Strictly Confidential : (For Internal and Restricted Use Only) MA1-043 Secondary School Examination SUMMATIVE ASSESSMENT – I, 2012 MARKING SCHEME MATHEMATICS Class – IX General Instructions : 1. The Marking Scheme provides general guidelines to reduce subjectivity and maintain uniformity. The answers given in the marking scheme are the best suggested answers. 2. Marking be done as per the instructions provided in the marking scheme. (It should not be done according to one‟s own interpretation or any other consideration). Marking Scheme be strictly adhered to and religiously followed. 3. Alternative methods be accepted. Proportional marks be awarded. 4. If a question is attempted twice and the candidate has not crossed any answer, only first attempt be evaluated and „EXTRA‟ written with second attempt. 5. In case where no answers are given or answers are found wrong in this Marking Scheme, correct answers may be found and used for valuation purpose. SECTION - A 1. (B) 1 2. (C) 1 3. (B) 1 4. (C) 1 5. (A) 1 6. (D) 1 7. (C) 1 8. (A) 1 Page 1 of 11 SECTION - B 9. 10. 4 3 3 5 2 2 4 3 3 5 2 484524 15 9324 15 3 31 8 15 24 15 ½ ½ p(x)kx2 x4 1 ½ ½ p(1)k (1)2(1)40 k140 k3 11. 12. 1 a 3 b3 c3 3 abc, when abc0 ax2y b2yz czx abc x2 y 2 y z zx0 1 ½ (x2y)3 (2yz)3 (zx)3 3 (x2y) (2yz) (zx) ½ Given Data ACBD Subtract BC from both sides ½ ACBCBDBC ABCD Euclid axiom used is “ Equals are subtracted from equals then difference are equal”. ½ 1 13. 1 x35115 x1153580 y18011565 1 OR 1 xyzw360 (xy)(zw)360 xyxy360 [since zwxy] ½ Page 2 of 11 2(xy)360 xy180 AOB is a straight line 14. ½ a15 cm b15 cm c12 cm a b c 15 15 12 42 S 21 2 2 2 A s sa sb sc 21 2115 2115 2112 ½ 1 21 6 6 9 3 7 2 3 2 3 3 3 ½ 2 21 cm 18 SECTION - C 15. 7 51 7 2 2 52 7 3 52 74 53 75 7 7 7 7 7 52 51 53 52 4 2 7 5 2 7 7 53 55 6 8 2 1 5 7 5 521 7 40 42 2 7 2 54 25 1 3 5 7 5 2 ½ 2 2 7 5 3 8 5 7 1 7 5 21 5 7 40 2 6 2 42 5 25 5 1 1 2 ½ 2 ½ 2 ½ 2 75 725 175 OR 5.8 correct construction, neatness and accuracy. 16. 3 2 6 5 a b 30 3 5 2 6 2 6 5 3 5 2 6 3 5 2 6 3 5 2 6 30 24152 30 4524 9 4 30 21 9 3 4 a b 21 7 21 6 1 1 ½ ½ Page 3 of 11 17. a3b3 a b a2 b b2 3 y y x x 3 5 3 5 3 2 y y x y y x x x 3 5 3 5 3 5 3 5 2 y x2 y2 2 xy y2 x2 5 9 25 25 9 25 2 y y x x 3 5 3 5 y2 2 xy x2 9 25 15 2 y 3 x2 y2 2y x2 y2 5 9 25 5 3 25 1 1 1 OR (3x2y)20 xy 11 9 (3x2y)3 203 27x 38y 318xy (3x2y) 8000 2 27x 38y 3 18 11 20 8000 9 27x 38y 38000440 27x 38y 37560 18. ½ ½ 1 ½ ½ a b b c c a 2 2 3 2 2 3 2 2 3 ab 3 bc 3 ca 3 Both Numerator and Denominator are of the form a 3 b3 c3 . We know that when abc0 then a 3b3 c3 3abc For Numerator a2 b2 b2 c2 c2 a2 0 For Denominator abbcca0 3 a 2 b2 b2 c 2 c 2 a 2 3 a b b c c a ab ab bc bc ca ca ab bc ca (ab) (bc) (ca) ½ ½ 1 ½ ½ Page 4 of 11 19. Construct l to AB and CD. EOMOMD180 EOM180 45 135 and ALOLOE180 LOE180 30 150 Co-interior angles are supplementary LOE EOM x135150285 1 1 OR ½ PQRS Extend RS (to PQ) to M TMR35 (Corresponding angles) TRM 18011070 [L.P] In TMR, TRM70 and TMR35 y180(7035) 18010575 20. Proof : ABC isosceles le ABAC ABC ACB Angles opp. to equal sides are equal. DBC is an isosceles le. BDDC and also DBCDCB Add (1) and (2) ABCDBCACBDCB ABDACD 1 ½ ½ 1 ½ __________(1) ___________ (2) 1 1 1 Page 5 of 11 21. Proof : PQRS is a square. (i) (ii) SRT is an equilateral le PSR90, TSR60 PSRTSR150, similarly QRT150 PST and QRT, we‟ve PSQR (S) PST QRT 150 (A) and STRT (S) PST QRT PTQT n TQR, QRRT TQR QTR x xxQRT180 2x150180 2x30 x15 1 1 ½ ½ 1 22. Proof : r line is the shortest CFAB CF < AC and CF < BC __________ (1) Similarly BC a line segment. A is the point not on it. ADBC AD < AB and AD < AC __________ (2) Also AC, a line segment B is a point not on it. BEAC BE < AB and BE < BC __________ (3) Add (1), (2) and (3) 2 AD BE CF > 2 AB BC CA ABBCCA < ADBECF Perimeter is greater than sum of three altitudes. ½ ½ ½ 1 ½ Page 6 of 11 23. QRT 9040x180 x18013050 PSR Ext. PSQ yx30 80 z180y 18080100 1 1 1 24. Rhombus Perimeter 52 cm 52 Side 13 cm 4 Diagonal 24 cm OBOD 12 cm 1 1 ½ OA 132 12 2 169144 25 5 cm 2 1 Area of rhombus 4 512 2 ½ 120 cm2 SECTION - D 25. 7 3 5 7 3 5 3 5 3 5 7 3 5 3 5 7 3 5 3 5 3 5 3 5 3 5 3 5 21 7 5 9 5 15 95 6 2 5 6 2 5 4 4 5 5 4 21 7 1 5 9 5 15 9 5 1 1 1 1 OR 1 Page 7 of 11 1 1 3 2 2 x 3 2 2 3 2 2 1 3 2 2 3 2 2 x 9 8 x3 2 2 , 1 1 2 x 2 3 2 2 9 8 12 2 2 1 3 2 2 9 8 12 2 2 x 1 x 2 2 17 12 2 17 12 2 x 34 1 x 2 2 34 x 26. 4 3 2187 7 4 2187 1 7 4 37 5 1 256 1 4 1331 2 1 1 3 5 256 4 2 1331 ½ 2 3 7 ½ 3 1 3 5 4 4 4 2 113 1 2 1 3 1½ 2 427542121 10820242330 27. 1 2x3 2y3 2z36xyz 2 2 2 LHS = xyz xy yz zx 3 3 3 2 x y z 3xyz 2 xyz x 2 y 2 z 2 xyyzzx xyz 2 x 2 2y 2 2z 2 2xy2yz2zx xyz x 2 2 xy y 2 y 2 2yz z 2 z 22 zx x 2 2 2 2 xyz xy yz zx RHS Hence proved. 2 (13)3 2 (14)3 2 (15)3 6131415 2 2 2 13 14 15 13 14 14 15 15 13 28. 1½ 1 1 1 ½ 42 (114) 42 6 252 ½ p(x)4x3 20x 233x18 (x2) is a factor p(x)(x2) (4x 2 12x9) 1 1 Page 8 of 11 4x2 6x6x9 = 2x (2x3)3 (2x3) = (2x3) (2x3) Factors are (2x3) (2x3) (x2) 29. x 2 4 is a factor of p(x)ax 42x 33x 2bx4 (x2) (x2) is a factor of p(x) p(2)0p(2) p(2)16 a82122b40 16 a2b0 p(2)16 a16122b40 16 a2b32 a1, b8 p(x)x 4 2x 3 3x 2 8x4 (x 24) (x 2 2x1) (x2) (x2) (x1) 2 1 1 ½ 1 1 ½ ½ ½ 30. A (3, 4) B (2, 0) C (1, 4) D (1, 0) IIIrd quad. x-axis IInd quad. x-axis 1 1 1 1 31. ½ ½ Page 9 of 11 Triangle ABC. Sum of all the angles of ABC is 180 Construction Draw a line l parallel to BC. Given to prove Since lBC, We have 2y (1) (Alternate angles are equal) Similarly lBC 1z (2) (Alternate angles are equal) Also, sum of angle at a point A on line l is 180. 2x1180 i.e. yxz180( from (1) and (2) ) xyz180 ABC180 Sum of all angles of a is 180 5x6x7x180 x=10 Angles are 50, 60 and 70 32. Proof : In ADE, we have ADAE, ADEAED 180ADE180AED ADBAEC __________ (1) Consider ABD and ACE ADAE (side) ADBAEC (Angle ) from (1) BDEC (side) By SAS congruence ABD ACE By cpct ABAC ABC is an isosceles triangle OR Proof : In ABC, BC > AB (AB smallest side) BAC > BCA __________ (1) ACD CD > AD CAD >ACD __________ (2) Adding (1) and (2), BAC CAD > BCA ACD BAD >BCA A >C In ABD, AD > AB ABD >ADB ____________ (3) In BCD, CD > BC DBC >BDC ____________ (4) Add (3) and (4) ABD DBC > ADB BDC ABC > ADC B > D Hence A > C and B > D 1 1 ½ ½ 1 ½ ½ ½ 1½ 1 ½ ½ 1 ½ ½ 1 Page 10 of 11 33. Proof : Triangle inequality property In ABC, ABBC > AC _________ (1) In BCD, BCCD > BD _________ (2) In CDA, CDDA > AC _________ (3) In DAB, DAAB > BD _________ (4) Adding (1), (2), (3) and (4), we get ABBCBCCDCDDADAAB > ACBDACBD 2 AB BC CD DA > 2 AC BD Perimeter > sum of its diagonals 34. ½ ½ ½ ½ 1 1 AOC DOB (SAS) ACBD (cpct) OAC ODB (cpct) and OCAOBD (cpct) AC will be parallel to BD only when OAC OBD, But OAC may not be equal to OBD, so AC may not be parallel to BD. 1½ 1½ 1 - oO o - Page 11 of 11
© Copyright 2026 Paperzz