Ridesa Universidade Federal de Viçosa Plant Biology Department Plant Physiology Graduate Program Molecular Plant Physiology Laboratory Bioen Workshop on Metabolomics of Sugarcane Monolignol profiling as selection tool for higher efficiency of 2nd generation ethanol production from sugarcane bagasse Marcelo Ehlers Loureiro [email protected] Marcio Henrique Barbosa [email protected] RIDESA Rede Interuniversitária para o Desenvolvimento do Setor Sucroalcooleiro (Academic Network for the Development of Sugar-Alcohol Sector) Network responsable for genotypes cultivated in 57% of total sugarcane cultivated area Successful interaction with private companies: no need of public money High cost enzymes major factor in cost Lignin: 1) do not allow enzyme to attach to celullose 2) Trap the enzyme 3) Products of hydrolysis inhibit enzyme and fermentation Pectic matrix Methylglucuronyl Cellulose microfibril arabinosyl Nucleation site for lignin deposition ? GAX – (Glucurono)arabinoxylan Gramine CW model Gibeaut and Carpita 1993 Phenolics sheathing a cellulose microfibrill Lignin Composition Controlled by Genetic Manipulation and Monitored via Histochemical Staining for Lignin Monomer Composition in Arabidopsis Stem Cross Sections. Several evidences: lignin composition alteration do not have dramatic effects as alteration in lignin content Chapple et al 1988 (US-DOE 2006) Evaluated Traits in some wild and domesticated sugarcane Trait S. Officinarum (Domesticated) S. Spontaneum (wild) S. Robustum (wild) RB867515 (cultivated hybrid) Sugar Fibre Yield Ratooning Pest resistance Exploitation of natural variation of sugarcane germplasms High medium low New directions to breeding programs Conversion Efficiency 1st Generation 1) 86 L ethanol + 10.8 kg bagasse (DM) = 2200 MJ efficiency = 29.8% 2) 86 L ethanol + 60 kWh = 2230 MJ efficiency = 30.1% Alcohol production using only sucrose : wasting of energy Alcohol production using sucrose and burning bagasse for thermical energy : still waste of energy: 70% of energy present in sugarcane is lost 62% 38% 59% 62% Source: Rhao S. (2006) Production of lignocellulosic alcohol Possible to double the ethanol production: increase from 6.000 L/ha to 12.000 L/ha Potential : 1 ton cana→ 160 L cellulosic ethanol: 19000L/ha Inverse correlation between sugar and fiber? Average of three harvest experiments with 241 genotypes: 5800 determinations New breeding strategies needed for secong generation biofuels for sugarcane Genetic studies about heridity of lignin and fiber content at UFV Variable Components of lignin content heredity (280 genotypes) (Individual REML) vg: Genetic variability, vbloc: Variability in the units, ve: External variability vf: Phenotypic variability h2g: Genotypic heritability c2: Coefficient of interaction between experimental units h2mgen : Heritability of Genotypic Average vg vbloc ve h2 g 0.897448 0.042468 1.519419 0.364915 +- 0.0927 vf c2bloc h2mgen Média geral 2.459335 0.017268 0.364915 22.622275 Characterization of culm fiber content variability 20,00 18,00 14,00 12,00 10,00 8,00 6,00 Experiment in course about genetic of fiber content 4,00 2,00 5 higher and lower fiber content Cultivation in three diferent environments Analysis under course 0,00 2 3 4 6 9 12 13 14 15 16 17 19 20 22 23 26 27 31 32 35 37 38 39 41 44 45 46 50 52 53 54 55 62 65 66 67 69 71 72 73 77 78 79 80 83 87 91 93 94 96 97 98 99 10 content fiber Culm de lignina (%) média Porcentagem 16,00 Genótipos de cana-de-açúcar Sugarcane genotypes What does analytical pyrolysis means Stepwise degradation of chemical bonds in organic compounds by gradative increase of temperature in the absence of O2 Determination of best conditions - Temperature - Column - Split of carrier gas : sample volatiles - etc.. Pyrolysis in a quartz chamber Volatilization and injection into GC column Sample separation Compound detection by an ionizing flame in the MS Data collecting and generation (TIC) Methods for large scale cell wall phenotype characterization Pyrolysis+GC/MS: purified lignin from sugarcane stalks (TIC) Pyrolysis+GC/MS: extracted cell walls from sugarcane stalks (TIC) Similar values relative to the results from purified lignin Analytical time used: 1) Method with lignin purification Purify lignin: 4 days Pyrolysis + GC/MS = 60 min 2) Method without lignin purification: Extraction: 1 hour Pyrolysis + GC/MS = 60 min A B Peak Marker Lignin type 8 Phenol H 13 Guaiacol G 18 4-Ethylphenol G 20 4-Vinylphenol H 28 Syringol S 37 4-Methylsiringol S 56 trans-4-(Prop-2-enyl) syringol S Nitrobenzene Oxidation Pyrogram of Klason lignin (A) and bagasse (B) of SP80-3280. RPearson = 0,9857 Py-GC/MS UFV: quick measurement 16 molignols, and S/G ratio A Sugarcane Leaf cell wall B Arabidopsis Crude root Sample Dirigent Mutant Sugar cane culm Arabidopsis roots UFV: Clones with lower lignin content (2008) aLignina Klason (%) S/G Ratio 146 22,6371 1,38 133 22,6494 1,23 58 22,6774 1,3 166 22,6782 53 22,7169 1,25 87 23,8285 1,08 8 24,0813 1,31 349 24,1626 1,36 321 24,4831 1,38 50 24,7027 1,22 ∆ =8% 1,32 Clones with higher lignin content (2008) Populus Davison et al., 2006 : ∆ lignin = 12% ∆ S/G ratio = 21,7% ∆= 21,74% Sharp increase in the acid Hydrolysis 30%to 55% Parents of actual hybrids under cultivation Wild cane – S. spontaneum S. officinarum Spatial and temporal changes in lignin content Spatial and temporal changes in lignin content RB 867515 S. spontaneum Spatial and temporal changes in lignin composition (Maule) Spatial and temporal changes in lignin composition RB 867515 S. spontaneum S/G/H units in cell wall residue of internodes 1, 2 and 5 S G H S/G S. spontaneum 7,21 21,57 15,23 0,33 S. robustum 5,27 18,01 24,19 0,29 S. sinensis 3,82 16,12 15,46 0,23 RB867515 3,90 15,20 18,99 0,25 S/G/H units in sugarcane bagasse S G H S/G RB867515 24,24 19,08 55,43 1,27 RB835486 31,085 25,95 42,275 1,19 SP1011 28,665 25,51 45,675 1,12 SP3280 28,475 27,19 42,91 1,04 SP1816 25,23 24,145 49,21 1,04 Characterization of polysaccharide structure by MALDI -TOF /MS Allows for detection of minor structural changes in hemicellulose - glicosylations - Matrix type Determination of best conditions - Suitable enzymes - acetylations - methylations - Ion mode, frame range selector , etc.. - arabinosylations, etc... Cell wall extraction/components fractionation Enzymatic Digestion Sample/matrix co-crystallization Laser Shots and collect data Data analysis Francis Lopes PhD Thesis Voyager Spec #1=>BC=>AdvBC(32,0.5,0.1)[BP = 377.3, 43269] 715.1516 100 Tree Genomics 2010 9.8E+3 90 missing 70 723.1280 60 % Intensity MUR3 mutant 80 1247.2623 731.1132 missing 714.1471 50 1085.3064 706.1566 722.1288 40 737.1118 729.1420 745.1092 30 1248.2587 738.1013 732.1105 20 1086.3148 1263.2203 885.0660 728.1387 1101.2638 1249.2636 851.4203 10 0 700 900 1100 1300 0 1700 1500 Mass (m /z) Voyager Spec #1=>AdvBC(32,0.5,0.1)[BP = 377.3, 35078] 1435.3430 1.0E+4 90 1393.3671 80 70 1436.3426 1394.3376 60 1555.3136 % Intensity MUR 3 Mutant complemented with an E. grandis MUR3 gene 100 50 1247.3997 715.2262 1409.3024 1597.2841 1085.4311 40 1556.2858 1437.3152 30 714.2151 706.2305 1248.4113 0 1452.3116 791.4610 20 701.2256 10 1598.3042 1410.2998 707.2471 745.1974 730.1831 761.7061 709.6892 763.6778 953.4667 851.4874 1013.4369 815.9027 829.8804 907.0635 1453.2978 1263.3164 1086.3882 1411.3124 1175.3703 1101.3257 1115.4467 1599.2629 1613.2177 1572.2238 1264.3893 1305.3069 1600.3301 0 Xyloglucan structure phenotyping in A. thaliana by MALDI TOF MS analysis Nomenclature according to Fry et al., 1993 Glucose (G) Xylose (X) Galactose (L) Fucose (F) Intens. [a.u.] MALDI-TOF MS spectra of oligossacharides from xylanase digestion of internodes 1, 2 and 5 637.265 G13 _1tec2 Man xil\0_G13\1\1SRef Saccharum sinensis 919.448 6000 1091.665 1265.844 4000 1397.972 1001.542 785.279 1572.110 2000 1746.237 1920.336 Intens. [a.u.] 0 x104 G15 _1 IM76 xil TecRep2\0_G15\1\1SRef TecRep2\0_G15\1\1SRef Saccharum robustum 1.25 1.00 637.339 0.75 0.50 833.420 1013.661 1175.855 1338.000 1500.168 0.25 Intens. [a.u.] Intens. [a.u.] 0.00 G18 _2 IN84 Xil TecRep1\0_G18\1\1SRef TecRep1\0_G18\1\1SRef 571.833 Saccharum spontaneum 6000 4000 607.381 2000 2000 2397.838 2397.838 764.715 764.715 Intens. [a.u.] 0 0 x104 572.784 600 1.0 800 1497.261 1497.261 1000 1200 1400 1600 G19 _1 RB7515 1800 2000 xil TecRep2\0_G19\1\1SRef 2200 2400 RB867515m/z 611.049 919.440 0.8 1093.646 0.6 637.268 0.4 785.270 1265.820 1001.540 1439.971 0.2 1614.093 1788.191 0.0 600 800 1000 1200 1400 1600 1800 2000 2200 2400 Intens. [a.u.] Intens. [a.u.] S. spontaneum cell wall digestion of resistant residue (internodes 1, 2 and 5) Xylanase (8mM oxalic acid) Xylanase (32 mM oxalic acid) 550.379 1376.649 4000 522.304 4000 851.224 689.150 1013.280 3000 3000 554.487 1175.334 2000 2000 1337.378 851.356 1013.568 1661.425 689.123 1175.751 1499.425 1337.909 1000 1261.624 1000 615.356 615.259 579.486 644.601 1064.783 590.515 1300.539 1276.959 1376.266 735.224 913.505 0 0 500 600 700 800 900 1000 1100 1200 1300 600 1400 800 1000 1200 1400 1600 m/z m/z Driselase (32mM oxalic acid) Intens. [a.u.] Intens. [a.u.] Driselase (8mM oxalic acid) x104 522.384 x104 2.5 579.311 3 550.442 2.0 2 1.5 851.350 1013.550 1175.734 689.126 881.405 1.0 1337.894 607.484 1 1500.028 1662.137 0.5 637.322 1824.244 579.412 607.367 1175.825 1986.331 1091.653 1337.977 1393.308 1572.046 2148.384 2310.433 0 500 600 700 800 900 1000 1100 1200 1300 1400 m/z 2472.450 0.0 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 m/z Partial Oligossacharide profiling of RB867515 with xylanase Relative intensity X2GlcA1OAc1 X4OAc1 1,2 X3GlcA (1FerA)1OAc1 X5 X5OAc1 1 X5OAc2 X4GlcA(FerA)1OAc1 X4GlcA(FerA)1OAc2 0,8 X6 X5G X6OAc2 0,6 X5GlcA1OAc1 X5GlcA(FerA)1OAc2 X7 X7OAc2 0,4 X6GlcA(FerA)1OAc1 X6GlcA(FerA)1OAc2 X8 0,2 X7GlcA(FerA)1OAc1 X7GlcA(FerA)1OAc2 X9 0 1 Cell wall material of internodes 1,2 and 5 X8GlcA(FerA)1OAc2 X10 Functional genomics of sugarcane cell wall Full-length libraries builded yet: internode 1-2 and 4-5 sugarcane (867515) -Library transformation of 23 cell homozigote cell wall mutants of Arabidopsis and phenotypic evaluation. - Pirosequence and annotation (Glaucia USP) Our basic infraestructure: 5 greenhouses (1 for transgenics), and almost all equipment needed for basic Physiological characterizations: IRGAs (3), fluorometers (2), image fluorescence High resolution infrared camera, Scholander pump, osmometer,etc -Very good analytical equipment for metabolomics and proteomics -Two tissue culture labs (Marcio and Marcelo), and a molecular phisiology lab (real time PCR, nanoHPLC, elisa readers...) Sugarcane group – Molecular Plant Physiology lab/UFV Valdir Diola-Post Doc (Full-lenght,Plant transformation), David Baffa-MS student (Genetic breeding Viviane-PhD student (transcriptomics), Francis Lopes-Post Doc (Metabolomics)
© Copyright 2026 Paperzz