hb f - a gL2 Hd f - c gL2
3 b2 n Log@a + b xD ILogAe I
Hb c-a dL Hf+g xL
Hb f-a gL Hc+d xL
2 g H- b f + a gL2
Hb f-a gL Hc+d xL
-
F
b c-a d
F
b Hc+d xL
+
F
+
a Hd f-c gL+b d f x-b c g x
Hb f-a gL Hc+d xL
F
-
+
a Hd f-c gL+b d f x-b c g x
a+b x n
M E
c+d x
LogB
-
Hb f-a gL Hc+d xL
PolyLogB2,
Hb f - a gL2 Hd f - c gL2
d Ha+b xL
F
b Hc+d xL
d Ha+b xL
F
b Hc+d xL
Hd f-c gL Ha+b xL
Hb f - a gL2 Hd f - c gL2
a+b x n
M E
c+d x
a+b x n 2
M E
c+d x
2 g Hd f - c gL2
PolyLogB2,
3 Hb c - a dL2 g n3 PolyLogB2,
3 Hb c - a dL H2 b d f - b c g - a d gL n3 PolyLogB3,
2
a+b x
EM
c+d x
+
3 d2 n LogAe I
a+b x n
M E
c+d x
a+b x n
M E
c+d x
3 Hb c - a dL H2 b d f - b c g - a d gL n2 LogAe I
Hb f - a gL2 Hd f - c gL2
2 H- b f + a gL H- d f + c gL Hf + g xL
a+b x n 3
M E
c+d x
Hb f - a gL2 Hd f - c gL2
3 Hb c - a dL H2 b d f - b c g - a d gL n3 PolyLogB3,
- n LogA
-
LogAe I
3 Hb c - a dL2 g n2 LogAe I
Hb c-a dL Hf+g xL
PolyLogB2,
a+b x n 2
M E
c+d x
- n LogA
F
2
a+b x
EM
c+d x
-
+
-
119
120
2.2 Logarithm Functions.nb
3 n LogA
a+b x
E
c+d x
ILogAe I
a+b x n
M E
c+d x
- n LogA
2 g Hf + g xL2
2
a+b x
EM
c+d x
ILogAe I
-
3 H- b c + a dL H- 2 b d f + b c g + a d gL n ILogAe I
a+b x n
M E
c+d x
a+b x n
M E
c+d x
- n LogA
2 g Hf + g xL2
- n LogA
2 H- b f + a gL2 H- d f + c gL2
2
a+b x
EM
c+d x
g I +xM
g2
b
n
a+bx
3 n2 LogBe
c+dx
F - n LogB
a+bx
c+dx
F
2
ag
b
M
3
1-
3 d2 n ILogAe I
-
g I +xM
d
I-f+
I- LogA
cg
d
a
b
M
3
1-
+
g K +xO
a
I-f+
b
ag
-f+
b
ag
b
M
I +xM
a
b
4
1-
g K +xO
cg
d
g I +xM
a
b
-f+
I- f +
ag
2
b
ag
b
M
2
g2
1
-
I-f+
d
-f+
I- f +
cg
d
M
d
M
4
1-
F
g K +xO
2
c
cg
d
g K +xO
a
2
I-f+
b
ag
-f+
b
a
c+d x
+
g
+ xF
b
I- f +
2
+ xM
1-
ag
b
d
-f+
cg
-
d
+
2
I- f +
cg
d
a
I
b
M
2g
c
d
M
3
g K +xO
1-
3
1-
3
c
I
d
M
3
LogA
+ xE -
g K +xO
d
cg
I-f+
d
cg
-f+
d
1
g
2
I- f +
ag
b
M
LogB1 -
+ xM
g K +xO
a
+ xE -
g I +xM
b
-f+
ag
b
-
I- f +
+ xM
c
g I +xM
c
d
-f+
cg
d
LogB
-f+
b
cg
d
M
d
F
b
ag
ag
b
M
+
b
2
-
2
F
a
c
- LogB
+ xF + LogB
g I +xM
a
4
1a
b
ag
b
ag
b
M
2
2
b
-f+
g I +xM
+
F
ag
b
I- f +
ag
b
M
I- f +
g I +xM
c
LogB1 -
d
-f+
2
I- f +
cg
d
cg
d
M
2
F
1-
g I +xM
ag
b
a
g I +xM
b
ag
b
M
2
F
F -
2
+ xF +
b
b
1
+
g
g
+ xF
d
c+dx
ag
c
+ LogB
LogB
b
-f+
bx
+
c+dx
+ xM
a
3
-f+
-
a
b
a
PolyLogB2,
a
+ xF + LogB
d
2gI
+ xM
+ xF +
d
I-f+
b
ag
2
a
b
-f+
a
1-
g2 I
1
+
1-
g K +xO
-f+
a
b
b
2
bx
EM
c+d x
a
g I +xM
cg
c
b
Log@c + d xD
2g
-f+
c
LogA
d
M
ag
2g
+ xE + LogA
+ LogB
I-f+
d
-f+
2 g Hf + g xL2
c
I
d
4
c
d
cg
2 g I +xM
2 g I +xM
b
+
LogB1-
d
+
2
a+b x
EM
c+d x
LogB1-
a
2
c
2
d
-
c
+ xE + LogA
LogB1 -
g2 I +xM
c
- n LogA
2 g H- d f + c gL2
Log@f + g xD
c
c
a+b x n
M E
c+d x
a
a
I-f+
3
a+b x
EM
c+d x
I- f +
cg
d
c
I
d
M
3
g I +xM
c
LogB1 -
+ xM
g I +xM
c
1-
d
-f+
d
-f+
cg
d
-
I- f +
cg
d
cg
d
M
2
F
-
2.2 Logarithm Functions.nb
g I +xM
c
PolyLogB2,
d
-f+
I- f +
cg
d
M
2
LogB
cg
d
F
1
f2
bf-ag
LogB2
c
LogB
g
b H- d f + c gL
+ xF - LogBd
dgI
c
d
c
d
bgI
a
b
2
g
g
Hb f - a gL J
+ xM
+ xM
2abx
Hb f-a gL2
F + LogB-
1
c
d
+ xM
b H- d f + c gL I
Hb f - a gL x J
c
d
a
I
b
+
+ xM
dgI
Hb f-a gL3
N
-
b
b Hf + g xL2
+
+ xM
aJ
+
+
2
b H-d f+c gL2 I +xM
+
a b Hf+g xL
Hb f-a gL2
b Hf + g xL
N
-
+x
a
b
+x
+x
c
d
+ xM
a
b
+ xM
+
a
b
c
d
a
b
N
LogB-
F - 2 LogB
+ xM
-
c
d
+ xM
a
I
b
+ xM
F - LogB
b H- d f + c gL I
+ xF + LogB-
b
F + PolyLogB3, bx
b f-a g
+ xF + LogB
b
b Hf + g xL
bf-ag
+
c
d
Hb f-a gL2
+ xM
d Hb f - a gL I
c
d
b H- d f + c gL I
2cdx
H-d f+c gL2
a
b
-
d Hf + g xL
+
a
b
b H- d f + c gL
N
+ xM
+ xM
+ xM
c
d
c
d
b H- d f + c gL I
c
d
+ xM
+ xM
a
b
+ xM
+ xM
a
b
+ xM
-d f + c g
F -
+ xF -
bx
b f-a g
+
b Hf + g xL
Hb f - a gL J
a b Hf+g xL
Hb f-a gL2
2abx
Hb f-a gL2
+
b Hf + g xL
+
F +
d
Hb f - a gL J
N
d Hf + g xL
c
+ xF LogB
b
H-d f+c gL3
F
F +
a
LogB
F+ -
+ xM
F
+ xM
a
I
b
d Hb f - a gL I
2 c2 d Hf+g xL
c
d
F + LogB-
d Hb f - a gL I
b H- d f + c gL I
a b Hf+g xL
b H- d f + c gL I
F +
+ xM
dgI
-d f + c g
d Hb f - a gL I
b Hf + g xL
adI
H- d f + c gL J
a
b
a
F - PolyLogB2, -
aJ
a
H- b c + a dL Hf + g xL
F + LogB
+x
Hb f-a gL2
c
d
-d f + c g
c
d
a b Hf+g xL
c H-b c+a dL Hf+g xL
bx
b f-a g
+ xM
F - PolyLogB3,
bx
b f-a g
dgI
F - LogB-
F PolyLogB2,
b H- d f + c gL2 I
+x
a
N
+ xM
2
bf-ag
c d Hb f - a gL I
a
H-b c+a dL x
Hb f-a gL2
a
b
a
b
LogB
b H- d f + c gL
bf-ag
bgI
1
d Hb f - a gL I
b Hf + g xL
b Hf + g xL
b H-d f+c gL I +xM
a b Hf+g xL
c
d
+ xM
Hb f - a gL x J
b
+
c
d
-d f + c g
H- b c + a dL Hf + g xL
bx
b f-a g
+ xM
b H- d f + c gL I
2 a2 b Hf+g xL
+ xM -
F + LogB
F+
F LogB-
+ xM
-d f + c g
d Hb f - a gL I
2 b H- d f + c gL
a
b
a
I
b
c
d
F PolyLogB2, -
+ xM
F - PolyLogB3,
b Hf + g xL
d Hb f - a gL I
bd
b H- d f + c gL
+ xM
dgI
-b c + a d
LogB
b Hf + g xL
bf-ag
F + LogB
2
d Hb f - a gL I
bf-ag
1
-d f + c g
F
+ xF LogB
d
d Hf + g xL
+ xM
a
I
b
-d f + c g
PolyLogB3, -
c
+ xF LogB
b
F - LogB-
d Hb f - a gL I
PolyLogB2,
a
2 LogB
b Hf + g xL
1
1
-
121
H- d f + c gL x J-
N
+
2 a2 b Hf+g xL
Hb f-a gL3
dx
-d f+c g
d Hf + g xL2
+
N
+
c d Hf+g xL
H-d f+c gL2
N
-
122
2.2 Logarithm Functions.nb
c J-
dx
-d f+c g
c d Hf+g xL
H-d f+c gL2
+
d Hf + g xL
Hb f - a gL x J
bx
b f-a g
+
b Hf + g xL
2
b H- d f + c gL x I
LogB-
-
1
c
d
+ xM
a b Hf+g xL
Hb f-a gL2
c
d
a
b
+ xM
dg
LogB
2
-
H-b c+a dL x
a
F +2 -
-d f + c g
Hb f - a gL J
+
b H-d f+c gL2 I +xM
d Hb f - a gL I
+ xM
H- d f + c gL2
dgI
c
d
+ xM
2 H- d f + c gL -
2abx
Hb f-a gL2
+
b Hf + g xL
2 a2 b Hf+g xL
Hb f-a gL3
+
c H-b c+a dL Hf+g xL
b H-d f+c gL2 I +xM
bx
b f-a g
+
a d I +xM
d
b H-d f+c gL I +xM
a
+
a b Hf+g xL
Hb f-a gL2
N
-
a
b
c
d
-d f+c g
c d g I +xM
c
d
gL2
d I +xM
c
+
d
-d f+c g
Hb f - a gL x J
H-d f+c
d
Hb f-a gL K
dgI
bx
b f-a g
+
b Hf + g xL2
+
gL2
c
d
bx
b f-a g
a
b
H- b c + a dL Hf + g xL
H-b c+a dL x
b H-d f+c gL I +xM
a
+
+
a b Hf+g xL
Hb f-a gL2
d I +xM
d
-d f+c g
dgI
bx
b f-a g
+
dx
-d f+c g
c
d
JLogB
a b Hf+g xL
Hb f-a gL2
b Hf+g xL
N
+
b f-a g
+ xM
O
+
Hb f-a gL2
N
-
aJ
a
b
+
b
c d g I +xM
N
c
H-d f+c
d
gL2
d I +xM
c
+
LogB-
-d f+c g
dgI
c
d
+
Hb f-a gL2
b Hf + g xL
N
d Hf+g xL
-d f+c g
c d Hf+g xL
H-d f+c gL2
d
a
b H-d f+c gL I +xM
b
+ xM
dx
-d f+c g
d Hb f-a gL I +xM
c
d
+
d Hf + g xL
a b Hf+g xL
-
a
c d Hf+g xL
dx
-
b H-d f+c gL3 I +xM
H-d f+c gL2
-d f+c g
N
b H-d f+c gL2 I +xM
d Hf+g xL
bx
b f-a g
Hb f-a gL3
c H-b c+a dL Hf+g xL
+
F - LogB-
H-d f+c gL K-
2 a2 b Hf+g xL
2 c2 H-b c+a dL Hf+g xL
H- d f + c gL J-
b Hf+g xL
+ xM
a b Hf+g xL
+
H- d f + c gL -
c
+
-
b H-d f+c gL2 I +xM
d Hf + g xL
b Hf + g xL
c
2 c H-b c+a dL x
+ xM
H- d f + c gL JF
+
b Hf + g xL
2
H- b c + a dL Hf + g xL
d
c d g I +xM
a
b
2abx
Hb f-a gL2
b
d g I +xM
Hb f - a gL J
+ xM
F+
Hb f - a gL J
1
+ xM -
+ xM
H- d f + c gL -
H-d f+c
+ xM
c
LogB
b
c
d
a
b
bcI
a
-d f + c g
-
+
+ xM
b H- d f + c gL I
b
dI
F +
N
N
c
b
c
d
Hb f-a gL2
b Hf + g xL
+
c
d
b H- d f + c gL I
a b Hf+g xL
Hb f - a gL J
d
a
cdgI
+
d Hb f - a gL I
b Hf + g xL
b H-d f+c gL I +xM
-d f + c g
F
bx
b f-a g
c
+ xF + LogB
+ xM
aJ
c d Hb f-a gL I +xM
+ xM
b
1
N
2
+ xM
a
c
I
d
F LogB-
+ xM
H- b c + a dL Hf + g xL2
H- d f + c gL -
- 2 LogB
c
d
-d f + c g
+ xM -
b H- d f + c gL I
a
b
LogB
dgI
b
d Hb f - a gL I
b H- d f + c gL I
dgI
a
b
N
FN
c d Hf+g xL
H-d f+c gL2
F
+
N
+
O
+
+
H- d f + c gL J
2cdx
H-d f+c gL2
-
d Hf + g xL
+
2 c2 d Hf+g xL
H-d f+c gL3
N
-
2.2 Logarithm Functions.nb
H- d f + c gL x JH- d f + c gL
LogB
d Hf + g xL2
2 c2 d g I +xM
c
H-d f+c gL3
d
dgI
b Hf + g xL
bf-ag
H- d f + c gL d
-
g2
c
d
F - LogB-
c d g I +xM
c
d
c
I
d
a
b
b H- d f + c gL I
c d Hf+g xL
N
H-d f+c gL2
+
2 c d I +xM
+
c J-
c
d
c -
d Hf + g xL
-d f + c g
d I +xM
F
2
d
c d g I +xM
H-d f+c gL2
d
+ xM
g Hb f - a gL
b H-d f+c
gL3
d
gL3
c
d
+ xM
I +xM
a
b H-d f+c gL2 I +xM
+ xM
b H-d f+c
gL2
c -
gL2
+
+
I +xM
b
b
H-d f+c
gL2
dgI
c
d
d I +xM
-
bcI
LogB
c d g I +xM
H-d f+c gL2
d
c -
dgI
+
bf-ag
c
d
F - LogB-
d I +xM
c
+
d
-d f+c g
-
+ xM
d Hf + g xL
-d f + c g
F +
+
c d Hb f-a gL I +xM
-d f+c g
-
a d I +xM
c
a
b
+ xM
dgI
b H-d f+c
gL2
d
a
I +xM
b
d Hb f - a gL I
c
d
+ xM
-d f + c g
d
+ xM
+ xM
b Hf + g xL
b
c
+
d
-d f+c g
a
a
d
c
+
d
d
b H-d f+c gL I +xM
c d g I +xM
LogB
F +
c
H-d f+c gL2
b H-d f+c gL I +xM
a
a d I +xM
c
d
F
+ xM
c
d
d
+ xM
c
+
b
c
d
2 a c d I +xM
d
d
c
a d I +xM
c
c
d
a
H-d f+c
+ xM
+ xM
c d Hb f-a gL I +xM
2 c d I +xM
2
b
c
d
+ xM
d I +xM
c
2 c d I +xM
-
c
d
c
+
b
-
c
-
b H-d f+c gL2 I +xM
c
I
d
2 c2 d Hb f-a gL I +xM
c
d
c d g I +xM
H-d f+c gL2
d g2 I
H-d f+c gL3
dgI
-d f + c g
H- d f + c gL -
d
dgI
+ xF + LogB
b
-d f + c g
d
a
-d f+c g
- 2 LogB
c
c
d
a
2 c2 d g I +xM
dgI
c d Hb f-a gL I +xM
c
d Hb f - a gL2 I
d
+ xF + LogB
d I +xM
+
-
+ xM
b
d Hb f - a gL I
2 c2 d g I +xM
c
d
c
d
d I +xM
-d f+c g
a
- 2 LogB
N
c
+
H- d f + c gL
+
c
dgI
d
d
+ xM -
H-d f+c
c d g I +xM
H-d f+c gL2
1
-d f+c g
d2
c
c d Hf+g xL
H-d f+c gL2
d Hf + g xL
dgI
+
c
a
b
+
c
+
+ xM -
a
b
dx
-d f+c g
c
H-d f+c gL2
+ xM
a b H- d f + c gL I
H- d f + c gL
-
+ xM
H-d f+c gL2
2 b H- d f + c gL2 I
-
dx
-d f+c g
c
d
c
+
d
b H-d f+c gL I +xM
a
b
-
+ xM
F+
H- d f + c gL -
c d g I +xM
c
H-d f+c
d g2 I
d
c
d
gL2
+ xM
d I +xM
c
+
d
-d f+c g
LogB-
d Hb f - a gL I
c
d
b H- d f + c gL I
a
b
+ xM
+ xM
F
123
124
2.2 Logarithm Functions.nb
- LogB
b Hf + g xL
bf-ag
F + LogB-
2 b H- d f + c gL I
2bcI
+ xM -
bdI
a
b
d
Hb f - a gL -
b H-d f+c gL3 I +xM
Hb f-a gL2
a b g I +xM
Hb f-a gL2
b
b
gL2
H- d f + c gL2 -
I +xM
+
b
d Hb f - a gL I
b H-d f+c
b I +xM
+ xM
d
a
I +xM
b
bgI
a
b
c d g I +xM
a d I +xM
dgI
b H-d f+c gL I +xM
a
b f-a g
b
b g I +xM
b
b f-a g
+ xM
d I +xM
c
d
-d f+c g
+
a
b
+ xM
a d I +xM
c
c
+
d Hb f-a gL I +xM
d
a
b H-d f+c gL I +xM
F +
d
b H-d f+c gL I +xM
a
b
b f-a g
+
Hb f - a gL -
F
2
-
Hb f - a gL -
d g I +xM
c
LogB1 -
d
-d f+c g
2
+ xM
adI
c
d
+ xM
b H- d f + c gL I
a
b
F
a
b
b f-a g
2 a2 b g I +xM
a
Hb f-a gL3
b
a
Hb f-a
b
gL2
b I +xM
a
-
b g2 I
b
a
b
dgI
c
d
+ xM
-d f + c g
c
d
F
-
-
a b g I +xM
a
Hb f-a gL2
b
+ LogB
2
F + LogB
Hb f-a gL2
2
+ xF - LogBb g I +xM
a
b
b f-a g
+ xM
b g I +xM
a
b
b f-a g
a
+ xF + LogB-
F
b
b f-a g
+ xM
LogB1 +
2 b H- d f + c gL2
b
a
b
b g I +xM
a
LogB1 +
d
b
a
b
2
b
b f-a g
F
d Hb f - a gL I
c
+ xM
+ xM
b I +xM
a
-
b2 g2 I
2 a b I +xM
LogB1 +
b f-a g
d2 g Hb f - a gL I
F
a
-
bgI
1
+
LogB1 + xM
a b g I +xM
b
F
b g I +xM
LogB1 +
b
b I +xM
b H-d f+c gL I +xM
a
b
Hb f - a gL2 -
b f-a g
a
c
d
b H- d f + c gL I
a
+
b g I +xM
LogB1 +
+ xM
+ xM
Hb f-a gL2
b
a
d2 g2 I
H- b c + a dL Hf + g xL
d
-
b
+ xM
+ xM
a b g I +xM
b
+
b
b
c
d
LogB-
a
c
d
c
c
d
b H-d f+c gL2 I +xM
b f-a g
a
c
d
F - LogB-
F
d
a
b H-d f+c gL I +xM
I +xM
2
c
+
+ xM
d
a
d Hb f-a gL I +xM
d
a
2
b
c
+
d
a
b I +xM
-
b f-a g
a
b
c
d
c
gL2 I
d
b H-d f+c gL I +xM
b
c d Hb f-a gL I +xM
b
+ xM 1 +
H-d f+c gL2
b H- d f + c gL2 I
gL2
a
-
b
c
d
b
c d Hb f-a gL I +xM
a
c d Hb f - a gL I
b H-d f+c gL I +xM
gL2
d Hb f-a gL I +xM
c
LogB-
a
b H-d f+c
d2 Hb f - a
+ xM
d
bf-ag
b I +xM
-
c
d
a d I +xM
c
+ xM
b
a d I +xM
b Hf + g xL
a
a
d Hb f - a gL I
d Hb f - a gL2 I
b
bg
b H-d f+c gL2 I +xM
c d Hb f-a gL I +xM
2
a
b
LogB-
a
c
d
a
+ xM
F + LogB
a
I
b
d
c
a
b
a
a b g I +xM
Hb f-a
gL2
a b g I +xM
2 H- d f + c gL -
2 a c d I +xM
c
-
b
b H-d f+c
+ xM
2
a
c d Hb f-a gL I +xM
+ xM
1
2 c2 d Hb f-a gL I +xM
c
a
b
-b c + a d
a -
-d f + c g
F +
c
a
b
2 a b H- d f + c gL I
LogB
d Hf + g xL
2 b2 H- d f + c gL2 I
+
c
d
b H- d f + c gL I
F
+ xM
a
b
+ xM
c
d
+ xM
-
+
a
+x
b
-
cdgI
c
d
+ xM
H- d f + c gL2
d Hb f - a gL I
c
d
b H- d f + c gL I
a
b
+ xM
+ xM
F
+
dI
-d f + c g
F
2.2 Logarithm Functions.nb
-
c d g I +xM
H- d f + c gL
c
H-d f+c
d
dgI
c d g I +xM
c
c -
H-d f+c
b2 H- d f + c gL2 I
dgI
a
b
c
d
d
d
-d f+c g
F
-
c
gL2
c d Hb f - a gL I
b H- d f + c gL2 I
d Hb f - a gL
d
a
I +xM
c d Hb f-a gL I +xM
c
d
a
b H-d f+c gL2 I +xM
b
a b H- d f + c gL I
+ xM
+
b H-d f+c gL I +xM
a
b
+ xM
a
b
c
d
-
c
LogB1 +
b H-d f+c gL I +xM
a
Hb f - a gL -
a b g I +xM
a
Hb f-a gL3
b
a
Hb f-a gL2
d
a
b
c
d
b H-d f+c gL2 I +xM
b
2 a2 b g I +xM
+ xM
2 a b I +xM
Hb f-a gL2
b
bgI
a
b
b I +xM
b
b f-a g
b g2 I
a
b
+ xM -
b
a
b
b f-a g
+ xM
b g I +xM
a
PolyLogB2, -
b
b f-a g
+ xM
+
F
+
F
c
d
+ xM
a
b
+ xM
a
F
F
F
c
d
b H- d f + c gL I
adI
c
d
+ xM
a
b
+ xM
F - b H- d f + c gL
b H- d f + c gL I
2 a c d I +xM
d
b H-d f+c gL2 I +xM
a
d Hb f - a gL I
a
b
+ xM
LogB1 +
b
c
d
“
+ xM
c
-
-
+
d Hb f - a gL I
+
b H-d f+c gL3 I +xM
d Hb f - a gL
d Hb f-a gL I +xM
c
d
a
b H-d f+c gL I +xM
b
+ xM
F
-
-
d Hb f-a gL I +xM
d
a
b H-d f+c gL I +xM
a b g I +xM
a
a -
d
-d f+c g
+ LogB-
d
b
+ xM
b g I +xM
c
2 c2 d Hb f-a gL I +xM
c
LogB1 +
a
d g I +xM
b
d
a
d
PolyLogB2, -
F
d
-d f+c g
+ xM
c
a
b
b H-d f+c gL I +xM
a d I +xM
c
d
c
b H- d f + c gL2 I
+ xM
d Hb f-a gL I +xM
b H-d f+c gL I +xM
a
-
a
b
LogB1 -
gL2
+ xM
c d Hb f - a gL I
c
+
c
d
c
d
LogB1 -
-d f+c g
d
a
b
d Hb f - a gL2 I
a
-
dgI
b H-d f+c gL I +xM
c
d
d
H-d f+c
d g I +xM
c
d
-
gL3
c
2 c d I +xM
c
d
d Hb f-a gL I +xM
+ xM
b H- d f + c gL I
a d I +xM
d I +xM
+
b
2
c
d
gL2
d g2 I
+ xM
adI
+ xM
d Hb f - a gL I
H-d f+c
d
b
b H- d f + c gL I
+ xM
c d Hb f-a gL I +xM
+ xM
H-d f+c
c
LogB1 +
a
-
c d g I +xM
2
d
c
a
b
Hb f - a gL -
b
c
d
c
I
d
a d I +xM
c
+
b
b H- d f + c gL I
1+
d
-
H- d f + c gL -
+
d2 Hb f - a gL2 I
c
+ xM
d g I +xM
c d Hb f-a gL I +xM
b H-d f+c
-d f+c g
c
-d f+c g
+ xM
2
b
a
b
H-d f+c
2 c2 d g I +xM
H- d f + c gL
d
+
gL2
d g I +xM
LogB1 -
+ xM
d I +xM
c
d
c
d
-d f+c g
a
bcI
-
-d f+c g
+ xM 1 -
c d g I +xM
c
d
c
c
d
d I +xM
+
gL2
+x
d I +xM
c
-
c
d
+x
gL2
125
Hb f-a gL2
b
b H- d f + c gL I
a
b
b I +xM
F
+
a
-
PolyLogB2, -
b f-a g
bgI
+ xM -
b g I +xM
a
b
a
b
b
b f-a g
+ xM
2 c2 d Hb f-a gL I +xM
b H-d f+c
c
d
gL3
d Hb f - a gL I
c
d
I +xM
a
b
+ xM
F
-
2 a c d I +xM
c
-
d
b H-d f+c gL2 I +xM
a
b
+
-
126
2.2 Logarithm Functions.nb
bcI
c d Hb f-a gL I +xM
d Hb f - a gL I
2 c2 d g I +xM
H-d f+c gL3
d
c d g I +xM
c
H-d f+c gL2
d
d
b
c
d
c
d
c
c
I
d
PolyLogB2,
c d Hb f-a gL I +xM
d
a
+ xM
b H-d f+c gL2 I +xM
d Hb f - a gL I
+ xM -
b H- d f + c gL I
a
b
+ xM
a
b
d
a
b H-d f+c gL2 I +xM
b
b H-d f+c gL3 I +xM
b
c d Hb f-a gL I +xM
b
+ xM
b H-d f+c gL2 I +xM
a
a d I +xM
I +xM
b
a d I +xM
d
b H-d f+c
b H-d f+c gL I +xM
a
c
d
d
gL2
d
a
b H-d f+c gL2 I +xM
b
+
bcI
c
d
d
-d f+c g
a
b
d
a
b H-d f+c gL2 I +xM
d Hb f - a gL2 I
c
d
+ xM
c
I
d
d Hb f-a gL I +xM
d
a
b H-d f+c gL I +xM
c
d
d
a
b H-d f+c gL2 I +xM
+x
a
b
+x
d
a
b H-d f+c gL I +xM
F
-
-
d Hb f-a gL I +xM
d
a
b H-d f+c gL I +xM
b
F
-
F-
d
b H-d f+c gL2 I +xM
a
b
+ xM
a d I +xM
-
c
d
b H-d f+c gL I +xM
a
a d I +xM
PolyLogB2,
dgI
a
b
c
d
+ xM
-d f + c g
d
b H-d f+c gL I +xM
-
+ xM
F - PolyLogB2, -
c
PolyLogB2, -
c
I
d
+ xM
bf-ag
c
+
a
b
c
-
b
c
bgI
+
b
+ xM
d Hb f-a gL I +xM
F
+
b
c d Hb f-a gL I +xM
PolyLogB2,
c
b
b H-d f+c gL3 I +xM
d Hb f - a gL
b
b H-d f+c gL I +xM
d
PolyLogB2, -
2 a c d I +xM
c
a
b
c
a
2 c2 d Hb f-a gL I +xM
+ xM -
c
d
F
d
-d f+c g
+ xM
b
PolyLogB2, -
d
c
d
d Hb f - a gL
+ xM
+ xM
a d I +xM
dgI
d g I +xM
c
PolyLogB2,
d Hb f - a gL2 I
b
a
+ xM
c
I +xM
+ xM
c
d
c d Hb f-a gL I +xM
+ xM
a
b
d
b H-d f+c gL I +xM
b
c
a
b
PolyLogB2, -
a
b
d Hb f - a gL I
+
a
d Hb f - a gL I
c d Hb f-a gL I +xM
H-d f+c gL2
c
-
d I +xM
c
c
d
d
b H-d f+c gL I +xM
c
+
-
a d I +xM
+
b
d Hb f - a gL2 I
c d g I +xM
a b H- d f + c gL I
2 a c d I +xM
c
d
+ -
b
+ xM
a
b H-d f+c gL2 I +xM
c
+
b H-d f+c gL2 I +xM
gL3
d
a
+ xM
b H- d f + c gL I
d
c
d
a
c
d
-
b
+ xM
c
a
b
-
c d Hb f-a gL I +xM
c
a
b
c
c -
c
d
c
I
d
F
F
2 a c d I +xM
c
a
b H-d f+c
-
+ xM
2 c2 d Hb f-a gL I +xM
c d Hb f-a gL I +xM
a b H- d f + c gL I
b H-d f+c gL I +xM
2 c2 d Hb f-a gL I +xM
c
+ xM
c
d
d
d Hb f - a gL2 I
+ xM -
-d f+c g
a d I +xM
d Hb f - a gL
a
b
d
c
+
b
a
b
d g I +xM
+ xM
c
a
b
-d f+c g
c
d
-d f+c g
g2
d
PolyLogB2,
+ xM
d I +xM
+
c
H-d f+c gL2
dgI
a b H- d f + c gL I
d g I +xM
c
d
-
+
+ xM
2 c d I +xM
c
a b H- d f + c gL I
a
b
b H-d f+c gL I +xM
a
b
b H- d f + c gL I
bcI
d
+
b H-d f+c gL2 I +xM
H- d f + c gL -
-
c
d
a
+ xM
H- d f + c gL
bcI
a d I +xM
c
a
b
d Hb f - a gL I
c
d
b H- d f + c gL I
a
b
+ xM
+ xM
F -
F+
2.2 Logarithm Functions.nb
1
2
g2
Hb f - a gL J
bx
b f-a g
H- d f + c gL J-
-
Hb f - a gL J
a b Hf+g xL
Hb f-a gL2
+
b Hf + g xL
dx
-d f+c g
bx
b f-a g
Hb f - a gL J
+
bx
b f-a g
a b Hf+g xL
Hb f-a gL2
+
b Hf + g xL
2
H- d f + c gL cdgI
c
d
c d g I +xM
H-d f+c gL2
d
+ xM
2
b H- d f + c gL
H- d f + c gL a
+x
b
LogB-
+
dI
N
a b Hf+g xL
d I +xM
+ xE LogA
d
-d f+c g
N
LogB
c d g I +xM
c
H-d f+c
d
gL2
+
d g I +xM
d
-d f+c g
c
I
d
- 2 LogB
c
d
-d f+c g
b H- d f + c
LogB-
+ xM
+
+ xM
d
a
b H-d f+c gL I +xM
b H- d f + c gL I
c d g I +xM
c
d
gL2
+
a
b
+ xM
d I +xM
c
d
-d f+c g
b
+ xM
c
d
c
d
F - LogB-
+ xM
c
d
+ xM
F
a
I
b
F J- LogB
a
I
b
Hb f - a gL -
a b g I +xM
a
Hb f-a
b
gL2
b f-a g
b
b f-a g
a
b
dg
+ xE + LogB-
d Hb f-a gL I +xM
c
I
d
d
a
b H-d f+c gL I +xM
b
+ xM
+ xM
+ xM
F LogBb
-d f+c g
FN
2dgI
b H- d f + c gL
dgI
c
d
+ xM
-d f+c g
c
d
+ xM
a
I
b
+ xM
FN
F LogB1 -
+ xM
d g I +xM
c
d
-d f+c g
F
-d f + c g
F -
b Hf + g xL
bf-ag
+ xM
F+
c
d
+ xM
a
I
b
+ xM
F +
2
1
d Hb f - a gL I
F + LogB-
1
-
d Hb f - a gL I
-b c + a d
bd
a
I
b
+ xM
d Hb f-a gL I +xM
c
d
a
b H-d f+c gL I +xM
c
d
+ xM
F LogB1 +
d Hb f - a gL I
c
d
+ xM
c
d
+ xM
d Hf + g xL
-d f + c g
b H- d f + c gL
F + LogB
1
-
+ xM
H- d f + c gL
b
a
b
a
I
b
b H- d f + c gL
d Hf + g xL
F LogB
+ xE - LogB-
bgI
+ xM
F - LogB
d Hf+g xL
F + LogB-
c
d
c
d
d Hb f - a gL I
LogB-
F - LogB-
-d f + c g
c
d
d Hb f - a gL I
1
+
b Hf + g xL
LogA
F +
a
b H- d f + c gL
b I +xM
+
b H-d f+c gL2 I +xM
d Hb f - a gL I
a
-
c
d
bf-ag
b Hf+g xL
+ xM
c
d
N
c H-b c+a dL Hf+g xL
d Hf+g xL
LogB
c
LogA
+
+ xM
LogB-
dgI
dgI
LogB
+ xM
b H- d f + c gL
F +
b f-a g
Hb f-a gL2
-d f + c g
a
b H- d f + c gL
c
adI
LogB
H- b c + a dL Hf + g xL
adI
d Hb f-a gL I +xM
c
I
d
N
H-b c+a dL x
b Hf+g xL
a b Hf+g xL
-d f + c g
b H-d f+c gL I +xM
-d f + c g
+
b
b
+ xF + LogB
+ xM
a
I
b
+ xM
H- b c + a dL Hf + g xL
H-d f+c
c
d
+ xF + LogB
c d Hf+g xL
+ xM -
dgI
+
a
H-d f+c gL2
+
+ xM
dg
a
gL2 I
b
a
b
b
c d Hb f - a gL I
c
d
dx
-d f+c g
a
d I +xM
F - 2 LogB
+ xM
F JLogB
c
LogB
+ xM
+
c
d
b H- d f + c gL I
2
b
dgI
bx
b f-a g
b Hf + g xL
d Hf + g xL
b H- d f + c gL
+x
Hb f - a gL J
1
-d f + c g
-d f + c g
a
+ xE
2
2dg
c
d
c
d
+
c
+
c d Hb f - a gL I
H- d f + c gL -
a
b
H- d f + c gL J-
-
N
Hb f-a gL2
c
H- d f + c gL
-
c d Hf+g xL
H-d f+c gL2
+
d Hf + g xL
b Hf + g xL
1
N LogA
b Hf + g xL
bf-ag
b g I +xM
a
b
b f-a g
F
F-
-
F +
127
128
2.2 Logarithm Functions.nb
b H- d f + c gL
1+
c d Hb f - a gL I
a
b
d Hb f - a gL I
b H- d f + c gL I
a
b
d Hb f - a gL
H-d f+c
c
I
d
+ xM
LogB-
c
d
-d f+c g
dgI
c
d
+ xF - LogB-
+ xM
-d f + c g
c
d
a
I
b
+ xM
+ xM
dgI
c
d
+ xM
F
d
-d f+c g
a
b
1
LogB
2
a
I
b
+ xM
+ xM
d Hb f - a gL I
a
c
d
b H- d f + c gL I
-
dgI
c
d
c
d
a
b
-d f + c g
+ xM
+ xM
d Hb f - a gL I
a
I
b
c
d
bf-ag
bgI
a
b
bf-ag
c
d
+x
a
b
+x
a d I +xM
+
+ xF + LogB
I +xM
b
a d I +xM
d
a
dgI
+ xM
c
d
+ xM
b Hf + g xL
bf-ag
F
F + LogB-
b H- d f + c gL I
a
+ xF + LogB-
b
F - PolyLogB2, -
a
b
+ xM
d
-d f+c g
+ xM
c
d
+x
a
b
+x
F-
PolyLogB2, -
b
c
d
PolyLogB2,
b
c
H- b c + a dL Hf + g xL
F + LogB
+
b H-d f+c gL I +xM
a
c
d
d g I +xM
c
d
+ xM
-d f + c g
F - LogB
+
b H-d f+c gL I +xM
a
b
c
d
a
PolyLogB2,
d Hb f - a gL I
F - LogB-
+ xM
a
I
b
gL2
d Hb f - a gL I
+ xM
b H-d f+c gL2 I +xM
+ xM
F LogB
+
b H-d f+c
d
a
+ xM
+ xM
c d Hb f-a gL I +xM
+ xM
c d Hb f-a gL I +xM
b Hf + g xL
F PolyLogB2,
-
c
d
a
b
c
a
b
b H- d f + c gL
F - 2 LogB
F
+ xM
-
c
+ xM
b H- d f + c gL
+ xM
+ xM
+
F
b
+ xM
F + LogB
b
b f-a g
adI
+ xM
a
I
b
F PolyLogB2, -
a
b
b
b f-a g
b H- d f + c gL I
b H- d f + c gL I
F LogB-
bd
c
d
F
b H- d f + c gL
LogB
b H- d f + c gL I
-
c
-b c + a d
2
b g I +xM
+ xM
d g I +xM
b g I +xM
+ xM
c d Hb f - a gL I
F+
-d f + c g
d Hb f - a gL I
F + LogB-
c
d
F -
+ xM
a
b
c
d
b H- d f + c gL I
a
PolyLogB2, -
PolyLogB2, -
2
+ xM
+ xM
b
b
a
b
bgI
b H-d f+c gL I +xM
+x
b Hf + g xL
F + LogB
b H- d f + c gL
c
d
c
I
d
b f-a g
a
a
bf-ag
d Hb f - a gL I
dgI
d
b
-
gL2
+ xM
b H- d f + c gL I
+ xF LogB
Hb f-a
a
b
LogB-
a
b
d Hb f - a gL I
+ xM
b I +xM
a
PolyLogB2,
b H- d f + c gL
d Hf + g xL
d
2,
d I +xM
+
a b g I +xM
a d I +xM
d Hb f - a gL I
d Hb f - a gL
-d f + c g
LogB
gL2
c
d
b H- d f + c gL I
c
+
b H-d f+c gL2 I +xM
d
1
+ xM
c
d
a
d
b
c
F+
c
LogB-
a
b
adI
+
Hb f - a gL -
c d Hb f-a gL I +xM
c
+ xF LogB
2
+ xM
c d g I +xM
a
g3
a
b
+ xM
b
PolyLogB2, -
2 LogB
+ xM
+ xM
1
1
c
d
b H- d f + c gL I
H- d f + c gL -
b H- d f + c gL2 I
+x
c
d
d Hb f-a gL I +xM
c
d
a
b H-d f+c gL I +xM
b
LogB
b Hf + g xL
bf-ag
d Hf + g xL
-d f + c g
F +
d Hb f - a gL I
c
d
b H- d f + c gL I
d Hb f - a gL I
c
d
b H- d f + c gL I
a
b
+ xM
+ xM
a
b
F +
+ xM
+ xM
F -
F-
F PolyLogB
+
F
+
F
-
2.2 Logarithm Functions.nb
bgI
PolyLogB3, -
a
b
+ xM
bf-ag
1
4g
g
Hb f - a gL J
LogB
dgI
c
d
bx
b f-a g
+ xM
-d f + c g
-
1
2
Hb f - a gL J
a b Hf+g xL
b Hf + g xL
F - 2 LogB
+
b Hf + g xL
bx
b f-a g
H- d f + c gL 1
d Hb f - a gL I
- LogB
H-d f+c gL2
d
cdgI
c
d
+ xM
bf-ag
LogB-
-d f+c g
c
d
+
+ xM
dI
b H- d f + c gL
a
I
b
+ xM
+ xM
+ xM
F +
dx
-d f+c g
+
b H- d f + c gL I
d g I +xM
c
LogB
c
d
d
-d f+c g
c
I
d
+
+ xM -
b
a
+x
b
bd
a
I
b
b Hf+g xL
b f-a g
N
LogB
+
a
F - LogB-
b H- d f + c gL2 I
+ xM
a
b
+ xM
+
c d g I +xM
c
H-d f+c
d
gL2
c
d
+ xM
a
b
+ xM
+
b Hf + g xL
bf-ag
Hb f-a gL2
dgI
+
c
d
+ xM
c
d
H- d f + c gL J-
F LogB-
F
d I +xM
2dgI
d
c
d
c
d
F
+
c
d
a
b
+
c d Hf+g xL
H-d f+c gL2
+ xM
+ xM
d Hb f - a gL I
b H- d f + c gL
N
F+
c
d
a
I
b
+ xM
+ xM
F +
2
+ xM
F - LogB-
+ xM
a
b
LogB
dgI
d Hb f-a gL I +xM
d
a
b H-d f+c gL I +xM
dgI
b
c
d
c
d
a
b
+ xM
+ xM
H- b c + a dL Hf + g xL
b H- d f + c gL I
-
-d f + c g
+ xM
a
b
+ xM
F
F J- LogB
+ xM
b H- d f + c gL I
d Hf + g xL
-d f + c g
+ xM
c
LogB-
adI
F - LogB-
LogB-
b Hf + g xL
c
-d f+c g
dx
-d f+c g
b H- d f + c gL I
bf-ag
c
d
+ xM
1
+
LogB
adI
+ xM
a
I
b
d Hb f - a gL I
b
FN
c
d
d Hf + g xL
+
a
b H- d f + c gL I
+
b H- d f + c gL
b H-d f+c gL2 I +xM
-d f+c g
+ xM
N
d Hb f - a gL I
c H-b c+a dL Hf+g xL
d Hf+g xL
-d f + c g
c d Hb f - a gL I
F + LogB
dgI
c
d
a b Hf+g xL
-d f + c g
H-b c+a dL x
+ xF + LogB
H- d f + c gL -
+ xM
bx
b f-a g
H- b c + a dL Hf + g xL
b H- d f + c gL2 I
-b c + a d
+x
F + PolyLogB3, -
b
c d Hb f - a gL I
F +
a
b
b H-d f+c gL I +xM
b
+x
F LogB
c d Hf+g xL
H-d f+c gL2
a
- 2 LogB
+x
b Hf + g xL
+ xM
a
-d f + c g
a
b
F JLogB
+ xM
d Hf + g xL
b H- d f + c gL
c
d
c
d
-d f + c g
b H- d f + c gL
d Hb f - a gL I
dgI
c
d
Hb f - a gL J
1
d Hf + g xL
2dg
F + LogB-
1
N
d
+ xM
+ xE
H- d f + c gL J-
-
d I +xM
H- d f + c gL2
b Hf + g xL
d Hb f - a gL I
c
d
N
F - PolyLogB3,
2
c
+
c
d
-d f + c g
Hb f-a gL2
c
+ xM
+
b
a b Hf+g xL
c d g I +xM
c
d
-d f + c g
+ xE LogA
+ xF + LogB
Hb f-a gL2
+
a
b
a
a b Hf+g xL
b Hf + g xL
H- d f + c gL -
N LogA
Hb f-a gL2
+
bx
b f-a g
Hb f - a gL J
F - PolyLogB3,
dgI
129
F +
b Hf+g xL
b f-a g
F -
F + LogB-
d Hf+g xL
-d f+c g
FN
-
130
2.2 Logarithm Functions.nb
Hb f - a gL -
a b g I +xM
Hb f-a
b
H- d f + c gL b H- d f + c gL
Hb f - a gL -
gL2
c d g I +xM
Hb f-a gL2
b
LogB
c
H-d f+c
d
+ xM
1
LogB-
LogB
b
bgI
gL2
+
a
b
c
d
b H- d f + c gL
F - LogB-
d Hb f - a gL I
PolyLogB2,
dgI
c
d
+ xM
a
b
+ xM
+
c
d
+ xM
a
b
+ xM
d Hf + g xL
-d f + c g
+ xM
F
b f-a g
d g I +xM
d
-d f+c g
F F+
1
LogB
2
bd
c
d
F + LogB-
a
b
+ xM
+ xM
F
+
-
a
I
b
dgI
c
d
dgI
c
d
+ xM
-d f + c g
+ xM
c
d
+ xM
a
b
+ xM
a
b
+ xM
c
d
b H- d f + c gL I
a
b
+ xM
+ xM
+
F
d g I +xM
c
d
-d f+c g
F
b H-d f+c
a
b
c
d
b H-d f+c
a
b
+
b H-d f+c gL I +xM
a
b
d
a
I +xM
b H-d f+c gL I +xM
dgI
c
d
F - LogB-
+x
a
b
+x
+ xM
F - LogB
b H- d f + c gL I
a
+ xF + LogB-
b
F - PolyLogB2, -
a
b
PolyLogB2,
d g I +xM
d
-d f+c g
c
d
+x
a
b
+x
F-
d Hb f-a gL I +xM
c
d
a
b H-d f+c gL I +xM
b
b Hf + g xL
bf-ag
H- b c + a dL Hf + g xL
F + LogB
c
d
+ xM
F
+ xM
b
b f-a g
+ xM
+ xM
+ xM
b g I +xM
a
b
c
d
F+
c
d
b
c
d
+ xM
PolyLogB2, -
c
PolyLogB2, -
a
-d f + c g
a
b
a d I +xM
+ xM
d
a
b
+ xM
c
+ xF + LogB
b H- d f + c gL I
c
d
b H-d f+c gL I +xM
b
+ xM
b
a
a d I +xM
a
c
d
+
c
d
b H- d f + c gL I
a d I +xM
PolyLogB2,
d Hb f - a gL I
b
d Hb f - a gL I
d
+
I +xM
gL2
+ xM
c
d
a
d Hb f - a gL I
+ xM
d Hb f - a gL I
F PolyLogB2,
gL2
c d Hb f-a gL I +xM
+ xM
b H-d f+c gL2 I +xM
bf-ag
+ xM
c
a
b
d
a
+ xM
a
b
c
d
F LogB1 +
d Hb f - a gL I
b
bgI
+ xM
c d Hb f-a gL I +xM
+ xM
c
bf-ag
c
d
c
a
b
c d Hb f-a gL I +xM
F LogB-
d Hb f - a gL I
b H- d f + c gL I
b H- d f + c gL I
F - 2 LogB
1
-
d Hb f - a gL I
adI
b Hf + g xL
F PolyLogB2, -
d Hb f - a gL I
+ xM
b H- d f + c gL I
+ xM
F + LogB
a
b
LogB-
b H- d f + c gL I
-d f + c g
-b c + a d
LogB
F
b H- d f + c gL I
F + LogB
2
b H- d f + c gL I
-d f + c g
b
b H- d f + c gL2 I
b
d Hb f - a gL I
+ xM
b g I +xM
b
b f-a g
+ xM
c d Hb f - a gL I
+x
c
I
d
c
d
b H- d f + c gL I
a
a
b Hf + g xL
+ xM
a
I
b
adI
+ xM
bf-ag
d
c
d
PolyLogB2,
-d f+c g
b H-d f+c gL I +xM
b
c
d
d
a
+ xM
a
F LogB1 -
c
c
I
d
b g I +xM
F LogB1 +
d Hb f-a gL I +xM
+ xE + LogB-
c
b H- d f + c gL I
+ xF - LogB-
+ xM
+ xM
d I +xM
dgI
b H- d f + c gL
a
b
a
b
PolyLogB2, -
b f-a g
+ xF LogB
b Hf + g xL
LogA
b H-d f+c gL I +xM
b
a
d
bf-ag
c
b I +xM
-
c
b
2
d
d Hb f - a gL
+ xF LogB
LogB
d I +xM
-d f+c g
dg
c d g I +xM
a
g2
+
d
a
+ xE - LogB-
bgI
b H- d f + c gL2 I
a
1
1
b f-a g
c
d
c d Hb f - a gL I
b
PolyLogB2, -
LogA
c
d
+x
c
d
c
b
c
H-d f+c gL2
a b g I +xM
d Hb f-a gL I +xM
a
-
a
H- d f + c gL d Hb f - a gL I
b I +xM
a
F +
F + LogB-
d Hb f - a gL I
c
d
b H- d f + c gL I
d Hb f - a gL I
+ xM
a
b
c
d
b H- d f + c gL I
a
b
+ xM
+ xM
+ xM
F
F
d Hf + g xL
-d f + c g
F -
-
F +
F
F
-
-
2.2 Logarithm Functions.nb
PolyLogB3, -
bgI
a
b
+ xM
bf-ag
a
n3 - b f + d f
F - PolyLogB3,
bx
a
c+dx
c
d
+ xM
-d f + c g
F - PolyLogB3,
c
d
+x
a
b
+x
F + PolyLogB3, -
d Hb f - a gL I
c
d
b H- d f + c gL I
a
b
+ xM
+ xM
F
-
3
bx
+g a-c
+
dgI
+
c+dx
c+dx
c+dx
LogB
a
bx
+
c+dx
c+dx
Ib f - a g - d f
F
1
a
I
c+d x
bx
M
c+d x
+
+cg
a
b2 f - 2 d f LogB
bx
+
c+dx
a
a
I
c+d x
c+dx
bx
adg df
b Hd f - c gL
a
a
c+dx
a
- c g - 3 + LogB
bx
+
a
bx
+
c+dx
H- d f + c gL I
c+dx
a
c+d x
+
bf-ag
a
6 a d g 1 + LogB
bx
+
c+dx
c+dx
PolyLogB
2,
F+
c+dx
bx
M
c+d x
F +
bx
c+dx
a
c+dx
bx
+
c+dx
a
c+dx
bx
+
c+dx
bx
+
c+dx
c+dx
F
a
bx
a
3 + LogB
+
c+dx
c+dx
F + 2 d f LogB
bx
+
a
c+dx
F
F +g 3a-c
F + d f 3 + 2 LogB
F + b c g - 1 + LogB
c+dx
c+dx
+
F + b c g - 2 + LogB
a
LogB
bx
c+dx
a
c+dx
c+dx
c+dx
c+dx
c+dx
bx
+
+
bx
bx
+
a
a
+
c+dx
a g c g 3 - 2 LogB
LogB1 +
F + c g - 3 + 2 LogB
c+dx
3 a d g 2 + LogB
Hd f - c gL
3 + LogB
+
c+dx
+
2
bx
MM
c+d x
c+dx
bx
+
c+dx
F
F - 2 d f LogB
F - 2 d f LogB
c+dx
a
c+dx
+
a
bx
+
c+dx
a
c+dx
bx
+
c+dx
c+dx
F
bx
+
F +
F
c+dx
F
+
131
132
2.2 Logarithm Functions.nb
2,
Hd f - c gL I
a
c+d x
+
bf-ag
bx
M
c+d x
F+
6 H2 b d f - b c g - a d gL PolyLogB3,
Hb f - a gL2 Hd f - c gL2 Hf + g xL3
ad
Hc + d xL2
Hd f - c gL I
a
c+d x
bf-ag
+
bx
M
c+d x
F
“
2
bdx
Hc + d xL2
+
b
-b +
c+dx
d
a
bx
+
c+dx
c+dx
Problem ð562: Valid but suboptimal antiderivative:
:LogBe
a+bx
c+dx
Ha + b xL LogAe I
b
F , x, 6, 0>
n 4
a+b x n 4
M E
c+d x
24 Hb c - a dL n3 LogAe I
+
4 Hb c - a dL n LogAe I
a+b x n
M E
c+d x
bd
a+b x n 3
M E
c+d x
bd
PolyLogB3,
d Ha+b xL
F
b Hc+d xL
+
LogB
b c-a d
F
b Hc+d xL
+
12 Hb c - a dL n2 LogAe I
24 Hb c - a dL n4 PolyLogB4,
bd
d Ha+b xL
F
b Hc+d xL
a+b x n 2
M E
c+d x
bd
PolyLogB2,
d Ha+b xL
F
b Hc+d xL
-
2.2 Logarithm Functions.nb
n
a+bx
x LogBe
c+dx
4 n I- LogAe I
a+b x n
M E
c+d x
a
a d LogB
F - n LogB
a+bx
c+dx
+ n LogA
+ xF + b c LogB
b
Ia d Log@a + b xD + b d x LogA
bd
a+b x
E
c+d x
- b c Log@c + d xDM
d
F + b d x LogB
6 n2 LogBe
bd
c
+ xF Log@a + b xD - 2 a d LogB
d
a+bx
F + 2 b c LogB
2
a+bx
c+dx
c
+ xF Log@a + b xD + 2 a d LogB
b
a+bx
1
+
a
2
+ xF - 2 a d LogB
2 a d Log@a + b xD LogB
n
F - n LogB
+ xF LogB
d
a
a+bx
c+dx
d Ha + b xL
-b c + a d
c
a+bx
4 n3 - LogBe
bd
n
c+dx
6 Hb c - a dL LogB
n4 a d LogB
a+bx
c+dx
PolyLogB2,
F + n LogB
a+bx
c+dx
c+dx
F PolyLogB2,
F + b d x LogB
4
a+bx
d Ha + b xL
b Hc + d xL
a+bx
c+dx
F
a+bx
LogB
d Ha + b xL
b Hc + d xL
c+dx
F - 24 Hb c - a dL LogB
d Ha + b xL LogB
2
a+bx
c+dx
F + H- 6 b c + 6 a dL PolyLogB3,
F + 4 b c LogB
4
F
+ xF Log@c + d xD - 2 b c LogB
F+
F
2
+ xF Log@c + d xD c+dx
b
d
a+bx
a
b Hc + d xL
d Ha + b xL
b Hc + d xL
2 b c LogB
F Log@c + d xD - 2 b c LogB + xF LogB
F - 2 b c PolyLogB2,
F - 2 a d PolyLogB2,
F c+dx
b
bc-ad
-b c + a d
bc-ad
c+dx
1
4
3
a+b x
EM
c+d x
c
2
F
133
a+bx
c+dx
a+bx
c+dx
F LogB
3
bc-ad
bc+bdx
F PolyLogB3,
F + 3 Hb c - a dL LogB
d Ha + b xL
b Hc + d xL
F - 4 a d LogB
d Ha + b xL
b Hc + d xL
F +
a+bx
c+dx
bc-ad
bc+bdx
1
F +
bd
F LogB
bc-ad
3
F + 24 b c PolyLogB4,
bc+bdx
d Ha + b xL
b Hc + d xL
F + 12 Hb c - a dL LogB
F - 24 a d PolyLogB4,
a+bx
c+dx
F
2
d Ha + b xL
b Hc + d xL
F
Problem ð563: Valid but suboptimal antiderivative:
:LogBe
a+bx
c+dx
Ha + b xL LogAe I
b
F , x, 7, 0>
n 5
a+b x n 5
M E
c+d x
60 Hb c - a dL n3 LogAe I
+
5 Hb c - a dL n LogAe I
a+b x n 4
M E
c+d x
bd
a+b x n 2
M E
c+d x
bd
PolyLogB3,
d Ha+b xL
F
b Hc+d xL
+
LogB
b c-a d
F
b Hc+d xL
+
20 Hb c - a dL n2 LogAe I
120 Hb c - a dL n4 LogAe I
a+b x n
M E
c+d x
bd
a+b x n 3
M E
c+d x
bd
PolyLogB4,
PolyLogB2,
d Ha+b xL
F
b Hc+d xL
-
d Ha+b xL
F
b Hc+d xL
-
120 Hb c - a dL n5 PolyLogB5,
bd
d Ha+b xL
F
b Hc+d xL
134
2.2 Logarithm Functions.nb
5 a n Log@a + b xD ILogAe I
b
n
a+bx
x LogBe
c+dx
1
F - n LogB
c+dx
c
LogB
+ xF LogB
d
a+bx
c+dx
10 n3 LogBe
bd
c+dx
n
c+dx
F LogB
3
24 Hb c - a dL LogB
n5 a d LogB
bd
a+bx
c+dx
c+dx
c+dx
a+bx
c+dx
bc+bdx
c+dx
5
F
F
F
a+bx
c+dx
d Ha + b xL
b Hc + d xL
a+b x n
M E
c+d x
3
a
+ xF LogB
b
a+bx
a+bx
c+dx
c+dx
d Ha + b xL
b Hc + d xL
F + b d x LogB
F PolyLogB2,
3
F - 120 a d LogB
d Ha + b xL
b Hc + d xL
a+bx
c+dx
a+bx
Ha + b xLm Hc + d xL-2-m
LogAe I
a+b x n
M E
c+d x
Ha + b xL1+m Ie I
c+dx
a+bx
c+dx
F LogB
1+m
n
c+dx
c+dx
bc+bdx
H1+mL LogBe J
b Hc + d xL
n
a+b x
c+d x
N F
n
F
b Hc + d xL
b Hc + d xL
F -
bc+bdx
F LogB
3
F - 24 a d PolyLogB4,
a+bx
c+dx
F PolyLogB3,
2
F - 120 b c PolyLogB5,
F +
+ xF Log@c + d xD -
d
b Hc + d xL
bc-ad
F +
bd
c+dx
F-
bc-ad
1
a+bx
F - 5 a d LogB
c+dx
F - 2 a d PolyLogB2,
F + 3 Hb c - a dL LogB
d Ha + b xL
a+bx
c
+ xF Log@c + d xD - 2 b c LogB
-b c + a d
F + 4 b c LogB
4
a
b
d Ha + b xL
d Ha + b xL
+ xF Log@a + b xD - 2 a d
d
2
b Hc + d xL
d Ha + b xL
c
+ xF Log@a + b xD + 2 a d LogB
F + 2 b c LogB
d Ha + b xL
F - 60 Hb c - a dL LogB
F PolyLogB4,
Hc + d xL-1-m ExpIntegralEiB
Hb c - a dL n
a+bx
bc-ad
4
, x, 1, 0>
a+b x n M M
c+d x
c+dx
F PolyLogB2,
Problem ð564: Unable to integrate:
:
a+bx
a+bx
2
+
b
d Ha + b xL LogB
4
4
a
2
+ xF - 2 a d LogB
F - 2 b c PolyLogB2,
F + 24 b c PolyLogB4,
F + 5 b c LogB
5
2
c+dx
F
-
F + H- 6 b c + 6 a dL PolyLogB3,
a+bx
a d LogB
F
a+bx
Log@c + d xD
F + b d x LogB
c+dx
b Hc + d xL
LogB
F - n LogB
d
bc-ad
2
c+dx
c
2
+ xF + b c LogB
F + 12 Hb c - a dL LogB
c+dx
d
n
a+bx
4
a+b x
EM
c+d x
b
b Hc + d xL
a+bx
F LogBe
- n LogA
a
a d LogB
d Ha + b xL
F PolyLogB3,
F + b d x LogB
20 Hb c - a dL LogB
PolyLogB4,
a+bx
a+bx
bc-ad
a+bx
c+dx
5 c n ILogAe I
F PolyLogB2,
F + n LogB
a+bx
+ 5 n x LogB
F + 2 a d Log@a + b xD LogB
F - n LogB
c+dx
c+dx
a+bx
n
a+bx
a+bx
4 a d LogB
-
4
a+b x
EM
c+d x
F Log@c + d xD - 2 b c LogB
c+dx
5 n4 - LogBe
F
5
F + n LogB
d Ha + b xL
a+bx
6 Hb c - a dL LogB
- n LogA
a+bx
-b c + a d
2 b c LogB
1
n
a+bx
10 n2 - LogBe
bd
1
a+b x n
M E
c+d x
bc-ad
bc+bdx
d Ha + b xL
b Hc + d xL
F LogB
4
F-
bc-ad
bc+bdx
d Ha + b xL
b Hc + d xL
F +
F+
F + 120 b c LogB
d Ha + b xL
b Hc + d xL
a+bx
c+dx
F
F + 120 a d PolyLogB5,
d Ha + b xL
b Hc + d xL
F
2.2 Logarithm Functions.nb
á
Ha + b xLm Hc + d xL-2-m
LogAe I
âx
a+b x n
M E
c+d x
Problem ð577: Unable to integrate:
:
LogA
LogA
á
a
E
a+b x
LogA
2
cx
E
a+b x
x Ha + b xL
2
cx
E
a+b x
a
LogA
E
a+b x
, x, 3, 0>
PolyLogA2,
a
2
cx
LogA
E
a+b x
x Ha + b xL
bx
E
a+b x
2 LogA
+
cx
E
a+b x
PolyLogA3,
a
bx
E
a+b x
2 PolyLogA4,
a
bx
E
a+b x
âx
Problem ð578: Valid but suboptimal antiderivative:
:
-
LogAe I
a+b x n
M E
c+d x
Hc + d xL Hf + g xL
LogAe I
a+b x n
M E
c+d x
, x, 2, 0>
LogB
Hb c-a dL Hf+g xL
Hb f-a gL Hc+d xL
df-cg
F
n PolyLogB2,
-
Hd f-c gL Ha+b xL
Hb f-a gL Hc+d xL
df-cg
F
1
2df-2cg
c
- n LogB
a
2
+ xF - 2 n LogB
d
c
+ xF Log@c + d xD + 2 n LogB
b
d
a
2 n LogB
c+dx
c
+ xF Log@f + g xD - 2 n LogB
b
c
2 n LogB
a+bx
+ xF Log@c + d xD + 2 LogBe
+ xF LogB
d
d Hf + g xL
df-cg
a+bx
+ xF Log@f + g xD - 2 LogBe
d
F + 2 n PolyLogB2,
d Ha + b xL
-b c + a d
c+dx
n
n
F Log@c + d xD + 2 n LogB
F Log@f + g xD - 2 n LogB
F - 2 n PolyLogB2,
g Ha + b xL
-b f + a g
a
+ xF LogB
b
a
+ xF LogB
b
b Hf + g xL
bf-ag
F + 2 n PolyLogB2,
g Hc + d xL
-d f + c g
F
b Hc + d xL
bc-ad
F+
Problem ð579: Valid but suboptimal antiderivative:
:
-
LogAe I
a+b x n 2
M E
c+d x
Hc + d xL Hf + g xL
LogAe I
a+b x n 2
M E
c+d x
, x, 3, 0>
LogB
df-cg
Hb c-a dL Hf+g xL
Hb f-a gL Hc+d xL
F
-
2 n LogAe I
a+b x n
M E
c+d x
PolyLogB2,
df-cg
a Hd f-c gL+b d f x-b c g x
Hb f-a gL Hc+d xL
F
2 n2 PolyLogB3,
+
a Hd f-c gL+b d f x-b c g x
Hb f-a gL Hc+d xL
df-cg
F
F+
135
136
2.2 Logarithm Functions.nb
1
- 2 n2 LogB
3df-3cg
c
3
+ xF + 3 n2 LogB
d
6 n2 LogB
a
c
+ xF Log@c + d xD + 3 n2 LogB
6 n2 LogB
a+bx
n
c+dx
a
c
2
F - 3 n LogB
c
d
c+dx
a
+ xF Log@c + d xD - 6 n LogB
c
b Hc + d xL
F + 6 n LogB
a+bx
F Log@c + d xD - 3 n2 LogB
a
a+bx
n
n
c+dx
n 2
c+dx
F + 3 n2 LogB
a+bx
+ xF LogBe
b
F Log@c + d xD + 3 LogBe
n
a+bx
2
+ xF LogBe
d
+ xF LogBe
d
d Ha + b xL
-b c + a d
d
c
6 n LogB
2
+ xF LogB
d
+ xF LogB
b
c
F LogB
a
2
+ xF LogB
b
b Hc + d xL
a
2
+ xF Log@c + d xD b
F Log@c + d xD +
b Hc + d xL
bc-ad
F + 3 n2 LogB
F+
-b c + a d
F LogB
Hb f - a gL Hc + d xL
bc-ad
b
c+dx
bc-ad
d Ha + b xL
Hd f - c gL Ha + b xL
2
a
c
c
3 n2 LogB + xF Log@f + g xD + 6 n2 LogB + xF LogB + xF Log@f + g xD - 3 n2 LogB + xF Log@f + g xD +
b
b
d
d
a
a+bx n
c
a+bx n
a+bx n 2
6 n LogB + xF LogBe
F Log@f + g xD - 6 n LogB + xF LogBe
F Log@f + g xD - 3 LogBe
F Log@f + g xD +
b
c+dx
d
c+dx
c+dx
+ xF LogB
b
a
3 n2 LogB
d
2
a
2
+ xF LogB
b
3 n2 LogB
g Hc + d xL
-d f + c g
3 n2 LogB
b Hf + g xL
bf-ag
F LogB
2
Hd f - c gL Ha + b xL
6 n2 LogB
g Hc + d xL
-d f + c g
c
6 n n LogB
F LogB
2
+ xF + LogBe
n
c+dx
c
+ xF PolyLogB2,
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
6 n2 PolyLogB3,
b
d Ha + b xL
-b c + a d
n
bf-ag
-d f + c g
df-cg
F LogB
a+bx
c+dx
bc-ad
Problem ð580: Valid but suboptimal antiderivative:
:
LogAe I
a+b x n 3
M E
c+d x
Hc + d xL Hf + g xL
, x, 5, 0>
+ xF LogB
+ xF LogB
F - 3 n2 LogB
F - 6 n LogBe
n
F PolyLogB2,
F LogB
d Hf + g xL
g Hc + d xL
-d f + c g
F - 6 n2 LogB
b Hc + d xL
c
a
b
bf-ag
F - 6 n2 LogB
Hd f - c gL Ha + b xL
d
df-cg
-b c + a d
d Ha + b xL
F - 6 n2 PolyLogB3,
b
b Hf + g xL
Hb f - a gL Hc + d xL
+ xF LogB
d Hf + g xL
b Hc + d xL
F LogB
F LogB
d Ha + b xL
F + 6 n LogBe
F PolyLogB2,
a
F + 6 n2 LogB
F PolyLogB2,
bc-ad
g Hc + d xL
F - 6 n2 LogB
d Hf + g xL
b Hc + d xL
n
c+dx
F - 6 n2 LogB
Hd f - c gL Ha + b xL
a+bx
a+bx
+ xF LogBe
b Hf + g xL
F LogB
+ xF LogBe
a
Hb f - a gL Hc + d xL
d
6 n2 LogB
F LogB
c+dx
d
6 n2 LogB
bf-ag
a+bx
+ xF LogBe
d
F - 6 n LogB
b Hf + g xL
Hb f - a gL Hc + d xL
c
6 n LogB
+ xF LogB
df-cg
F LogB
c+dx
-d f + c g
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
F - 6 n2 PolyLogB3,
bf-ag
d Hf + g xL
df-cg
2
F+
c
2
+ xF LogB
d
F LogB
bf-ag
d Hf + g xL
g Hc + d xL
-d f + c g
Hd f - c gL Ha + b xL
2
F+
F PolyLogB2,
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
d Hf + g xL
df-cg
g Ha + b xL
-b f + a g
F PolyLogB2,
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
F-
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
F
2
F+
F+
F LogB
H- b c + a dL Hf + g xL
F + 6 n2 PolyLogB3,
b Hf + g xL
df-cg
Hd f - c gL Ha + b xL
F PolyLogB2,
d Ha + b xL
-d f + c g
Hb f - a gL Hc + d xL
F + 6 n2 LogB
b Hc + d xL
g Hc + d xL
F - 3 n2 LogB
F LogB
F + n LogB
g Hc + d xL
b
F + 3 n2 LogB
Hd f - c gL Ha + b xL
n
+ xF LogB
b Hf + g xL
Hb f - a gL Hc + d xL
a+bx
a
F -
F+
F+
g Hc + d xL
-d f + c g
F+
2.2 Logarithm Functions.nb
-
LogAe I
a+b x n 3
M E
c+d x
df-cg
6 n2 LogAe I
ILogAe I
Hb c-a dL Hf+g xL
LogB
a+b x n
M E
c+d x
a+b x
M
c+d x
n
Hb f-a gL Hc+d xL
a+b x
EM
c+d x
Log@c + d xD
+
df-cg
1
n
a+bx
3 n LogBe
2df-2cg
c+dx
a
2 LogB
+ xF LogB
b
+ xF LogB
d
1
d Hf + g xL
df-cg
n
a+bx
n2 - LogBe
df-cg
F - n LogB
b Hc + d xL
bc-ad
c
2 LogB
c+dx
a+b x n 2
M E
c+d x
Hb f-a gL Hc+d xL
df-cg
E - n LogA
-
3 n LogAe I
a Hd f-c gL+b d f x-b c g x
PolyLogB3,
3
F
c+dx
a
F
Hb f-a gL Hc+d xL
df-cg
Hd f-c gL Ha+b xL
Hb f-a gL Hc+d xL
-
df-cg
a+b x
M
c+d x
n
2
E - n LogA
3
a+b x
EM
c+d x
c
c+dx
F
+
Log@f + g xD
-
a
2
LogB
+ xF + 2 LogB
d
c
b
d Ha + b xL
-b c + a d
c
+ xF Log@c + d xD - 2 LogB
d
c+dx
a+bx
+ xF Log@f + g xD + 2 LogB
d
F + 2 PolyLogB2,
c
3
- 2 LogB
a+bx
+ xF Log@c + d xD - 2 LogB
c
b
a+bx
F
F
-d f + c g
+ xF Log@f + g xD + 2 LogB
F - 2 PolyLogB2,
F + n LogB
a Hd f-c gL+b d f x-b c g x
6 n3 PolyLogB4,
ILogAe I
a+bx
F - 2 LogB
F
PolyLogB2,
137
+ xF + 3 LogB
d
g Ha + b xL
-b f + a g
2
+ xF LogB
d
c+dx
F Log@f + g xD + 2 LogB
F - 2 PolyLogB2,
d Ha + b xL
-b c + a d
g Hc + d xL
-d f + c g
F - 3 LogB
c
2
F -
a+bx
+ xF LogB
d
c+dx
a
F Log@c + d xD -
+ xF LogB
b
b Hf + g xL
bf-ag
F-
F+
F Log@c + d xD +
d
d
b
c+dx
2
a+bx
a+bx 2
a
b Hc + d xL
a
c
b Hc + d xL
6 LogB + xF LogB
F Log@c + d xD + 3 LogB
F Log@c + d xD - 3 LogB + xF LogB
F + 6 LogB + xF LogB + xF LogB
F+
d
c+dx
c+dx
b
bc-ad
b
d
bc-ad
2
a
a+bx
b Hc + d xL
-b c + a d
Hb f - a gL Hc + d xL 2
a
6 LogB + xF LogB
F LogB
F + 3 LogB
F LogB
F - 3 LogB + xF Log@f + g xD +
b
c+dx
bc-ad
d Ha + b xL
Hd f - c gL Ha + b xL
b
a
3 LogB
a
2
+ xF Log@c + d xD - 6 LogB
b
c
c
+ xF LogB
c
+ xF Log@c + d xD + 3 LogB
2
a
+ xF Log@c + d xD - 6 LogB
a+bx
+ xF LogB
b
F Log@f + g xD c+dx
d
c+dx
2
2
a
b Hf + g xL
a
a+bx
b Hf + g xL
a
g Hc + d xL
3 LogB
F Log@f + g xD + 3 LogB + xF LogB
F - 6 LogB + xF LogB
F LogB
F - 6 LogB + xF LogB
F
c+dx
b
bf-ag
b
c+dx
bf-ag
b
-d f + c g
a
6 LogB
c
+ xF LogB
b
a+bx
LogB
b Hf + g xL
bf-ag
3 LogB
d
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
a+bx
+ xF LogB
d
6 LogB
g Hc + d xL
-d f + c g
c
6 LogB
c+dx
F LogB
+ xF + LogB
d
a
2
+ xF Log@f + g xD + 6 LogB
d
F + 3 LogB
c
6 LogB
c
+ xF Log@f + g xD - 3 LogB
g Hc + d xL
-d f + c g
F LogB
2
F LogB
F LogB
2
b Hf + g xL
bf-ag
d Hf + g xL
df-cg
Hd f - c gL Ha + b xL
a+bx
c+dx
F PolyLogB2,
+
b
b Hf + g xL
bf-ag
F - 6 LogB
F + 6 LogB
Hb f - a gL Hc + d xL
F LogB
a+bx
+ xF LogB
F - 6 LogB
a
b
c
b
d Hf + g xL
df-cg
g Hc + d xL
-d f + c g
F - 3 LogB
F - 6 LogB
F LogB
+ xF LogB
d
+ xF LogB
-b c + a d
-d f + c g
+ xF LogB
a
d Ha + b xL
g Hc + d xL
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
d Hf + g xL
df-cg
F LogB
F + 3 LogB
d Hf + g xL
df-cg
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
a+bx
c+dx
F + LogB
F Log@f + g xD - 6 LogB
c
d
2
2
bf-ag
g Hc + d xL
-d f + c g
df-cg
F LogB
2
Hd f - c gL Ha + b xL
Hd f - c gL Ha + b xL
F+
d Hf + g xL
H- b c + a dL Hf + g xL
Hb f - a gL Hc + d xL
+
a+bx
+ xF LogB
b Hf + g xL
+ xF LogB
F - 3 LogB
F LogB
F LogB
c
F PolyLogB2,
F+
d Hf + g xL
df-cg
F+
g Ha + b xL
-b f + a g
F+
F+
+
138
2.2 Logarithm Functions.nb
c
6 LogB
+ xF PolyLogB2,
d
6 LogB
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
6 PolyLogB3,
d Ha + b xL
-b c + a d
1
b Hc + d xL
n3 LogB
df-cg
a+bx
c+dx
a+bx
6 LogB
c+dx
F PolyLogB2,
F PolyLogB3,
a+bx
c+dx
b Hc + d xL
d Ha + b xL
F - 6 PolyLogB3,
F LogB
3
bc-ad
F + 6 LogB
F - 6 LogB
b Hc + d xL
bc-ad
Hb c - a dL Hf + g xL
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
Hb f - a gL Hc + d xL
F PolyLogB2,
g Hc + d xL
-d f + c g
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
F - 6 PolyLogB3,
F + 3 LogB
F + 6 LogB
a+bx
c+dx
F + 6 PolyLogB4,
2
Hd f - c gL Ha + b xL
F PolyLogB2,
b Hc + d xL
d Ha + b xL
F PolyLogB2,
Hb f - a gL Hc + d xL
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
F + 6 PolyLogB3,
Hd f - c gL Ha + b xL
Hb f - a gL Hc + d xL
Hd f - c gL Ha + b xL
Hb f - a gL Hc + d xL
F
:
b c-a d
F
b Hc+d xL
LogA
e Ha+b xL 2
E
c+d x
Hc + d xL Ha g + b g xL
LogA
-
á
e Ha+b xL 2
E
c+d x
PolyLogB2,
Hd f - c gL Ha + b xL
F-
Hb c - a dL g
b c-a d
LogB
F
b Hc+d xL
, x, 4, 0>
d Ha+b xL
F
b Hc+d xL
e Ha+b xL 2
LogA
E
c+d x
Hc + d xL Ha g + b g xL
2 LogA
e Ha+b xL
E
c+d x
PolyLogB3,
Hb c - a dL g
+
âx
d Ha+b xL
F
b Hc+d xL
2 PolyLogB4,
d Ha+b xL
F
b Hc+d xL
Hb c - a dL g
-
Problem ð582: Valid but suboptimal antiderivative:
:
-
LogAe I
a+b x n 2
M E
c+d x
LogB
b c-a d
F
b Hc+d xL
Hc + d xL Ha g + b g xL
LogAe I
a+b x n 2
M E
c+d x
PolyLogB2,
Hb c - a dL g
, x, 4, 0>
d Ha+b xL
F
b Hc+d xL
+
2 n LogAe I
a+b x n
M E
c+d x
PolyLogB3,
Hb c - a dL g
d Ha+b xL
F
b Hc+d xL
2 n2 PolyLogB4,
-
d Ha+b xL
F
b Hc+d xL
Hb c - a dL g
F-
Hb f - a gL Hc + d xL
Problem ð581: Unable to integrate:
LogB
F PolyLogB2,
g Hc + d xL
-d f + c g
F -
F+
2.2 Logarithm Functions.nb
139
1
3 Hb c - a dL g
a+bx
LogB
c+dx
c
- LogB
F 3 LogBe
c+dx
a
2
+ xF - 2 LogB
d
a+bx
c+dx
c
+ xF Log@c + d xD + 2 LogB
b
d Ha + b xL
2 PolyLogB2,
-b c + a d
a
2
3 LogB
+ xF LogB
b
c
F + n LogBe
b Hc + d xL
a
2
+ xF + 2 LogB
d
+ xF LogB
- LogB
d
+ xF + LogB
b
a+bx
c+dx
F LogB
3
c+dx
a
a+bx
c+dx
F + n2 LogB
d Ha + b xL
-b c + a d
bc-ad
bc+bdx
F + 3 LogB
F - n LogB
a+bx
c+dx
b
b Hc + d xL
a+bx
c+dx
a+bx
c+dx
a+bx
c+dx
+ xF PolyLogB2,
bc-ad
a
2
+ xF
F LogB
+ xF Log@c + d xD + 2 LogB
n
a+bx
F + 6 LogB
b
c
3 LogB
n
d
bc-ad
- LogB
n2 LogB
F - 3 n LogBe
n 2
a+bx
F
d Ha + b xL
-b c + a d
F + 2 PolyLogB2,
F + 2 LogB
c
c
LogB
F PolyLogB2,
2
bc-ad
2
LogB
bc+bdx
d Ha + b xL
b Hc + d xL
2
c+dx
a
+ xF LogB
b
c
b Hc + d xL
bc-ad
a+bx
d Ha + b xL
-b c + a d
F - 2 PolyLogB3,
a+bx
c+dx
F PolyLogB3,
c+dx
F+
c Hb + a xL2
x2
6 b LogA
à LogB
b
E
b+a x
F , x, 5, 0>
bc-ad
d Ha + b xL
b Hc + d xL
3
LogB
a
c Hb + a xL2
x2
c Hb+a xL2
x2
F
2
+ x LogB
c Hb + a xL2
x2
F âx
3
F +
3
24 b LogB
c Hb+a xL2
x2
F PolyLogA2,
a
ax
E
b+a x
48 b PolyLogA3,
+
a
Problem ð591: Unable to integrate:
:LogB
c x2
F , x, 5, 0>
3
Hb + a xL
2
c x2
x LogB
à LogB
Hb + a xL2
c x2
Hb + a xL2
F +
3
6 b LogB
F âx
3
c x2
Hb+a xL2
a
F LogA
2
b
E
b+a x
24 b LogB
+
c x2
Hb+a xL2
F PolyLogA2,
a
ax
E
b+a x
48 b PolyLogA3,
a
ax
E
b+a x
F
b Hc + d xL
Problem ð588: Unable to integrate:
:LogB
c+dx
+ xF - LogB
d
F - 6 PolyLogB3,
a+bx
+ xF + LogB
c
b
F - n LogB
b Hc + d xL
d
+ xF - LogB
n
bc-ad
+ xF + LogB
a
F - 6 LogB
a+bx
LogBe
b
F - 3 LogB
-b c + a d
3
a
3
d
d Ha + b xL
F+
F Log@c + d xD + 2 LogB
+ xF + 3 - LogB
+ xF PolyLogB2,
d
F
ax
E
b+a x
F
F+
F
a+bx
c+dx
F
2
Log@c + d xD +
-
F + 6 PolyLogB4,
d Ha + b xL
b Hc + d xL
F
2
140
2.2 Logarithm Functions.nb
Problem ð596: Valid but suboptimal antiderivative:
:
-
Ka + b LogB
1-
1-c x
1+c x
c2
Ka + b LogB
x2
1-c x
1+c x
4bc
LogB
1-c x
1+c x
-
FO
3
, x, 2, 0>
FO
4
F 4 a3 + 6 a2 b LogB
1-c x
1+c x
F + 4 a b2 LogB
1-c x
1+c x
4c
F + b3 LogB
2
1-c x
1+c x
F
3
Problem ð597: Valid but suboptimal antiderivative:
:
-
Ka + b LogB
1-c x
1+c x
1 - c2 x2
Ka + b LogB
1-c x
1+c x
3bc
LogB
-
1-c x
1+c x
FO
2
, x, 2, 0>
FO
3
F 3 a2 + 3 a b LogB
1-c x
1+c x
3c
F + b2 LogB
1-c x
1+c x
F
2
Problem ð608: Unable to integrate:
9x3 LogA1 + e Ifc Ha+b xL M E, x, 5, 0=
n
x3 PolyLogA2, - e Ifc Ha+b xL M E
n
-
+
3 x2 PolyLogA3, - e Ifc Ha+b xL M E
n
n
-
b2 c2 n2 Log@fD2
b c n Log@fD
3
c Ha+b xL
M E âx
à x LogA1 + e If
6 x PolyLogA4, - e Ifc Ha+b xL M E
b3 c3 n3 Log@fD3
n
Problem ð609: Unable to integrate:
9x2 LogA1 + e Ifc Ha+b xL M E, x, 4, 0=
n
x2 PolyLogA2, - e Ifc Ha+b xL M E
n
-
b c n Log@fD
2
c Ha+b xL
M E âx
à x LogA1 + e If
n
+
2 x PolyLogA3, - e Ifc Ha+b xL M E
n
b2 c2 n2 Log@fD2
2 PolyLogA4, - e Ifc Ha+b xL M E
n
-
b3 c3 n3 Log@fD3
6 PolyLogA5, - e Ifc Ha+b xL M E
n
+
b4 c4 n4 Log@fD4
2.2 Logarithm Functions.nb
Problem ð610: Unable to integrate:
9x LogA1 + e Ifc Ha+b xL M E, x, 3, 0=
n
x PolyLogA2, - e Ifc Ha+b xL M E
n
-
+
n
b2 c2 n2 Log@fD2
b c n Log@fD
à x LogA1 + e If
PolyLogA3, - e Ifc Ha+b xL M E
M E âx
c Ha+b xL n
Problem ð611: Unable to integrate:
9LogA1 + e Ifc Ha+b xL M E, x, 3, 0=
n
PolyLogA2, - e Ifc Ha+b xL M E
n
-
b c n Log@fD
à LogA1 + e If
M E âx
c Ha+b xL n
Problem ð613: Unable to integrate:
9x3 LogAd + e Ifc Ha+b xL M E, x, 6, 0=
n
1
4
x4 LogAd + e Ifc Ha+b xL M E -
1
n
3 x2 PolyLogB3, -
e Ifc Ha+b xL M
n
x4 LogB1 +
4
n
d
b2 c2 n2 Log@fD2
3
c Ha+b xL
M E âx
à x LogAd + e If
F
e Ifc Ha+b xL M
F-
d
6 x PolyLogB4, -
x3 PolyLogB2, -
b3 c3 n3 Log@fD3
n
d
b c n Log@fD
e Ifc Ha+b xL M
d
e Ifc Ha+b xL M
n
F
6 PolyLogB5, +
F
+
e Ifc Ha+b xL M
d
b4 c4 n4 Log@fD4
n
F
n
Problem ð614: Unable to integrate:
9x2 LogAd + e Ifc Ha+b xL M E, x, 5, 0=
n
1
3
x3 LogAd + e If
M E-
c Ha+b xL n
2
c Ha+b xL
M E âx
à x LogAd + e If
n
1
3
x3 LogB1 +
e Ifc Ha+b xL M
n
d
F-
x2 PolyLogB2, -
e Ifc Ha+b xL M
b c n Log@fD
d
n
F
2 x PolyLogB3, +
e Ifc Ha+b xL M
d
b2 c2 n2 Log@fD2
n
F
2 PolyLogB4, -
e Ifc Ha+b xL M
d
b3 c3 n3 Log@fD3
n
F
141
142
2.2 Logarithm Functions.nb
Problem ð615: Unable to integrate:
9x LogAd + e Ifc Ha+b xL M E, x, 4, 0=
n
1
2
x2 LogAd + e Ifc Ha+b xL M E n
à x LogAd + e If
1
e Ifc Ha+b xL M
n
x2 LogB1 +
2
d
M E âx
c Ha+b xL n
F-
x PolyLogB2, -
e Ifc Ha+b xL M
d
b c n Log@fD
Problem ð616: Unable to integrate:
9LogAd + e Ifc Ha+b xL M E, x, 4, 0=
n
x LogAd + e If
à LogAd + e If
M E - x LogB1 +
c Ha+b xL n
M E âx
c Ha+b xL n
e Ifc Ha+b xL M
n
d
F-
PolyLogB2, -
e Ifc Ha+b xL M
d
b c n Log@fD
n
F
Problem ð653: Valid but suboptimal antiderivative:
8Cos@xD Log@Cos@xDD, x, 3, 0<
ArcTanh@Sin@xDD - Sin@xD + Log@Cos@xDD Sin@xD
x
x
x
x
- LogBCosB F - SinB FF + LogBCosB F + SinB FF - Sin@xD + Log@Cos@xDD Sin@xD
2
2
2
2
Problem ð742: Valid but suboptimal antiderivative:
:
H1 + Log@xDL5
, x, 1, 0>
x
1
6
H1 + Log@xDL6
5 Log@xD2
Log@xD +
10 Log@xD3
+
2
5 Log@xD4
+
3
+ Log@xD5 +
Log@xD6
2
Problem ð781: Valid but suboptimal antiderivative:
:
LogAc I1 + x2 M E
n
1 + x2
, x, 5, 0>
6
n
F
PolyLogB3, +
e Ifc Ha+b xL M
d
b2 c2 n2 Log@fD2
n
F
2.2 Logarithm Functions.nb
F + ArcTan@xD LogAc I1 + x2 M E + ä n PolyLogB2, -
2ä
ä n ArcTan@xD2 + 2 n ArcTan@xD LogB
n
ä-x
1
- 4 n ArcTan@xD Log@- ä + xD - ä n Log@- ä + xD2 + 2 ä n Log@- ä + xD LogB-
4
1
2
1
2 ä n LogB
2
ä+x
ä-x
143
F
ä Hä + xLF - 4 n ArcTan@xD Log@ä + xD -
H1 + ä xLF Log@ä + xD + ä n Log@ä + xD2 + 4 ArcTan@xD LogAc I1 + x2 M E + 2 ä n PolyLogB2,
n
1
äx
+
2
2
F - 2 ä n PolyLogB2, -
1
2
ä Hä + xLF
Problem ð782: Valid but suboptimal antiderivative:
:
LogB
x2
1+x2
1 + x2
F
, x, 6, 0>
2x
ä ArcTan@xD2 - 2 ArcTan@xD LogB
ä+x
1
F + ArcTan@xD LogB
x2
1+
x2
F + ä PolyLogB2,
ä-x
ä+x
F
ä Log@- ä + xD2 - ä Log@ä + xD2 + 4 ArcTan@xD - 2 Log@xD + Log@- ä + xD + Log@ä + xD + LogB
x2
1 + x2
4
1
2 ä Log@- ä + xD LogB2
ä Hä + xLF + PolyLogB2,
1
äx
+
2
2
4 ä HLog@1 - ä xD Log@xD + PolyLog@2, ä xDL + 2 ä LogB
1
2
F -
F - 4 ä HLog@1 + ä xD Log@xD + PolyLog@2, - ä xDL +
H1 + ä xLF Log@ä + xD + PolyLogB2, -
1
2
ä Hä + xLF
Problem ð785: Valid but suboptimal antiderivative:
:
LogB
c x2
a+b x2
a + b x2
ä ArcTanB
F
, x, 6, 0>
b x
a
a
b
F
2
2 ArcTanB
a
-
b x
- 8 ArcTanB
a
a
b
ä
F LogB
a
1
4
b x
a
2 ä LogB-
b x
4 ArcTanB
1
a
b
ä
b x
2
F LogB
b x
a + b x
F Log@xD + 4 ArcTanB
+ xF LogB
b
2
ä
2
c x2
a+b
x2
a
F
F + 2 ä LogB
ArcTanB
b x
a
+
a
b x
a
ä
a
ä PolyLogB2,
+
a
ä
a
+ xF + ä LogB-
a +ä
b x
a -ä
b x
b
F
b x
2
+ xF + 4 ArcTanB
b
a
b
1
ä
b x
+
2
b x
F
a
ä
+ xF LogB
b
c x2
a+b x2
b
a
ä
F - 4 ä PolyLogB2, -
F LogB-
F LogB
2
a
F + 4 ä Log@xD LogB1 -
F + 4 ä PolyLogB2,
ä
b x
a
ä
b x
a
F + 2 ä PolyLogB2,
1
F LogB
a
ä
ä
b x
2
a
a
+ xF - ä LogB
2
+ xF -
b
F - 4 ä Log@xD LogB1 +
-
2
ä
b
ä
b x
a
F - 2 ä PolyLogB2,
F+
1
ä
b x
+
2
2
a
F
144
2.2 Logarithm Functions.nb
Problem ð786: Valid but suboptimal antiderivative:
:
LogB1 +
1-a x
ä
1+a x
1 - a2 x2
PolyLogB2, -
F
, x, 1, 0>
1-a x
ä
1+a x
a
F
1
ä
1-ax
4 ArcTanh@a xD LogB1 +
4a
1+ax
F + PolyLogA2, - ã-2 ArcTanh@a xD E -
2 IArcTanh@a xD ILogA1 + ã-2 ArcTanh@a xD E - LogA1 - ä ã-ArcTanh@a xD E + LogA1 + ä ã-ArcTanh@a xD EM - PolyLogA2, - ä ã-ArcTanh@a xD E + PolyLogA2, ä ã-ArcTanh@a xD EM
Problem ð787: Valid but suboptimal antiderivative:
:
LogB1 -
1-a x
ä
1+a x
1 - a2 x2
PolyLogB2,
ä
F
, x, 1, 0>
1-a x
1+a x
a
F
1
ä
1-ax
4 ArcTanh@a xD LogB1 4a
1+ax
F + PolyLogA2, - ã-2 ArcTanh@a xD E -
2 IArcTanh@a xD ILogA1 + ã-2 ArcTanh@a xD E + LogA1 - ä ã-ArcTanh@a xD E - LogA1 + ä ã-ArcTanh@a xD EM + PolyLogA2, - ä ã-ArcTanh@a xD E - PolyLogA2, ä ã-ArcTanh@a xD EM
Test complete!
2.2 Logarithm Functions.nb
Exponential and log function test suite statistics
* * *
Indefinite Integration Test Suite Results
Integration function:
Time and date of test:
Mathematica version:
* * *
Mathematica's built-in Integrate function
13:21
18 June 2010
10.0 for Microsoft Windows H64-bitL HDecember 4, 2014L
Largest result size: 19 104 leaves
Optimal size: 1119 leaves
Longest compute time: 111.291113 seconds
Integrand:
Result size: 24 leaves
File
2 Exponential Functions\Exponential Functions
LogAe I
Integrand:
a+b x n 3
M E
c+d x
Hf + g xL3
a + b Log@c Hd He + f xLp Lq D
Optimal Nonident Unintegrable Timeout Invalid Total Intsec
Time
746
76
33
1
0
856
4.19
327.2
197
41
13
0
0
251
0.25
1013.8
2 Exponential Functions\Logarithm Functions
712
76
18
1
0
807
2.19
493.7
Totals
1655
193
64
2
0
1914
1.21
1834.7
Percentages
86.47%
10.08%
2 Exponential Functions\u Ha+b logHc Hd He+f xL^pL^qLL^n
3.34%
0.10%
0.00% 100.00%
145