CATCOS Training Course, La Paz, 10-16 July 2016 Reanalysis of ten years mb time series on tropical La Conejeras Nico Mölg – WGMS, University of Zurich, Switzerland Jorge Luis Ceballos – IDEAM, Colombia La Paz, Bolivia, 10-16 July 2016 intro monitoring homogenisation results conclusions Monitoreo de balance de masa en la parte tropical de Suramérica en 2005: inner tropics vs outer tropics intro monitoring homogenisation results conclusions Monitoreo de balance de masa en Colombia: Monitoring in Colombia: - hazard situations (e.g. Ruiz) starting in 1980s area monitoring hidrología Páramo Científico – información climatológica instalación del programa de monitoreo de balanze de masa en el glaciar La Conejeras, juntos con UZH en 2006 intro monitoring homogenisation Quien es La Conejeras? results conclusions intro monitoring homogenisation Quien es La Conejeras? Cordillera Central de Colombia results conclusions intro monitoring homogenisation Quien es La Conejeras? Cordillera Central de Colombia Nevado Santa Isabel, entre dos otros volcanos results conclusions intro monitoring homogenisation Quien es La Conejeras? results Santa Isabel conclusions Ruiz Cordillera Central de Colombia Nevado Santa Isabel, entre dos otros volcanos Tolima J. Ramirez, 2002 intro monitoring homogenisation Quien es La Conejeras? Cordillera Central de Colombia Nevado Santa Isabel, entre dos otros volcanos Prima fue parte de un grande casquete glacial results conclusions intro monitoring homogenisation Quien es La Conejeras? Datos básicos: results conclusions intro monitoring homogenisation Quien es La Conejeras? Datos básicos: results conclusions intro monitoring homogenisation Como está monitoreado? Measurement network: 12 balizas Marzo 2006 2 balizas más Julio 2007 Measurement period: monthly day 3 = 12 veces / ano! Monitoreado de IDEAM si quieren más información detaillada – Yina!! results conclusions intro monitoring homogenisation Como está monitoreado? Informaciones adicionales: Terrestrial Laser Scan 01/2014 = finally distributed elevation info Temperadura Precipitación results conclusions intro monitoring homogenisation Como está monitoreado? Informaciones adicionales: Terrestrial Laser Scan 01/2014 = finally distributed elevation info Temperadura Precipitación results conclusions intro monitoring homogenisation results uncertainties Reanalysis - Homogenisation Porqué necesitamos una reanalisa? Porqué siempre tenemos errores en los resultados. conclusions intro monitoring homogenisation results uncertainties conclusions Reanalysis - Homogenisation Porqué necesitamos una reanalisa? Porqué siempre tenemos errores en los resultados. Systematic errors (=bias) ε vs. Random errors (=noise) σ Qué son nuestros errores por La Conejeras? - cambiamentos de la área glacial - hypsometry unknown/uncertain - fixed date system – lin. interpol. - inconsistent use of interpolation method intro monitoring homogenisation results uncertainties conclusions Reanalysis - Homogenisation Para corregir el bias: - fixed value for snow density in case of snow - filter stake values for unplausible values point data - fixed-date: recalculation of stake values acc. to lin. int. - monthly update of glacier area - use of Lidar DEM as (only) topo information - recalculation of each monthly mb with consistent interpolation method glacier-wide data intro monitoring homogenisation results uncertainties conclusions Reanalysis - Homogenisation Para corregir el bias: - fixed value for snow density in case of snow - filter stake values for unplausible values point data - fixed-date: recalculation of stake values acc. to lin. int. - monthly update of glacier area - use of Lidar DEM as (only) topo information - recalculation of each monthly mb with consistent interpolation method glacier-wide data intro monitoring homogenisation results uncertainties conclusions Reanalysis - Homogenisation Para corregir el bias: - fixed value for snow density in case of snow - filter stake values for unplausible values point data - fixed-date: recalculation of stake values acc. to lin. int. - monthly update of glacier area - use of Lidar DEM as (only) topo information - recalculation of each monthly mb with consistent interpolation method glacier-wide data intro monitoring homogenisation results uncertainties conclusions Reanalysis - Homogenisation Para corregir el bias: - fixed value for snow density in case of snow - filter stake values for unplausible values point data - fixed-date: recalculation of stake values acc. to lin. int. - monthly update of glacier area - use of Lidar DEM as (only) topo information - recalculation of each monthly mb with consistent interpolation method glacier-wide data intro monitoring homogenisation results uncertainties conclusions Reanalysis - Homogenisation What interpolation method can we use? • high stake network density • good spatial distibution Potential for use of different methods • good elevation distribution intro monitoring homogenisation results uncertainties conclusions Reanalysis - Homogenisation What interpolation method can we use? • high stake network density • good spatial distibution • good elevation distribution Potential for use of different methods „Manual“ methods Geostatistical methods Profile method (2 variations) Kriging Contour line method Topo to Raster Index method intro monitoring homogenisation results uncertainties conclusions Reanalysis - Homogenisation Interpolation method: Profile method – problem of non-existing elevation dependency: intro monitoring homogenisation results uncertainties conclusions Reanalysis - Homogenisation Interpolation method: Contour line method: 120 months? Only used for annual MB intro monitoring homogenisation results uncertainties conclusions Reanalysis - Homogenisation Interpolation method: Contour line method: 120 months? Index method? March & Trabant 1998 also used for Zongo Glacier Only used for annual MB intro monitoring homogenisation results uncertainties conclusions Reanalysis - Homogenisation Interpolation method: Kriging Topo to Raster geo-statistical methods global ArcGIS Help intro monitoring homogenisation results uncertainties Reanalysis - Homogenisation Interpolation method = Index Reduced stake network conclusions intro monitoring Results homogenisation Interpolation method: results uncertainties conclusions intro monitoring Results homogenisation Interpolation method: Interpolation method: results uncertainties conclusions intro monitoring Results homogenisation results uncertainties Interpolation method Mar2006-Jan2016: conclusions intro monitoring homogenisation results uncertainties conclusions Reanalysis - Homogenisation Interpolation method = Index 400 200 Reduced stake network mb (mm w.e.) 0 -200 -400 -600 Profile Orig. Linear Profile stake avg. -800 Index Kriging -1000 Topo to R. Index (full) intro monitoring homogenisation results uncertainties Reanalysis - Homogenisation Interpolation method = Index Reduced stake network conclusions intro monitoring homogenisation Results La Conejeras glacier change: = cumulative results uncertainties conclusions intro monitoring Results homogenisation results uncertainties La Conejeras glacier change: conclusions intro monitoring homogenisation Results Annual mass balance: Two methods: results uncertainties conclusions intro monitoring homogenisation Results Annual mass balance: Two methods: Sum of monthly MB results uncertainties conclusions intro monitoring homogenisation Results Annual mass balance: Two methods: Sum of monthly MB MB from annual sum of stake values results uncertainties conclusions intro monitoring homogenisation results uncertainties conclusions Uncertainties Homogenisation – taken care of systematic error Random error sources: Point measurements = stake readings Spatial interpolation = interpolation method Point measurements = density conversion Uncertainties are especially important – why? Error for every period – 120 periods = high cumulative error Law of error propagation: Not taking into account: basal melt (dont have to), inacc. areas, less covered areas, superimposed ice, intro monitoring homogenisation results uncertainties conclusions Uncertainties What are the uncertainties? Point measurements = stake readings σpt: abl. = +-20 acc = +-50mm Point measurements = density σdens: abl = +-10kg acc = +- 100kg = 0-43mm/med=5mm Spatial interpolation = interpolation method σint: stdev (methods) * 1.96 = 0-100mm/med = 11mm Monthly uncertainty = 20-1100mm Mean/med = 44/27mm Std = 106mm Cumulative uncertainty for full time series (120 months): 1259mm intro monitoring homogenisation Uncertainties What are the uncertainties? Annual mass balance: results uncertainties conclusions intro monitoring homogenisation results uncertainties conclusions Conclusions • If requirements are fulfilled – a number of interpolation methods is useful • Profile method does sometimes not perform well (on monthly data) • Contour line method = too laborious for monthly reanalysis • Index method is rebust and reliable • GIS methods are similarly robust and comparable to Index results • Several interpolation methods – estimate uncertainties intro monitoring homogenisation results uncertainties conclusions Conclusions • If requirements are fulfilled – a number of interpolation methods is useful • Profile method does sometimes not perform well (on monthly data) • Contour line method = too laborious for monthly reanalysis • Index method is rebust and reliable • GIS methods are similarly robust and comparable to Index results • Several interpolation methods – estimate uncertainties For continuous measurements => INDEX method For annual reporting = > INDEX/CONTOUR line method For a complete reanalysis we recommend using additionally the GIS methods as a measure of robustness and for estimation of uncetainties. Thank you Questions?
© Copyright 2026 Paperzz