Heat and Mass Correlations Alexander Rattner, Jonathan Bohren November 13, 2008 Contents 1 Dimensionless Parameters 2 2 Boundary Layer Analogies - Require Geometric Similarity 2 3 External Flow 3.1 External Flow for a Flat Plate . 3.2 Mixed Flow Over a plate . . . . . 3.3 Unheated Starting Length . . . . 3.4 Plates with Constant Heat Flux . 3.5 Cylinder in Cross Flow . . . . . . 3.6 Flow over Spheres . . . . . . . . 3.7 Flow Through Banks of Tubes . 3.7.1 Geometric Properties . . 3.7.2 Flow Correlations . . . . 3.8 Impinging Jets . . . . . . . . . . 3.9 Packed Beds . . . . . . . . . . . . . . . . . . . . . . . 4 Internal Flow 4.1 Circular Tube . . . . . . . . . . . . 4.1.1 Properties . . . . . . . . . . 4.1.2 Flow Correlations . . . . . 4.2 Non-Circular Tubes . . . . . . . . 4.2.1 Properties . . . . . . . . . . 4.2.2 Flow Correlations . . . . . 4.3 Concentric Tube Annulus . . . . . 4.3.1 Properties . . . . . . . . . . 4.3.2 Flow Correlations . . . . . 4.4 Heat Transfer Enhancement - Tube 4.5 Internal Convection Mass Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 4 4 4 4 5 6 6 7 8 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 9 10 12 12 12 13 13 13 13 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 15 15 15 15 15 16 16 16 17 17 . . . . . . . . . . . 5 Natural Convection 5.1 Natural Convection, Vertical Plate . 5.2 Natural Convection, Inclined Plate . 5.3 Natural Convection, Horizontal Plate 5.4 Long Horizontal Cylinder . . . . . . 5.5 Spheres . . . . . . . . . . . . . . . . 5.6 Vertical Channels . . . . . . . . . . . 5.7 Inclined Channels . . . . . . . . . . . 5.8 Rectangular Cavities . . . . . . . . . 5.9 Concentric Cylinders . . . . . . . . . 5.10 Concentric Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 JRB, ASR 1 MEAM333 - Convection Correlations Dimensionless Parameters Table 1: Dimensionless Parameters α Cf Le Nu Pe Pr Re Sc Sh St Stm 2 k ρcp τs ρu2∞ /2 α DAB hL kf Thermal diffusivity Skin Friction Coefficient Lewis Number - heat transfer vs. mass transport Nusselt Number - Dimensionless Heat Transfer P e = Rex P r µCp ν = α k ρu∞ x u∞ x = µ ν ν DAB hm L DAB h N uL = ρV cp ReL P r ShL hm = V ReL Sc Peclet Number Prandtl Number - momentum diffusivity vs. thermal diffusivity Reynolds Number - Inertia vs. Viscosity Schmidt Number momentum vs. mass transport Sherwood Number - Dimensionless Mass Transfer Stanton Number - Modified Nusselt Number Stanton mass Number - Modified Sherwood Number Boundary Layer Analogies - Require Geometric Similarity Table 2: Boundary Layer Analogies Sh Nu = n Pr Scn Heat and Mass Analogy Applies always for same geometry, n is positive hL hm L = n kP r DAB Scn Chilton Colburn Heat jH = Chilton Colburn Mass jM = Cf = StP r2/3 2 0.6 < P r < 60 Cf = Stm Sc2/3 2 0.6 < Sc < 3000 2/17 JRB, ASR 3 MEAM333 - Convection Correlations External Flow These typically use properties at the film temperature Tf = 3.1 Ts + T∞ 2 External Flow for a Flat Plate These use properties at the film temperature Tf = Ts + T∞ 2 Table 3: Flat Plate Isothermal Laminar Flow Flat plate Boundary Layer Thickness Local Shear Stress δ=p 5.0 u∞ p/vx τs = 0.332u∞ ρµu∞ /x Local Skin Friction Coefficient Cf,x = Local Heat Transfer N ux = Local Mass Transfer Shx = 0.664Rex−0.5 hx x = 0.332Rex0.5 P r1/3 k hm,x x 1/3 = 0.332Re0.5 x Sc DAB Cf,x = 1.328Rex−0.5 Average Skin Friction Coefficient Average Heat Transfer N ux = Average Mass Transfer Shx = hx x = 0.664Rex0.5 P r1/3 k hm,x x 1/3 = 0.664Re0.5 x Sc DAB N ux N ux = 0.565P ex0.5 N ux 1/3 0.3387Re0.5 x Pr N ux = 1/4 1 + (0.0468/P r)2/3 Re < 5E5 Re < 5E5 Re < 1 Re < 5E5 P r ≥ 0.6 Re < 5E5 Sc ≥ 0.6 Re < 1 Isothermal Re < 5E5 P r ≥ 0.6 Re < 5E5 Sc ≥ 0.6 Liquid Metals N ux = 2N ux P r ≤ 0.05 P ex ≥ 100 All Prandtl Numbers P ex ≥ 100 Table 4: Turbulent Flow Over an Isothermal Plate Rex > 5 · 105 Skin Friction Coefficient Cf,x = 0.0592Rex−0.2 5E5 < Re < 108 Boundary Layer Thickness δ = 0.37xRex−0.2 Heat Transfer 1/3 N ux = StRex P r = 0.0296Re0.8 x Pr Mass Transfer 1/3 Shx = StRex Sc = 0.0296Re0.8 x Sc 5E5 < Re < 108 5E5 < Re < 108 0.6 < P r < 60 5E5 < Re < 108 0.6 < P r < 3000 3/17 JRB, ASR 3.2 MEAM333 - Convection Correlations Mixed Flow Over a plate If transition occurs at xLc ≥ 0.95 The laminar plate model may be used for h. Once the critical transition point 0.5 has been found, we define A = 0.037Re0.8 x,c − 0.664Rex,c These typically use properties at the film temperature Ts + T∞ Tf = 2 Table 5: Mixed Flow Over an Isothermal Plate CfL = 0.074Re−0.2 − Average Skin Friction Coefficient 2A ReL 5 · 105 < ReL < 108 0.6 < Sc < 60 5 · 105 < ReL < 108 1/3 ShL = (0.037Re0.8 L − A)Sc Average Mass Transfer 3.3 0.6 < P r < 60 5 · 105 < ReL < 108 1/3 N uL = (0.037Re0.8 L − A)P r Average Heat Transfer Unheated Starting Length Here the plate has Ts = T∞ until x = ζ These typically use properties at the film temperature Tf = Ts + T∞ 2 Table 6: Unheated Starting Length Local Heat Transfer Local Heat Transfer Average Heat Transfer 3.4 N ux = N ux |ζ=0 [1 − 1/3 (ζ/x)0.75 ] N ux |ζ=0 N ux = 1/9 1 − (ζ/x)9/10 h i p+1 p/(p+1) L 1 − (ζ/L) p+2 N uL = N uL |ζ=0 L−ζ laminar 0 < ReL < 5 · 105 turbulent 5 · 105 < ReL < 108 p = 2 Laminar Flow p = 8 Turbulent Flow Plates with Constant Heat Flux For average heat transfer values, it is acceptable to use the isothermal results for T = R 0 L(Ts − T∞ )dx Table 7: Constant Heat Flux Local Heat Transfer Laminar Local Heat Transfer Turbulent 3.5 1/3 N ux = 0.453Re0.5 x Pr 1/3 N ux = 0.0308Re0.8 x Pr 0 < ReL < 5 · 105 P r > 0.6 ReL > 5 · 105 0.6 < P r < 60 Cylinder in Cross Flow For the cylinder in cross flow, we use ReD = Ts + T∞ Tf = 2 ρV D µ = VD ν These typically use properties at the film temperature 4/17 JRB, ASR MEAM333 - Convection Correlations Table 8: Cylinder in Cross Flow N uD = 1/3 CRem DP r N uD = n CRem DP r N uD 3.6 Pr P rs 0.7 < P r < 60 C, m are found as functions of ReD on P426 0.7 < P r < 500 1 < ReD < 106 All properties evaluated at T∞ except P rs Uses table 7.4 P428 0.25 " 5/8 #4/5 1/3 Red 0.62Re0.5 D Pr = 0.3 + 1/4 1 + 282, 000 1 + (0.4/P r)2/3 P r > 0.2 Flow over Spheres Table 9: Flow over Spheres 2/3 0 N uD = 2 + (0.4Re0.5 D + 0.06ReD )P r .4 µ µs 1/4 1/3 N uD = 2 + 0.6Re0.5 D Pr 0.71 < P r < 380 3.5 < P r < 6.6 · 104 1.0 < (µ/µs ) < 3.2 All properties except µs are evaluated at T∞ For Freely Falling Drops Infinite Stationary Medium Red → 0 N uD = 2 5/17 JRB, ASR 3.7 3.7.1 MEAM333 - Convection Correlations Flow Through Banks of Tubes Geometric Properties Table 10: Tube Bank Properties ReD = Vmax = Vmax = ρVmax D µ ST Vi ST − D ST Vi 2(SD − D) Aligned OR ST + D 2 ST + D < 2 Staggered and SD > Staggered and SD Figure 1: Tube bank geometries for aligned (a) and staggered (b) banks 6/17 JRB, ASR 3.7.2 MEAM333 - Convection Correlations Flow Correlations Table 11: Flow through banks of tubes 1/3 N uD = 1.13C1 Rem D,max P r N uD |(NL <10) = C2 N uD |(NL ≥10) N uD = 0.36 CRem D,max P r Pr P rs 0.25 N uD |(NL <20) = C2 N uD |(NL ≥20) More than 10 rows of tubes 2000 < ReD,max < 40, 000 P r > 0.7 Coefficients come from table 7.5 on P438 C2 comes from Table 7.6 on P439 2000 < ReD,max < 40, 000 P r > 0.7 Coefficients come from table 7.5 on P438 C, m comes from Table 7.7 on P440 1000 < ReD,max < 2 · 106 0.7 < P r < 500 More than 20 rows For the above correlation C2 comes from Table 7.8 on P440 2000 < ReD,max < 40, 000 P r > 0.7 Table 12: Flow through banks of tubes 2 (Ts − Ti ) − (Ts − T o) −Ti ln TTss−T o Ts − To πDN h̄ Dimensionless Temp Correlation = exp − Ts − Ti ρV NT ST cP N - total number of tubes, NT - total number of tubes in transverse plane Heating Per Unit Length q 0 = N h̄πD∆Tlm Log Mean Temp. ∆Tlm = 7/17 JRB, ASR 3.8 MEAM333 - Convection Correlations Impinging Jets Heat and mass transfer is measured against the fluid properties at the nozzle exit q 00 = h(Ts − Te ) The Reynolds A and Nusselt numbers are measured using the hydraulic diameter of the nozzle Dh = Pc,e The Reynolds number uses the nozzle exit velocity. All correlations use the target cell region Ar which is affected by the nozzle. This is depicted in Figure 7.17 on P449. H is the height from the plate to the nozzle exit Table 13: Impinging Jets Single Round Nozzle G factor Round Nozzle Array K factor Single Slot Nozzle N u = P r0.42 G Ar , H 2Re0.5 (1 + 0.005Re0.55 )0.5 D G = 2A0.5 r N u = P r0.42 0.5K Ar , Slot Nozzle Array Ar,o H D G Ar , H D Always Re2/3 6 −0.05 H/D K = 1 + 0.6/Ar1/2 Nu = Pr 0.42 " m factor 1 − 2.2A0.5 r 1 + 0.2(H/d − 6)Ar0.5 2 3/4 N u = P r0.42 Ar,o 3 m = 0.695 − + H 2W H 2W −2 8/17 3000 < Re < 9 · 104 2 < H/D < 10 0.025 < Ar < 0.125 #−1 1.33 + 3.06 2Re Ar /Ar,o + Ar,o /Ar h Ar,o = 60 + 4 2000 < Re < 105 2 < H/D < 12 0.004 < Ar < 0.04 Always 3.06 Rem 0.5/Ar + H/W + 2.78 1 4Ar 2000 < Re < 4 · 105 2 < H/D < 12 0.004 < Ar < 0.04 2 i−0.5 2/3 Always SH WL ≥1 1500 < Re < 4 · 104 2 < H/D < 80 0.008 < Ar < 2.5Ar,o Always JRB, ASR 3.9 MEAM333 - Convection Correlations Packed Beds For packed beds, the heat transfer depends on the total particle surface area Ap,t q = h̄Ap,t ∆Tlm The outlet temperature can be determined from the log mean relation Ts − To h̄Ap,t = exp − Ts − Ti ρVi Ac,b cp For Spheres : −0.575 j̄H = j̄m = 2.06ReD where Pr or Sc ≈ 0.7 and 90 < ReD < 4000 For non spheres multiply the right hand side by a factor - uniform cylinders of L = D use 0.71, for uniform cubes use 0.71 is the porosity and is typically 0.3 to 0.5. 4 4.1 4.1.1 Internal Flow Circular Tube Properties Table 14: Flow Conditions Mean Velocity ReD Hydrodynamic Entry Length Velocity Profile um = ṁ ρAc ρum D µm D = µ ν x f d,h ≈ 0.05ReD D lam x f d,h ≤ 60 10 ≤ D turb " 2 # u(r) r =2 1− um r0 ReD ≡ f≡ −(dp/dx)D ρu2m /s f= 64 ReD Moody Friction Factor −1/4 f = 0.316ReD −1/4 f = 0.184ReD f = (0.790ln(ReD ) − 1.64)−2 Power for Pressure Drop P = (∆p)∀˙ 9/17 turbulent onset @ ReD ≈ 2300 Smooth ReD ≤ 2 × 104 Smooth ReD ≥ 2 × 104 Smooth 3000 ≤ ReD ≤ 5 × 106 ṁ ∀˙ = ρ JRB, ASR MEAM333 - Convection Correlations Table 15: Constant Surface Heat Flux Convective Heat Transfer Mean Temperature qconv = qs00 (P L) q 00 P Tm (x) = Tm,i + s x ṁcp qs00 = constant qs00 = constant Table 16: Constant Surface Temperature Convective Heat Transfer ∆Tlm Log Mean Temperature qconv = hAs ∆Tlm ∆To − ∆Ti ≡ ln(∆To /∆Ti ) Ts = constant Ts = constant ∆To Ts − Tm (x) P xh = = exp − ∆Ti Ts − Tm,i ṁcp Table 17: Constant External Environment Temperature Heat Transfer q = U As ∆Tlm T∞ = constant Log Mean Temperature 4.1.2 ∆To U As T∞ − Tm (x) = = exp − ∆Ti T∞ − Tm,i ṁcp Flow Correlations Table 18: Fully Developed Flow In Circular Tubes lamniar N uD hD ≡ = 4.36 k fully developed qs00 = constant lamniar N uD hD ≡ = 3.66 k fully developed Ts = constant 10/17 T∞ = constant JRB, ASR MEAM333 - Convection Correlations Table 19: Laminar Entry Region Flow In Circular Tubes N uD ≡ hD 0.0668(D/L)ReD P r = 3.66 + k 1 + 0.04[(D/L)ReD P r]2/3 N uD ≡ hD = 1.86 k ReD P r L/D 1/3 µ µs 0.14 lamniar Ts = constant (thermal entry length) OR (combined with Pr ≥ 5) lamniar Ts = constant 0.60 ≤ P r≤ 5 µ 0.0044 ≤ ≤ 9.75 µs All properties evaluated at the mean temperature Tm = (Tm,i + Tm,o )/2 Table 20: Turbulent Flow In Circular Tubes N uD N uD hD 4/5 ≡ = 0.023ReD P rn k Ts > Tm : n = 0.4 Ts < Tm : n = 0.3 hD 4/5 ≡ = 0.027ReD P r1/3 k µ µs 0.14 turbulent fully developed small temperature diff 0.6 ≤ P r ≤ 160 ReD ≥ 10, 000 laminar 0.7 ≤ P r ≤ 16, 700 ReD ≥ 10, 000 L ≥ 10 D lamniar N uD 0.5 ≤ P r ≤ 2000 3000 ≤ ReD ≤ 5 × 106 Above appropriate for both constant Ts and constant qs00 lamniar NOT liquid metals (3 × 10−3 ≤ P r ≤ 5 × 10−2 ) hD 0.827 N uD ≡ = 4.82 + 0.0185P eD qs00 = constant k 3.6 × 103 ≤ ReD ≤ 9.05 × 105 102 ≤ P eD ≤ 104 similarly as immediately above hD N uD ≡ = 5.0 + 0.025P e0.8 Ts = constant D k 100 ≤ P eD All properties evaluated at the mean temperature Tm = (Tm,i + Tm,o )/2 hD (f /8)(ReD − 1000)P r ≡ = k 1 + 12.7(f /8)1/2 (P r2/3 − 1) 11/17 JRB, ASR 4.2 4.2.1 MEAM333 - Convection Correlations Non-Circular Tubes Properties Table 21: Flow in Non-Circular Tubes Hydrodynamic Diameter ReDh ReDh 4Ac Dh ≡ P ρum Dh µm Dh ≡ = µ ν turbulent onset @ ReDh ≈ 2300 All properties evaluated at the mean temperature Tm = (Tm,i + Tm,o )/2 4.2.2 Flow Correlations Figure 2: Nusselt numbers and friction factors for fully developed laminar flow in tubes of differing cross-section 12/17 JRB, ASR 4.3 4.3.1 MEAM333 - Convection Correlations Concentric Tube Annulus Properties Table 22: Concentric Tube Annulus Properties Interior heat transfer Exterior heat transfer Hydrodynamic Diameter 4.3.2 qi00 = hi (Ts,i − Tm ) qo00 = ho (Ts,o − Tm ) Dh = Do − Di Flow Correlations Table 23: Correlations for Concentric Tube Annulus lamniar fully developed one surface insulated one surface const Ts See Table 8.2 on Page 520 N ui = N uii N uoo , N uo = 1 − (qo00 /qi00 )θi∗ 1 − (qi00 /qo00 )θo∗ See Table 8.3 for above parameters as a function of 4.4 Di Do laminar qi00 = constant qo00 = constant Heat Transfer Enhancement - Tube Coiling Table 24: Properties for Helically Coiled Tubes D,C are defined in Figure 8.13 on Page 522 ReD,c,h = ReD,c [1 + 12(D/C)0.5 ] ReD,c = 2300 Critical Reynolds Number f f= f f= f f 64 ReD ReD (D/C)1/2 ≤ 30 27 (D/C)0.1375 0 ReD .725 7.2 = (D/C)0.25 Re0D .5 30 ≤ ReD (D/C)1/2 ≤ 300 300 ≤ ReD (D/C)1/2 Table 25: Correlations for Helically Coiled Tubes " N uD = 4.343 3.66 + a 3 + 1.158 a= ReD (D/C)1/2 b 927(C/D) 1+ Re2D P r b=1+ 0.477 Pr 13/17 3/2 #1/3 µ µs 0.14 0.005 ≤ P r ≤ 1600 1 ≤ ReD D C 1/2 ≤ 1000 JRB, ASR 4.5 MEAM333 - Convection Correlations Internal Convection Mass Transfer Table 26: Properties for Internal Convection Mass Transfer R Mean Species Density Mean Species Density Local Mass Flux ρA,m = ρA,m = Ac 2 um ro2 (ρA u)dAc u m Ac R ro (ρA ur)dr 0 Any Shape Circular Tube n00A = hm (ρA,s − ρA,m ) nA = hm As ∆ρA,lm Total Mass Flux nA = ∆ρA,lm = Log Mean Concentration Difference ṁ (ρA,o − ρA, i) ρ ∆ρA,o − ∆ρA,i ln(∆ρA,o /∆ρA,i ) ∆ρA (x) ρA,s − ρA,m (x) hm ρP x = = exp − ∆ρA,i ρA,s − ρA,m,i ṁ ShD = hm D DA B ShD = hm D DA B Sherwood Number The concentration entry length xf d,c can be determined with the mass transfer analogy and the same function used to determine xf d,t . From this point, the appropriate heat transfer correlation can be invoked along the lines of the mass transfer analogy, 5 Natural Convection Natural Convection uses the Rayleigh number instead of the Reynolds number. Transition to turbulent flow happens around Ra ≈ 109 14/17 JRB, ASR 5.1 MEAM333 - Convection Correlations Natural Convection, Vertical Plate Table 27: Natural Convection, Vertical Plate Laminar Heat Transfer N ux = g factor g(P r) = Better avg. Heat Transfer 1/4 uses g below g(P r) 0.75P r0.5 (0.609 + 1.221P r0.5 + 1.238P r)1/4 4 N uL = 3 " Average Laminar Grx 4 N uL = 0.825 + Grx 4 0 < Pr < ∞ 1/4 g(P r) laminar #2 1/6 0.387Ral 1 + (0.492/P r)9/16 8/27 Applies for all RaL 1/4 0.670Ral N uL = 0.68 + 4/9 1 + (0.492/P r)9/16 Better avg. Laminar Heat Transfer 5.2 RaL < 109 Natural Convection, Inclined Plate For the top of a cooled plate and the bottom of a heated plates, the vertical correlations can be used with g cos(θ) substituted into RaL for a tilt of up to 60 degrees away from the vertical (0 = vertical). No recommendations are recommended for the other cases. 5.3 Natural Convection, Horizontal Plate These correlations use L = As P Table 28: Natural Convection, Horizontal Plate Upper Surface Hot Plate Lower Surface Cold Plate Upper Surface Hot Plate Lower Surface Cold Plate Lower Surface Hot Plate Upper Surface Cold Plate 5.4 1/4 104 < RaL < 107 1/3 107 < RaL < 101 1 1/4 105 < RaL < 101 0 N uL = 0.54RaL N uL = 0.15RaL N uL = 0.27RaL Long Horizontal Cylinder Assumes isothermal cylinder. The following correlation applies for RaD < 101 2 " 1/6 0.387RaD N uD = 0.60 + 8/27 1 + (0.559/P r)9/16 5.5 Spheres For P r > 0.7 and RaD < 101 1 1/4 0.589RaD N uD = 2 + 4/9 1 + (0.469/P r)9/16 15/17 #2 JRB, ASR 5.6 MEAM333 - Convection Correlations Vertical Channels This section describes correlations for natural convection between to parralel plates. It uses Ras which uses the plate separation for the length scale. I believe that the convection area is the surface area where heating/cooling happens. Table 29: Vertical Channels Symmetrically Heated Isothermal Plates Symmetrically Heated Isothermal Plates 1 Insulated Plate 2 Isothermal Plate Isothermal / Adiabatic (Better) N us = 1 24 Ras 0.75 S 35 1 − exp − L Ras (S/L) N us = RAs (S/L) 24 N us = Ras (S/L) 12 10−1 < S L Ras 10−1 < S L →0 10−1 < S L →0 < 105 S L Ras < 105 S L Ras < 105 −1/2 C1 C2 S N us = + Ras L ≤ 10 (Ras S/L)2 (Ras S/L)1/2 q/A S gβ(Ts − T∞ )S 3 The isothermal correlations use N us = and Ras = Ts − T∞ k αν The better isothermal correlation uses C1 = 576, C2 = 2.87 for Symmetric isothermal Plates C1 = 144, C2 = 2.87 for isothermal and adiabatic Plates Symmetric 0.5 N us,L,f d = 0.144 [Ra∗s (S/L)] Uses Ra∗ Isoflux Plates 1 Isoflux Plate 0.5 N us,L,f d = 0.204 [Ra∗s (S/L)] Uses Ra∗ 1 Insulated −1/2 Isoflux / C1 C2 S N us,L = + Adiabatic Ras L ≥ 100 Ra∗s S/L (Ra∗s S/L)2/5 (Better) gβqs00 S 4 qs00 S and Ra∗s = The isoflux corelations use N us,f d = Ts,L − T∞ k kαν The better isoflux correlation uses C1 = 48, C2 = 2.51 for Symmetric isoflux Plates C1 = 24, C2 = 2.51 for isoflux and adiabatic Plates 5.7 Inclined Channels For plates inclined less than 45 degrees from the vertical 1/4 N us = 0.645 [Ras (S/L)] Fluid properties are evaluated at T̄ = 5.8 Ts +T∞ 2 This requires Ras (S/L) > 200 Rectangular Cavities For a channel with flow through the HxL plane, no advection happens unless RaL > 1708 See Figure 9.10 on p 588 for geometric details All properties are evaluated at the average between the heat transferring plates. Inclined plates are discussed on P590. 16/17 JRB, ASR MEAM333 - Convection Correlations Table 30: Rectangular Channels Horizontal Cavity Heated from Below Heat transfer on Vertical Surfaces 1/3 N uL = 0.069RaL P r0.074 N uL = 0.22 Heat transfer on Vertical Surfaces Heat transfer on Vertical Surfaces N uL = 0.18 N uL = Heat transfer on Vertical Surfaces 5.9 Pr RaL 0.2 + P r 0.28 Pr RaL 0.2 + P r 0.012 0.42Ra0.25 L Pr H L −0.25 0.29 H L −0.3 1/3 N uL = 0.046RaL Concentric Cylinders For Cylinders we use an effective thermal conductivity kef f = 0.386 k Pr 0.861 + P r 1/4 Ra1/4 c The Rayleigh number uses the corrected length 4/3 Lc = 2 [ln(ro /ri )] (ri−0.6 + ro−0.6 )5/3 q= 2πLkef f (Ti − To ) ln(ro /ri ) The Heat Transfer is found as 5.10 Concentric Spheres For Spheres we use an effective thermal conductivity kef f = 0.74 k Pr 0.861 + P r 1/4 Ra1/4 s The Rayleigh number uses the corrected length Ls = 1 ri −7/5 21/3 (ri The Heat Transfer is found as q= 1 ro − 4/3 −7/5 5/3 ) + ro 4πLkef f (Ti − To ) (1/ri ) − (1/ro ) 17/17 3 · 105 < RaL < 7 · 109 All properties evaluated at average temp. between hot and cold plates 103 < RaL < 101 0 2≤ H L ≤ 10 P r ≤ 105 RaL P r 103 < 0.2+P r 1≤ H ≤ 2 L 10−3 ≤ P r ≤ 105 104 < RaL < 107 10 ≤ H L ≤ 40 1 ≤ P r ≤ 2 · 104 106 < RaL ≤ 109 1≤ H L ≤ 40 1 ≤ P r ≤ 20
© Copyright 2026 Paperzz