Math 234 April 19 I. Use integration by parts to find the given integral

Math 234
April 19
I. Use integration by parts to find the given integral
1.
Re
2.
R
3.
R1
4.
R
x(ln(x))2 dx
5.
R
ln(x)
dx
x4
6.
R1
7.
R1
8.
R1
9.
R2
10.
R
1
x ln(x)dx
x5/2 ln(x)dx
0
0
0
0
1
x3 ex dx
x(e−5x + ex/2 )dx
√ x dx
x+1
2
√x
dx
x+2
x(e−5x + ln(x))dx
5
√x
dx
x2 +1
II.Describe the domain of the given function
1. f (x, y) =
x+y
x−y
2. f (x, y) =
x+y
x+ x−y
1
3. f (x, y) =
x+y
x2 +y 2
4. f (x, y) =
p
x2 − y 2
5. f (x, y) = ln(x2 − y)
x+y
6. f (x, y) = √e 2
x −y 2
III. Sketch the indicated level curve f (x, y) = C for each choice of constant
C.
1. f (x, y) = x2 + y; C = 0, C = 4, C = 9
2. f (x, y) = x/y; C = −2; C = 2
3. f (x, y) = yex ; C = 0; C = 1
4. f (x, y) = xey ; C = 0; C = 1
IV. Find all first-order partial derivatives
1. f (x, y) = x2 + y
2. f (x, y) = x/y
3. f (x, y) =
x+y
x−y
4. f (x, y) =
p
x2 − y 2
x+y
5. f (x, y) = √e 2
x −y 2
2
I. Use integration by parts to find the given integral
Re
1.
x ln(x)dx
1
Answer:
u = ln(x)
du = x1 dx
v = x2 /2
dv = xdx
R e x2
Re
x2 ln(x) e
|
−
1xdx
x
ln(x)dx
=
1
2
1 2
1
Re
e2 ln(e)
12 ln(1)
= 2 − 2 − 12 1 xdx
2
2
= e2 − 21 x2 |e1
2
= e2 − 41 (e2 − 1)
2
= e4 + 14
2.
R
x5/2 ln(x)dx
Answer:
u = ln(x)
du = x1 dx
7/2
dv = x5/2 dx
v = x7/2
R 5/2
R 7/2
7/2
x ln(x)dx = 2x 7ln(x) − 2x7 x1 dx
R
7/2
= 2x 7ln(x) − 27 x5/2 dx
7/2
7/2
= 2x 7ln(x) − 27 x7/2 + C
=
3.
2x7/2 ln(x)
7
−
4 7/2
x
49
+C
R1
x3 ex dx
Answer:
u = x3
du = 3x2 dx
v = ex
dv = ex dx
R 3 x
R
x e dx = x3 ex − R3x2 ex dx
u = x2
= x3 ex − 3 x2 ex dxR
v = ex
= x3 ex − 3(x2 ex − R 2xex dx
= x3 ex − 3x2 ex + 6 xex dxR
u =x
= x3 ex − 3x2 ex + 6(xex − ex dx)
v = ex
= x3 ex − 3x2 ex + 6xex − 6ex + C
R1 3 x
x e dx = x3 ex − 3x2 ex + 6xex − 6ex |10
0
= e1 − 3e1 + 6e1 − 6e1 − (0 − 0 + 0 − 6e0 )
= −2e1 + 6
0
3
du = 2xdx
dv = ex dx
du = dx
dv = ex dx
4.
5.
R
x(ln(x))2 dx
Answer:
u = (ln(x))2
du = 2 ln(x)(1/x)dx
2
v
= x /2
dv = xdx
R
R 2
2
2
x(ln(x))2 dx = x (ln(x))
− x2 2 ln(x)(1/x)dx
2
R
2
2
− x ln(x)dx
= x (ln(x))
2
R 2
2
2
2
= x (ln(x))
− ( x ln(x)
− x2 x1 dx)
2
2
R
2
2
x2 ln(x)
1
−
+
xdx
= x (ln(x))
2
2
2
x2 (ln(x))2
x2 ln(x)
1 x2
=
− 2 + 2 2 +C
2
2
2
x2 (ln(x))2
=
− x ln(x)
+ x4 + C
2
2
u = ln(x)
v = x2 /2
du = x1 dx
dv = xdx
ln(x)
dx
x4
R
Answer:
u = ln(x)
du = (1/x)dx
v = x−3 /−3
dv = x−4 dx
R −1 1
R ln(x)
ln(x)
dx = −3x
− 3x
3
3 x dx
x4
R
− ln(x)
= 3x3 + (1/3) x−4 dx
−3
ln(x)
= −3x
+ 13 x−3 + C
3
ln(x)
− 9x13 + C
= −3x
3
6.
R1
7.
R1
x(e−5x + ex/2 )dx
Answer:
u
=x
du = dx
−5x
x/2
v = (−1/5)e
+ 2e
dv = e−5x + ex/2 dx
R1
R1
x(e−5x + ex/2 dx = x((−1/5)e−5x + 2ex/2 )|10 − 0 (−1/5)e−5x + 2ex/2 dx
0
−5
= −e5 + 2e1/2 − (1/25)e−5x + 4ex/2 |10
−5
= −e5 + 2e1/2 − ((1/25)e−5 + 4e1/2 − (1/25 + 4))
−5
= −6e
+ −2e1/2 + 4.04
25
0
0
√ x dx
x+1
Answer:
u
=x
v = 2(x + 1)1/2
du = dx
dv = (x + 1)−1/2 dx
4
R1
√ x dx
0
x+1
8.
R1
0
R1
= 2x(x + 1)1/2 |10 − 0 2(x + 1)1/2 dx
R1
= 2(1 + 1)1/2 − 0 − 2 0 (x + 1)1/2 dx
= 2(2)1/2 − 2 23 (x + 1)3/2 |10
= 2(2)1/2 − 43 (23/2 − 1)
2
√x
dx
x+2
Answer:
u
= x2
du = 2xdx
1/2
v = 2(x + 2)
dv = (x + 2)−1/2 dx
R 1 x2
R1
√
dx = 2x2 (x + 2)1/2 |10 − 0 2x2(x + 2)1/2 dx
0
x+1
R1
= 2(1 + 2)1/2 − 0 − 4 0 x(x + 2)1/2 dx
R1
3/2
1
= 2(3)1/2 − 4( 2x(x+2)
−
(2/3)(x + 2)3/2 dx)
|
0
3
0R
3/2
3/2
1
= 2(3)3 − 4( 2(1+2)
− 0 − 23 0 (x + 2)3/2 dx)
3
3/2
3/2
= 2(3)3 − 43 ( 2(3)3 − 23 25 (x + 2)5/2 |10 )
= 32 (3)3/2 − 89 (3)5/2 − 16
((3)5/2 − 1)
45
= 23 (3)3/2 − 89 (3)5/2 − 16
(3)5/2 + 16
)
45
45
9.
10.
R2
x(e−5x + ln(x))dx
Answer:
R2
R2
R2
x(e−5x + ln(x))dx = 1 x(e−5x dx + 1 x ln(x)dx
1
R
R2
−5x
From pervious problems we have: x(e−5x dx+ 1 x ln(x)dx = −xe5 −
2
2
− x4 + C
e−5x + x ln(x)
2
R2
2
−5x
2
x(e−5x + ln(x))dx = ( −xe5 − e−5x + x ln(x)
− x4 )|21
2
1
−10
−5
= −2e5 − e−10 + 4 ln(4)
− 44 ) − ( −e5 − e−5 − 14 )
2
−5
−10
= −7e5 + 2 ln(4) − 1 + 6e5 + 14
1
R
5
√x
dx
x2 +1
Answer:
u
= x4
v = (1/2)(x2 + 1)−1/2
u
= x2
v = (3/2)(x2 + 1)3/2
du = 4x3 dx
dv = x(x2 + 1)−1/2 dx
du = 2xdx
dv = 2x(x2 + 1)1/2 dx
5
R
5
√x
dx
x2 +1
=
=
=
=
√
R
x4 (x2 +1)1/2
− 2x3 x2 + 1dx
2
R
x4 (x2 +1)1/2
− ( 32 x2 (x2 + 1)3/2 − 2x 23 (x2 + 1)3/2 dx
2
x4 (x2 +1)1/2
− 32 x2 (x2 + 1)3/2 + 23 25 (x2 + 1)5/2 + C
2
1 4 2
4
x (x + 1)1/2 − 23 x2 (x2 + 1)3/2 + 15
(x2 + 1)5/2 + C
2
II.Describe the domain of the given function
1. f (x, y) = x+y
x−y
Answer:
x − y 6= 0
All (x, y) pairs where x and y are real numbers such that y 6= x.
{(x, y) ∈ R2 |y 6= x}
2. f (x, y) = x2x+y
+x−y
Answer:
x2 + x − y 6= 0
All (x, y) pairs where x and y are real numbers such that y 6= x2 − x.
{(x, y) ∈ R2 |y 6= x2 − x}
3. f (x, y) = xx+y
2 +y 2
Answer:
x2 + y 2 6= 0
All (x, y) pairs where x and y are real numbers such that |y| =
6 |x|.
2
{(x, y) ∈ R ||y| =
6 |x|}
p
4. f (x, y) = x2 − y 2
Answer:
x2 − y 2 ≥ 0
All (x, y) pairs where x and y are real numbers such that |x| ≥ |y|.
{(x, y) ∈ R2 ||x| ≥ |y|}
6
5. f (x, y) = ln(x2 − y)
Answer:
x2 − y ≥ 0
All (x, y) pairs where x and y are real numbers such that x2 ≥ y.
{(x, y) ∈ R2 |x2 ≥ y}
x+y
6. f (x, y) = √e 2
x −y 2
Answer:
x2 − y 2 > 0
All (x, y) pairs where x and y are real numbers such that |x| > |y|.
{(x, y) ∈ R2 ||x| > |y|}
III. Sketch the indicated level curve f (x, y) = C for each choice of constant
C.
1. f (x, y) = x2 + y; C = 0, C = 4, C = 9
Answer:
9
8
6
4
4
2
0
0
-2
-4
-3
-2
-1
0
1
2
7
3
2. f (x, y) = x/y; C = −2; C = 2
Answer:
2
1
0
-1
-2
-3
-2
-1
0
1
2
3
2
3
3. f (x, y) = yex ; C = 0; C = 1
Answer:
2
1
1
0
0
-1
-2
-3
-2
-1
0
1
4. f (x, y) = xey ; C = 0; C = 1
8
Answer:
3
2
1
0
-1
1
0
-2
-1
0
1
2
3
IV. Find all first-order partial derivatives
1. f (x, y) = x2 + y
Answer:
fx (x, y) = 2x
fy (x, y) = 1
2. f (x, y) = x/y
Answer:
fx (x, y) = y1
fy (x, y) = −x
y2
3. f (x, y) = x+y
x−y
Answer:
=
fx (x, y) = 1(x−y)−(x+y)(1)
(x−y)2
fy (x, y) =
−2y
(x−y)2
1(x−y)−(x+y)(−1)
2x
= (x−y)
2
(x−y)2
9
4
p
4. f (x, y) = x2 − y 2
Answer:
fx (x, y) = (1/2)(x2 − y 2 )−1/2 (2x)
fy (x, y) = (1/2)(x2 − y 2 )−1/2 (−2y)
x+y
5. f (x, y) = √e 2
x −y 2
Answer:
fx (x, y) =
√
ex+y (1)(
x2 −y 2 )−ex+y (1/2)(x2 −y 2 )−1/2 (2x)
√
( x2 −y 2 )2
p
= x2 −y2 ( x2 − y 2 ) − x(x2 − y 2 )−1/2 )
√
ex+y (1)( x2 −y 2 )−ex+y (1/2)(x2 −y 2 )−1/2 (−2y)
√
fy (x, y) =
( x2 −y 2 )2
p
x+y
= xe2 −y2 ( x2 − y 2 ) + y(x2 − y 2 )−1/2 )
ex+y
10