QUIZ 14 - SOLUTIONS 1. Solve x Answer: dy + 2y = 3x3 dx y(1) = 2 dy + 2y = 3x3 dx dy 2 + y = 3x2 dx x R 2 Then the integrating factor is I(x) = e x dx = e2 ln(x) = x2 . dy 2 + y = 3x2 dx x dy + 2xy = 3x4 x2 dx d ! 2 " x · y = 3x4 dx # # d ! 2 " x · y dx = 3x4 dx dx 3 x2 · y = x5 + C 5 3 y = x3 + Cx−2 5 x Then we solve for C. 3 y = x3 + Cx−2 5 3 2= +C 5 7 C= 5 Therefore 3 7 y = x3 + x−2 5 5 2 QUIZ 14 - SOLUTIONS 2. Solve x Answer: $ dy +y dx % = xe−x − y y(2) = 0 $ % dy x + y = xe−x − y dx dy x + xy = xe−x − y dx dy x + xy + y = xe−x dx dy x + (x + 1)y = xe−x dx $ % dy 1 + 1+ y = e−x dx x R 1 Then the integrating factor is I(x) = e 1+ x dx = ex+ln(x) = ex eln(x) = xex . $ % 1 x dy x xe + xe 1 + y = xex e−x dx x d [xex · y] = x dx # # d x [xe · y] dx = x dx dx x2 xex · y = +C 2 x C y= x+ x 2e xe Then we solve for C. 2 C + 2e2 2e2 C = −2 0= Therefore y= x −2 + x x 2e xe Name: QUIZ 15 1. Explain what section 11.3 is about. 2. Draw a vector field (it is sufficient to use 9 points) for the differential equation dy = x − y. dx Use the Euler approximation with h = ∆x = 1 to draw a solution curve with the initial value y(−1) = 0.
© Copyright 2026 Paperzz