SHORT COMMUNICATIONS Fingerprinting Birds' DNA with a Synthetic Polynucleotide Probe (TG)n HANS ELLEGREN Departmentof AnimalBreeding andGenetics, SwedishUniversityof AgriculturalSciences, Box7055, S-75007,Uppsala,Sweden Unambiguous determination of genetic relationshipsis important to understandmating patternsand population structures.For example, thorough social studiesof lekking or cooperativelybreeding species require that parentageand other closegenetic relationships be determined. Similarly, although extrapair copulations(EPC) have been documentedin several bird species(e.g. Birkhead 1987, Westneatet al. 1990), some details about the behavior cannot be eval- uated unlessthe result of illegitimate matingscan be quantified reliably. Until recently these have been seriousobstacles,and although someattemptsto use protein variantsas geneticmarkersto determine genetic relationships have been successful,many have been inadequate. Basically this is a consequenceof the low degree of polymorphism in protein systems (Mumme et al. 1985, Romagnanoet al. 1989). Highly polymorphic markersare required for effectivestudies of genetic relationships. The discovery of families of hypervariable DNA regionsin the human genome led to the development of DNA fingerprinting. The techniquescreensseveral hypervariable loci simultaneously to produce individual-specificfingerprints of the DNA (Jeffreyset al. 1985a,b). The technique is alsoapplicable to birds (Burke and Bruford 1987, Wetton et al. 1987), plants (e.g. Dallas 1988), fungi (Braithwaite and Manners 1989), and nematodes (Uitterlinden et al. 1991). This polynucleotide type of probe offers several advantagescomparedwith oligonucleotides and minisatellites (see below). I demonstrated that the (TG), probe also detectsindividual-specifichybridization patterns in birds. Five unrelated individuals of the Barn Swallow (Hi- rundorustica)were analyzed.DNA waspreparedfrom blood as describedby Gelter and Tegelstrfm (1990). Ten microgramsof DNA from each individual was digestedwith 50 U of restrictionendonucleaseHinfI (Promega) according to the manufacturer's instruction. DNA was precipitated with ethanol, dissolved in 1 x TE (10 mM Tris; 1 mM EDTA, pH 7.0) and separatedin 20 cm 0.7% agarosegels at 40 V for 24 h. After electrophoresis,DNA was transferred to nylon filters (BiodyneB,Pall) under alkaline conditions. The filters were prehybridized in 7% SDS; 0.263 M Na2HPO4; 1 mM EDTA pH 8.0; 1% BSA for 2 h at +65øC. The probe was a synthetic, double-stranded polynucleotide with the simple repeat dT-dG x dAdC, "(TG),," (PharmaciaLKB Biotechnology).Agarose electrophoresisindicatedan averageprobe length of 750 basepairs,but whether this was the actuallength of the individual polymer or the length of multimer annealedproductswasunknown. DNA (100-200 ng) was radioactively labeled by standard nick translation. Hybridization was performed in the prehybridization solutionovernight at + 65øC.The filters were et al. 1989). In recent avian studies,DNA fingerprinting hasprovided a powerful method for analyzing parentage(Burke et al. 1989, Gelter 1989, Birkhead et al. 1990, Gibbs et washed twice in 2 x SSC (0.3 M NaC1; 0.03 M sodium citrate); 0.1% SDS at +65øC and exposed to Kodak X-AR film for 1-3 days at -70øC with intensifying al. 1990,Gyllensten et al. 1990,Rabenoldet al. 1990, screens. Westneat 1990; see also Quinn et al. 1987). The (TG)nprobe revealed highly polymorphic hybridization patterns on Barn Swallow DNA digested with HinfI (Fig. 1). Basedon the limited sampleof 5 unrelated birds, the average probability that 2 random individuals would displayidentical fingerprints was estimatedto be 8.1 x 10-•2 (calculatedaccording sart et al. 1987). Minisatellites derived from other to Jeffreys198•b). This estimate is derived from a species,including the Willow Warbler (Phylloscopus mean band frequencyof 0.36 and an averageof 24.8 trochilus),have been used (e.g. Gyllensten et al. 1989). scoreablebands(larger than a fragment size of 2 kilo However, syntheticoligonucleotides(15-25 basepairs) base pairs) per individual. In total, I scored 66 rewith simple repeat motifs (e.g. di- or trinucleotide solvablebandsamong the • individuals. Distinct and repeats)alsoproduce individual-specific fingerprints variable hybridization patternswere alsoobtained for and chickens (Gallus in a variety of species(Epplen 1988, Sch•fer et al. Canada Geese(Brantacanadensis) 1988, Kashi et al. 1990). Simple repeat motifs are probgallus)(datanot shown).The probabilitythat two Barn ably presentin all eukaryoticgenomesand their poly- Swallowswould haveidenticalDNA fingerprintswith morphism is due to a varying number of repeated the (TG)• probe (8 x 10-22)is somewhat higher than units (Tautz 1989). that describedfor other avian speciesand fingerprintThe synthetic polynucleotide probe (TG). detects ing probes(e.g. Burke and Bruford 1987, Gyllensten highly specificDNA fingerprints in horses(Ellegren et al. 1990, Meng et al. 1990). Becauseof the small DNA fingerprinting has traditionally been performedby usinggeneticallyclonedhuman minisatellite probes(e.g. Jeffreys'clones33.6 and 33.15) or by a tandemly repeated DNA segment present in the wild-type genomeof the bacteriophage M13 (seeVas- 956 The Auk 108: 956-981. October 1991 October 1991] Short Communications 957 sample size (i.e. band frequencies could not be less than 0.2), however, the probability estimateis likely to be an underestimate. I believe that the polynucleotideprobe(TG)• would be suitablefor parentagetesting in birds. But for a correct assessment of the amount of information that can be receivedby this fingerprinting probe,family studiesmustdemonstrateto which degreethe restriction fragmentsare independently inherited. However, little or no allelism or linkage hasbeen found in the species/fingerprintingprobecombinationsso far tested(seeBurke 1989).A rough estimateof the usefulness of the (TG)• probefor paternitytestingin Barn Swallowscan be obtainedas follows. The probability that an autosomalband from an offspring's fingerprint is presentin the mother equals (1 + q - q2)/(2 - q), where q is the meanallelic frequencyderived from q= 1 - (I -x)% and x is the mean band frequency(Georgeset al. 1988). From this probability the proportionof an offspring'sfragmentsexpectedto be presentin the mothercanbe determined.Theremainingfragments in the offspringmustbe of a paternalorigin.Forthe BarnSwallow,q = 0.20ßand the probabilityto make 14.1 7.2 6.4 5.7 4.8 4.3 3.7 an incorrectpaternity determination can thus be approximately estimatedto 1.1 x 10-4 (0.368-8; 8.8 is the average number of paternal bands). It must be em- phasized,however,thatthenumberof paternalbands islikely to vary andthe estimateisjustfor an average offspring. Foroffspringcarryingfewerpaternalbands, the confidencein excludingandassigningparentage will 2.3 be lower. Syntheticpolynucleotides are easyto obtain and 1.9 are convenientas DNA probesbecausethey are in a ready-to-useform for hybridization. Minisatellite probesare usually cloned into plasmid vectorsand must regularly be preparedon a large scale.This is not difficult,but it is time-consuming and requires basicbiochemicalequipment,often not easilyavailable. Another attractivefeature of polynucleotides with simplerepeatmotifsis that they, in contrastto somecommonminisatelliteprobes,are not protected by patents.Moreover,in comparisonwith oligonucleotides,polynucleotideprobesoffer several technical advantagesduring the labeling and hybridization procedures. They canbe labeledby standardnick translation, unincorporatedlabeled nucleotidescan easilybe separated,and hybridizationand washing conditionsaresimilarto that usedfor genomicclones. The syntheticpolynucleotide(TG)• detectedindividual-specificfingerprints in Barn Swallow DNA, andis likely to be suitablefor parenthoodtestingin otherbirds.This type of probeoffersseveraladvantages compared with cloned minisatellites and oligonucleotides, and would thus facilitate the use of DNA fingerprintingin birds. Fig. I. DNA fingerprints of five unrelated indi- viduals of the Barn Swallow (Hirundo rustica). The probewas the syntheticpolyunucleotide(TG)•. Fragment sizes(in kilo basepairs)are indicatedto the left. I thank H,•ikan Tegelstrfm, who provided avian DNA samples. Leif Andersson, H•kan Tegelstrfm, David Westneat, and an anonymous referee made valuable commentson the manuscript. LITERATURE CITED BmKHEAD, T. R. 1987. Sperm competitionin birds. Trends Ecol. Evol. 2: 268-272. ß T. BURKEßR. ZANN, F. M. HUNTER, & A. P. KRUPA. 1990. Extra-pair paternity and intraspecificbrood parasitismin wild Zebra FinchesTae- 958 Short Communications niopygia guttata,revealedby DNA fingerprinting. Behav. Ecol. Sociobiol. 27: 315-324. hypervariable minisatellite probes detect DNA polymorphism in the fungus Colletotrichum gloeosporioides. Curt. Genet. 16: 473-475. BURKE, T. 1989. DNA fingerprinting and other methodsfor the studyof matingsuccess. TrendsEcol. Evol. 4: 139-144. --, Nature 327: 149-152. N. B. DAVIES,M. W. BRUFORD,& B. J. HATCH- WELL.1989. Parentalcareandmatingbehaviour of polyandrousDunnocks Prunellamodularisrelatedto paternityby DNA fingerprinting.Nature 338: 249-251. 85: 6831-6835. SANDBERG. 1991. DNA fingerprintingin horses using a simple (TG), probe and its applicationto population comparisons.Anim. Genet. In press. EPPLEN, J.T. 1988. On simple repeated GAT/CA sequencesin animal genomes:a criticalreappraisal. J. Heredity 79: 409-417. --, 1132. variability of DNA fingerprintsin three species of swan.Heredity 64: 73-80. MUMME,R. L., W. D. KOENIG,R. M. ZINK, & J. A. MARTEN.1985. Geneticvariationandparentage in a Californiapopulationof AcornWoodpeckers. Auk 102: 305-312. 1987. DNA markeranalysisdetectsmultiple maternity and paternity in singlebroodsof the Lesser Snow Goose. Nature 326: 392-394. 1989. Genetic and behavioural differ- HAYDOCH, & S.W. ZACH.1990. Sharedpaternity revealedby genetic analysisin cooperatively breeding tropical wrens. Nature 348: 538-540. ROMAGNANO,L., T. R. McGUIRE, & H. W. POWER. 1989. Pitfallsand improvedtechniquesin avian parentage studies.Auk 106: 129-136. $CH•FER, R., H. ZISCHLER, U. BIRSNER, A. BECKER, & J. T. EPPLEN.1988. Optimized oligonucleotide entiation associatedwith speciationin the flyprobesfor DNA fingerprinting.Electrophoresis 9: 369-374. catchersFicedulahypoleuca and F. albicollis. Ph.D. dissertation,Uppsala, Uppsala Univ. TAUTZ, D. 1989. Hypervariabilityofsimplesequenc& H. TEGELSTR•M.1990. Restriction enzyme es as a general source for polymorphic DNA markers. Nucl. Acids Res. 17: 6463-6471. cleavageof nuclear DNA revealsdifferencein repetitive sequencesin two speciespairs (Ficedula UITTLERLINDEN, A. G., P. E. SLAGBOOM, T. E. JOHNSON, and Parus). Auk 107: 429-431. GEORGES, M., g. S. LEQUARRE,M. CASTELLI,R. HANSET, & G. VASSART. 1988. DNA fingerprintingin domesticanimalsusing four different minisatellite probes.Cytogenet.Cell Genet.47: 127-131. GIBBS,H. L., P. J. WEATHERHEAD, P. T. BOAG,B. N. WHITE, L. M. TABAK,& D. J. HOYSAK. 1990. Re- alized reproductivesuccess of polygynousRedwinged Blackbirds revealed by DNA markers. Science 250: 1394-1397. GYLLENSTEN, U. B., S. JAKOBSSON, & H. TEMRIN. 1990. NO evidencefor illegitimate young in monogamousand polygynouswarblers.Nature 343:168170. , --, & A. C. WILSON. 1989. Nu- cleotidesequenceand genomicorganizationof bird minisatellites. Nucl. Acids Res. 17: 2203- 2214. pervariable "minisatellite" regions in human DNA. & J. VIJG. 1989. The Caenorhabditis elegans genome containsmonomorphicminisatellitesand simplesequences. Nucl. AcidsRes.17:9527-9530. VASSART, G., M. GEORGES, R. MONSIEUR,H. BROCAS, A. $. LEQUARRE,& D. CHRISTOPHE. 1987. A se- quencein M13 phagedetectshypervariableminisatellites in human and animal DNA. Science 235: 683-684. WESTNEAT, D. F. 1990. Geneticparentagein the IndigoBunting:a studyusingDNA fingerprinting. Behav. Ecol. Sociobiol. 27: 67-76. , P. W. SHERMAN, & M. L. MORTON. 1990. The ecologyand evolutionof extra-paircopulations in birds.Pp. 331-370in Currentornithology(D. M. Power, Ed.). New York and London, Plenum Press. WETTON,J. H., R. E. CARTER,D. T. PARKIN,& D. WAL- TERS.1987. Demographicstudyof a wild House JEFFREYS, A. J., V. WILSON,& $. L. THEIN. 1985a. Hy- --, riety of vertebrates. Nucl. Acids Res. 18: 1129- RABENOLD, P. P., K. N. RABENOLD, W. H. PIPER,J. ELLEGREN,H., L. ANDERSSON,M. JOHANSSON,& K. GELTER,H.P. SOLLER. 1990. Largerestrictionfragmentscontaining poly-TG are highly polymorphicin a va- QUINN, T. W., J. S. QUINN, F. COOKE,& g. N. WHITE. DALLAS, J.F. 1988. Detectionof DNA "fingerprints" of cultivatedrice by hybridization with a human minisatellite DNA probe. Proc. Natl. Acad. Sci. USA KASHI, Y., Y. TIKOCHINSKY,E. GENISLAV,F. IRAQI, g. NAVE, J. $. BECKMANN,Y. GRUENBAUM,& M. MENG, A., R. E. CARTER,& D. T. PARKIN. 1990. The & M. W. BRUFORD. 1987. DNA fingerprinting in birds. "fingerprints" of human DNA. Nature 316: 7679. BRAITHWAITE, K. S., & J. M. MANNERS. 1989. Human --, [Auk,Vol. 108 Nature --,& Sparrowpopulationby DNA fingerprinting.Nature 327: 147-149. 314: 67-73. . 1985b. Individual-specific Received 13 December 1990,accepted 30 April 1991.
© Copyright 2026 Paperzz