May 18, 2017 Warm-up State all angles such that 0 < x < 2 for which the statement is true. cos x = -1/2 sin x = tan x = -1 tan x = - 3 4.7 Inverse Trig Functions Objectives: To understand the domains and ranges of inverse sine, cosine and tangent To evaluate inverse trig functions. May 18, 2017 Notation for inverse trig functions: y = sin-1x or y = arcsin x y = cos-1x or y = arccos x y = tan-1x or y = arctan x Evaluate: y = sin-1( ) Does y = sin x have an inverse that is a function? How do you know? We can restrict the domain of the sine function in order to define the inverse function. Which part of the sine function would you use? May 18, 2017 sin ou e tp u va lu y = sin-1x t e y = sinx m an ea y = arcsin x inp gle su ut re ou a t is tpu gle an n -1 y = sin x y = sinx does not have an inverse function. We can restrict the domain so that the inverse will be a function. R: Evaluate: sin-1 (1/2) = sin-1 (-1/2) = sin-1 (- √32 ) = sin inp e ut va is lue a May 18, 2017 y = cos x Which part would you use to define the inverse function? y = cos-1x cosine value y = cos x y = arccos x angle angle measure measure -1 y = cos x a cosine value May 18, 2017 Evaluate: cos-1 May 18, 2017 y = tan-1x y = tan x Evaluate: tan-1 (tan-1 ( ) ) y = arctan x y = tan-1x May 18, 2017 D: D: D: R: R: R: Evaluate: 1.) 6.) 2.) 7.) 3.) 8.) 4.) 9.) 5.) 10.) May 18, 2017 Evaluate: 1.) 6.) 2.) 7.) 3.) 8.) =0 4.) 9.) =0 5.) 10.) May 18, 2017 Evaluate: 1.) 6.) 2.) 7.) 3.) 4.) 5.) May 18, 2017
© Copyright 2025 Paperzz