www.mathportal.org Math Formulas: Taylor and Maclaurin Series Definition of Taylor series: 1. f (x) = f (a) + f 0 (a)(x − a) + 2. 3. Rn = Rn = f 00 (a)(x − a)2 f (n−1) (a)(x − a)n−1 + ··· + + Rn 2! (n − 1)! f (n) (ξ)(x − a)n where a ≤ ξ ≤ x, n! ( Lagrangue’s form ) f (n) (ξ)(x − ξ)n−1 (x − a) where a ≤ ξ ≤ x, (n − 1)! ( Cauch’s form ) This result holds if f (x) has continuous derivatives of order n at last. If limn→+∞ Rn = 0, the infinite series obtained is called Taylor series for f (x) about x = a. If a = 0 the series is often called a Maclaurin series. Binomial series 4. n(n − 1) n−2 2 n(n − 1)(n − 2) n−3 3 (a + x)n = an + nan−1 + a x + a x + ··· 2! 3! n n−1 n n−2 2 n n−3 3 = an + a x+ a x + a x + ··· 1 2 3 Special cases of binomial series 5. (1 + x)−1 = 1 − x + x2 − x3 + · · · 6. (1 + x)−2 = 1 − 2x + 3x2 − 4x3 + · · · −1<x<1 7. (1 + x)−3 = 1 − 3x + 6x2 − 10x3 + · · · −1<x<1 8. 1·3 2 1·3·5 3 1 x − x + ··· (1 + x)−1/2 = 1 − x + 2 2·4 2·4·6 9. 1 1 2 1·3 3 (1 + x)1/2 = 1 + x − x + x + ··· 2 2·4 2·4·6 −1<x<1 −1<x≤1 −1<x≤1 Series for exponential and logarithmic functions 10. 11. 12. 13. ex = 1 + x + ex = 1 + x ln a + x2 x3 + + ··· 2! 3! (x ln a)2 (x ln a)3 + + ··· 2! 3! x2 x3 x4 + − + ··· − 1 < x ≤ 1 2 3 4 2 3 x−1 1 x−1 1 x−1 1 ln(1 + x) = + + + ··· x ≥ x 2 x 3 x 2 ln(1 + x) = x − Series for trigonometric functions 1 www.mathportal.org sin x = x − 14. 15. 16. x2 x4 x6 + − + ··· 2! 4! 6! 22n 22n − 1 Bn x2n−1 x3 2x5 tan x = x + + + ··· + 3 15 (2n)! cos x = 1 − 17. cot x = 18. sec x = 1 + 19. x3 x5 x7 + − + ··· 3! 5! 7! 1 x x3 22n Bn x2n−1 − − − ··· − x 3 45 (2n)! − π π <x< 2 2 0<x<π x2 5x4 61x6 En x2n π π + + + ··· + − <x< 2 24 720 (2n)! 2 2 2 22n − 1 En x2n 1 x 7x3 csc x = + + + ··· + 0<x<π x 6 360 (2n)! Series for inverse trigonometric functions 20. 21. 22. 23. 1 x3 1 · 3 x5 1 · 3 · 5 x7 + + + ··· − 1 < x < 1 2 3 2·4 5 2·4·6 7 π π 1 · 3 x5 1 x3 arccos x = − arcsin x = − x + + + ··· −1<x<1 2 2 2 3 2·4 5 x3 x5 x7 x − + − + ··· − 1 < x < 1 3 5 7 π 1 1 1 arctan x = − + 3 − 5 + ··· x ≥ 1 2 x 3x 5x −π − 1 + 1 − 1 + · · · x < 1 2 x 3x3 5x5 π x3 x5 − x− + + ··· −1<x<1 2 3 5 π 1 1 1 arccot x = − arctan x = − 3 + 5 − ··· x ≥ 1 2 x 3x 5x π + 1 − 1 + 1 − ··· x < 1 x 3x3 5x5 arcsin x = x + Series for hyperbolic functions 24. 25. 26. 27. sinh x = x + x3 x5 + + ··· 3! 5! x2 x4 + + ··· 2! 4! (−1)n−1 22n 22n − 1 Bn x2n−1 x3 2x5 tanh x = x − + + ··· + ··· 3 15 (2n)! cosh x = 1 + coth x = (−1)n−1 22n Bn x2n−1 1 x x3 + − + ··· + ··· x 3 45 (2n)! 2 |x| < 0 < |x| < π π 2
© Copyright 2026 Paperzz