6. Budyko’s model Inthemodelsthatwehavestudiedsofar,wehaveexploredhowradiationcontributestothe energy budget of earth. In Model 3 we studied incoming solar radiation, in Model 4 we studied the balance between solar radiation and terrestrial radiation on an earth-like planet with no atmosphere, andinModel5wesawhowradiationistransferredupanddownintheatmosphere.However,inthe realworld,heatisalsotransportedtowardsthepolesbytheatmosphereandtheocean.Ourgoalinthis modelistoaccountforbothradiationandpolewardheattransportbytheoceanandatmosphere,and predictdifferenttemperaturesatdifferentlatitudes.Wewillalsoseehowearth’ssurfacetemperature respondstofluctuationsinthesolarconstant. The single dimension of the model is latitude. This model is still a box model, but instead of havingtheboxescorrespondtolayersintheatmosphere,wenowconsidertheboxestoliesidebyside in the horizontal corresponding to different latitudes. Take boxes, or cells, of width 10o centered on latitudes5o,15o,…,85o,foratotalof9cells.Wewilltreatonlythenorthernhemisphere.Foreachcell wewanttodeterminethetemperature.Todoso,wekeeptrackofthefluxesofheatintoandoutof eachcell.Considerthe𝑛thcell.Ithasthefollowingheatfluxes,whicharealsoshownschematicallyin Figure6.2: 1. NetShortwaveRadiation Foragivenlatitude,thenetfluxofshortwave,orsolar,radiationisgivenby 𝐹!" = 𝑆(1 − 𝛼) where𝑆istheannual-averagefluxofshortwaveradiationreachingthesurfaceand𝛼isthealbedoof thesurface.For𝑆,referbacktoModel3,andchooseavalueforeachofthe9boxes.Rememberthat,in Model3,wecomputedthedownwardfluxofshortwaveradiationatthetopoftheatmosphere.About onethirdofthisradiationisreflectedbycloudsbeforereachingtheearth’ssurface,sobesuretoscale thevaluesthatyougetfromModel3accordingly.ForthosewhodidnotcompleteModel3,thereare valuesof𝑆fromthatmodelthatyoucanuse,andsatelliteobservationsforcomparison,inBox6.1. Foralbedo,weuseasimplefunctionoftemperature: 𝛼= 0.3 0.65 𝑇 ≥ 0°𝐶 𝑇 < 0°𝐶 Ifthesurfaceiscolderthan0°Cthenitisassumedtobeice-coveredandbright.Ontheotherhand,ifthe surfaceiswarmerthan0°Cthenitisassumedtobeocean-orland-coveredanddark. Wewillalsowanttoconsiderwarmerandcoolerclimates.Onewaytodothisistomultiply𝑆at all latitudes by the same scale factor 𝑠𝑓. A value 𝑠𝑓 > 1 will produce a warmer climate and 𝑠𝑓 < 1 a coolerclimate. Box6.1|ObservationsofDownwellingShortwaveRadiationattheSurface Figure 6.1 shows an estimate of the downward flux of shortwave radiation at the surface of earth, 𝑆, fromsatelliteobservations.These estimatesare made by taking satellite measurementsofradiationand cloud propertiesatthetopoftheatmosphereandfeedingthemintoaradiativetransfermodelthatissimilarto,but more sophisticated than, our model in Model 5. Figure 6.1b also shows an estimate of 𝑆 from our Model 3, DistributionofSolarRadiation.Thisestimatewascomputedasfollows: 1. Thesolarzenithangle𝛾,ortheanglebetweenthesunandthelocalverticaldirection,wascomputedfor differentlatitudes,timesofdayandtimesofyearfollowingtheprocedureofModel3. 2. Usingthesevalues,𝑆wascomputedas 𝑆 = max (0, 𝑆! cos(𝛾) (1 − 𝛼!"#$% )) where𝑆! = 1400W/m2isthesolarconstant,orthedownwardfluxofshortwaveradiationatthetopof theatmospherewhenthesunisdirectlyoverhead,andthefactor𝛼!"#$% = 0.3isincludedtoaccountfor thefactthataboutonethirdofthedownwardfluxofshortwaveradiationatthetopoftheatmosphere isreflectedbycloudsbeforereachingthesurface.𝑆issettozeroatnight. 3. 𝑆wasaveragedoverthecourseofoneyear.𝑆valuesareshowninTable6.1forthosewhowishtouse themwithoutcompletingModel3. Figure 6.1 Estimate of the downward flux of shortwave radiation at the surface of earth from satellite observations.Averagesaretakenbetween2000-2015.(a)showsamapofannual-averagevalues,and(b)shows annual-, December- and June-averages averaged over circles on constant latitude. (b) Also shows an estimate basedoncalculationsfromModel3,DistributionofSolarRadiation.DatafromCERES2. Latitude(°N): 𝑆(W/m2) 5 299 15 290 25 274 35 251 45 221 55 187 65 153 75 132 Table6.1Estimateof𝑆fromthecalculationsinModel3,DistributionofSolarRadiation. 85 123 2. NetLongwaveRadiation TheoutgoinglongwaveradiationcomesfromthelinearapproximationoftheStefan-Boltzmann law, 𝐴 + 𝐵𝑇, with 𝑇 expressed in units of [°C]. A fraction, 𝛽, of the outgoing longwave radiation is absorbedbytheatmosphereandre-radiatedbacktothesurface.Thenetfluxoflongwaveradiationis therefore: 𝐹!" = (𝛽 − 1)(𝐴 + 𝐵𝑇). Wewilluseavalueof𝛽 = 2/3.Youmaywanttoverifyorchangethisvaluebasedonresults fromourone-dimensionalradiativetransfermodelfromModel5. 3. Fluxesofheatfromadjacentcells Ifneighboringcellshavedifferenttemperatures,heatwillflowfromthewarmertothecooler cell. This heat transport is done by the ocean and the atmosphere. Following Budyko’s lead1, we will assumethattheheatfluxisproportionaltothetemperaturedifferencebetweenadjacentcellsandthe lengthoftheboundarybetweenthetwocells.Thereisadetailthatmustbefacedhere.Considertwo adjacentcells,say𝑛 − 1and𝑛,centeredonlatitudes𝜃!!! and𝜃! .Thelengthoftheboundarybetween thecellsisproportionaltocos((𝜃!!! + 𝜃! )/2).Theareaofthecell𝑛isproportionaltocos(𝜃! ).Sothe heat flux per unit area of cell 𝑛 − 1 must have a factor cos((𝜃!!! + 𝜃! )/2) in the numerator and cos(𝜃!!! ) in the denominator. The same flux per unit area of cell 𝑛 will have a factor cos(𝜃! ) in the denominator.Thebottomlineisthatthe𝑛thcellhas: • fluxinfromthelowerlatitudes:𝐹!" = 𝑘 • fluxouttohigherlatitudes:𝐹!"# = −𝑘 (!!!! !!! ) !"#((!!!! !!! )/!) !"#(!! ) (!! !!!!! ) !"#((!! !!!!! )/!) !"#(!! ) where𝑘isaconstant.Thecellnearesttotheequatorwillonlyhaveheatflowingouttohigherlatitudes, andthecellnearesttothepolewillonlyhaveheatflowinginfromlowerlatitudes. Net SW FSW = S15 (1 Net LW FLW = ( ↵15 ) Heat Transport In Fin / (T5 =) Fin = k 5° L10 / cos(10o ) (T5 Heat Transport Out T15 )L10 A15 Fout / T15 ) cos(10o ) cos(15o ) 10° 1)(A + BT15 ) =) Fout = 15° (T15 k T25 )L20 A15 (T15 20° o A15 / cos(15 ) T25 ) cos(20o ) cos(15o ) 25° L20 / cos(20o ) Figure 6.2 Schematic diagram of heat flux terms in the model for the cell centered at 15° latitude. 𝐿 standsforthelengthoftheboundarybetweentwocells,and𝐴standsfortheareaofthecell.Subscripts correspondtolatitudes.“∝”means“proportionalto.” Set up your model with cells centered on latitudes of 5°, 15°, … 85°. Start with an initial temperature at each cell and assume a value of 𝑘 (a reasonable starting value could be 𝑘 = 10). The proportionalityconstant𝑘determineshoweffectivelytheatmosphereandoceantransportheatfrom lowlatitudestohighlatitudes.Then,followthesesteps: 1. Nowthatyouhavetemperaturesforallcells,compute𝐹!" ,𝐹!" ,and𝐹!"# foreachcell. 2. Compute the net heat flux into each cell, 𝐹!"# , by adding the longwave, shortwave, and transportterms: 𝐹!"# = 𝐹!" + 𝐹!" + 𝐹!" + 𝐹!"# 3. Adjustthetemperatureofeachcellbasedonthenetheatflux: 𝑇 𝑡 + 1 = 𝑇 𝑡 + 𝑐𝐹!"# 𝑇 𝑡 + 1 istheupdatedtemperatureatthenexttimestep,𝑡 + 1,and𝑇(𝑡)isthetemperature atthecurrenttimestep,𝑡.Theheatcapacity,𝑐,determineshowquicklyacellwillwarmwhen there is a net flux of heat into the cell. Because we are only concerned about equilibrium solutionsinthismodel,where𝐹!"# = 0 Wm!! ,wewillset𝑐 = 0.02andnotworryaboutit. 4. Repeat steps 1-3 until 𝐹!"# ≈ 0 W/m2 in every cell. If you find that your model produces solutionswhere𝐹!"# growstoinfinity,tryusingasmallervalueof𝑘. Box6.2|ObservationsofSeaSurfaceTemperature Figure 6.3 Observed sea surface temperature averaged between 1982-2013 for comparison with Budyko’s model.Observationswerecollectedfromsatellites,shipsandbuoys.DatafromNOAAOISST3. Exercises 6.1Torunthemodelrequiresthatwespecifyvaluesforthemodelparameters.Makealistofmodel parameters, their values, and the range of uncertainty. It is almost impossible to resist the temptationtochooseparametersthatwillmakethemodelresultslookgood. Supposethetransportcoefficient,𝑘, is zero.Thenthenineequationsareuncoupled.Infact,they arenine,non-interacting,zero-Dmodels(seeModel4).Thisisn’tveryinterestingfromageophysical point of view, but it is a nice test for internal consistency. Set 𝑘 = 0 and run to equilibrium. Comparethezero-DresultswiththefullBudykomodel. 6.2 Find a way to run the model while slowly decreasing 𝑆. By slowly decreasing, we mean that 𝑆 decreases slowly enough that the state is always nearly in equilibrium. For example, you could define𝑆! = (𝑠𝑓)𝑆 !!! ! where𝑁isalarge,positiveinteger.Whatwillhappen? 6.3 Nowlet𝑆varybyincrementingthescalefactor𝑠𝑓.Findparametervaluesthatsupportatemperate climate:warmatlowlatitudesandcoldathighlatitudes.Doesthetemperateclimateresemblethe observationsshowninBox6.2? 6.4 InBudyko’s1969paper1,hefoundthatthepresentmodelclimatewasquitesensitivetovariations insolarradiation.Ifhereducedthesolarconstantby2%,themodeliceedgemovedsouthplunging earth into a totally ice covered climate, or “snowball earth.” Does your model behave this way? Whatisitaboutthemodelthatmakesitsosensitive? 6.5 Can the model planet recover from a transition to a snowball state? Use your model to find out. Supposethetransitionfromthepresenttemperatestatetothesnowballstateoccursatacertain scale factor, 𝑠𝑓!"# . How much must you increase 𝑠𝑓 beyond 𝑠𝑓!"# to cause a transition from snowballtotemperateclimate? References: 1.Budyko,Mikhail,1969:“TheeffectofsolarradiationvariationsontheclimateoftheEarth”Tellus,21, pp.611-619. 2.CERESScienceTeam,Hampton,VA,USA:NASAAtmosphericScienceDataCenter(ASDC),Accessed August10,2016atdoi:10.5067/Terra+Aqua/CERES/EBAF-TOA_L3B.002.8(dataavailableonlineat: https://ceres.larc.nasa.gov/order_data.php) 3. Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007:“Daily highresolution-blended analyses for sea surface temperature”Journal of Climate,20, 5473– 5496,doi:10.1175/JCLI-D-14-00293.1 (data available online at: https://www.ncdc.noaa.gov/oisst/dataaccess)
© Copyright 2026 Paperzz