Trends in Lake Michigan’s Food-web Steven Pothoven Data from T. Nalepa Data from T. Nalepa 50 40 30 20 10 40 30 20 10 0 0 1997 1999 2001 2003 2005 2007 2009 1997 2011 Year 50 2001 30 20 10 1997 1999 2001 2003 Year 2005 2007 2009 2011 2007 2009 2011 2005 2007 2009 2011 40 30 20 10 0 0 2005 > 90 m ) Shell-free Biomass (g/m 40 2003 Year 2 ) 1999 50 31-50 m 2 Shell-free Biomass (g/m 51-90 m 2 16-30 m Shell-free Biomass (g/m Shell-free Biomass (g/m 2 ) Quagga Zebra ) 50 1997 1999 2001 2003 Year Quagga biomass stabilizing/decreasing in nearshore; continues to increase offshore Data from T. Nalepa (UM) Secchi (m) 20 15 Spring-offshore 10 5 0 1985-89 1995-98 2007-10 Increased water clarity— secchi depth up to 32 m in northern Lake Michigan Chlorophyll a (mg/m3) 4 Offshore-Spring Chlorophyll a 3 2 1 0 1983-1987 1995-1998 2007-2011 The loss of the spring phytoplankton bloom— especially diatoms 0 1 Chlorophyll a (mg/m3) 2 3 4 0 Spring isothermal period Depth (m) 20 40 60 80 100 In the spring, mussels in the offshore are “connected” to the entire water column 5 Temperature (°C) 0 5 10 15 20 25 0 20 40 60 Depth (m) 80 100 120 Chlorophyll a (mg/m3) 0 1 2 3 0 4 5 6 July 1995 20 40 Deep chlorophyll layer 60 80 100 120 Nepheloid 7 Mean early summer DCL (Area > 2 mg/m3) Offshore -110 m Integrated DCL Chl a (mg/m2) 90 80 70 60 50 40 30 20 10 0 1980 1985 1990 1995 2000 2005 2010 2015 Summer chlorophyll profile Chlorophyll a (mg/m3) 0 1 2 3 4 0 5 6 7 July 2011 Depth (m) 20 Smaller DCL 40 60 80 No nepheloid 100 Less spring bloom material settling Nearshore-Offshore transport disrupted by nearshore mussels Typical Zebra Mussel Shallow Water Impact in 1990sSaginaw Bay, Lake Huron SAGINAW BAY RETENTION OF NUTRIENTS NEARSHOREmore algae (Cha et al. 2011) 28% of mapped nearshore habitat in Lake Michigan is occupied by Cladophora or other SAV From Shuchman et al. 2013 Nearshore and Offshore are different environments Increasing temp and zoopl; decreasing chl (temperature, chl, zooplankton) Decreasing temperature and chl 10 Spring 2007-2012 total phosphorus Muskegon TP (mg/m3) 9 8 7 6 5 4 3 2 1 0 15 45 Depth (m) 110 500 Spring 2007-2012 total phosphorus Muskegon TP (mg/m2) 450 400 350 300 250 200 150 100 50 0 15 45 Depth (m) 110 Spring 2007-2012 chlorophyll Muskegon 2.5 Chl a (mg/m2) 2.0 1.5 1.0 0.5 0.0 15 45 Depth (m) 110 Mean annual zooplankton abundance 2007-2012 Muskegon Biomass (mg/m3) 25 20 Other Daphnia galeata 15 Bosmina 10 Limnocalanus Diaptomid 5 cyclopoid 0 M15 M45 M110 Depth (m) Reflective of an oligotrophic community Mean annual zooplankton abundance 2007-2012 Muskegon Biomass (mg/m2) 2500 2000 Other Daphnia galeata 1500 Bosmina 1000 Limnocalanus Diaptomid 500 cyclopoid 0 M15 M45 Depth (m) M110 Zooplankton community differences nearshore-offshore CLADOCERANS (fleas) Bosmina –small bodied, nearshore Daphnia –large bodied, offshore Cercopagis –small bodied, nearshore Bythotrephes –large bodied, offshore Cubic feet/sec Muskegon River Discharge (below Croton; USGS data) 7000 6000 5000 4000 3000 2000 1000 0 2007-2012 2013 1 2 3 4 5 6 Month 7 8 9 10 11 12 Total phosphorus - Nearshore Muskegon 30 25 April 20 15 TP (mg/m3) 10 5 0 30 25 20 15 10 5 0 May 10 8 Chlorophyll - Nearshore Muskegon April chl a (mg/m3) 6 4 2 0 10 8 6 4 2 0 May Total phosphorus - Nearshore Muskegon 40 TP (mg/m3) 35 30 25 20 2010 15 2013 10 5 0 0 50 100 150 200 Day of Year 250 300 350 Total phosphorus Muskegon 15 m 40 TP (mg/m3) 35 30 25 2010 20 1996 15 2013 10 1972 5 0 0 50 100 150 200 Day of Year 250 300 350 chl a (mg/m3) Chlorophyll – Nearshore Muskegon 9 8 7 6 5 4 3 2 1 0 2010 2013 0 50 100 150 200 Day of Year 250 300 350 Chlorophyll – Nearshore Muskegon chl a (mg/m3) 12 10 8 2010 6 1996 2013 4 1972 2 0 0 50 100 150 200 Day of Year 250 300 350 TP (mg/m3) 200 Historical comparison - spring Grand Haven- Muskegon river mouths Total phosphorus 150 100 50 0 chl a (mg/m3) 25 Chlorophyll 20 15 10 5 0 1972 1996 Grand Haven 1996 1972 Muskegon Spring zooplankton community assemblage analysis More variable within a year than between years A few things to consider…. The nearshore and offshore are different, but connected Can P be reduced enough to eliminate nearshore water quality issues but still support the offshore pelagic food web? Is removal of P by mussels temporary or permanent?
© Copyright 2026 Paperzz