4.4--Graphs of Sine and Cosine: Sinusoids y = a sin (bx + c) + d or y = a cos (bx + c) + d amplitude = a normal period of sin & cos = 2π period = 2π b horizontal shift = - c b vertical shift = d 1) Compare the graphs of the following sinusoidal functions: y = sin x y = 2 sin x y = 5 sin x y = -5 sin x 1 4.4--Graphs of Sine and Cosine: Sinusoids 2) Compare the graphs of the following sinusoidal functions: y = sin x y = sin 2x y = sin 8x y = sin ½x Period and frequency are reciprocals. period = 2π b frequency = b 2π 2 4.4--Graphs of Sine and Cosine: Sinusoids Find the amplitude, period, and frequency for each graph: AMP 3) y = 4 sin (3x) + 9 4) y = 8 cos (x - 4) 5) y = -7 sin (x/2) 6) y = 1 2 PER FREQ cos (2x - 5) 7) Compare the graphs of the following sinusoidal functions: y = sin x y = sin (x - π/4) y = sin (x + π) 3 4.4--Graphs of Sine and Cosine: Sinusoids 8) Compare the graphs of the following sinusoidal functions: y = sin x y = sin x + 3 y = sin x - 5 9) What happens to y = sin x when it's shifted π/2 to the left? It becomes y = cos x. 4 4.4--Graphs of Sine and Cosine: Sinusoids Construct a sinusoid that has the given amplitude and period that goes through the given point: 10) amplitude = 4, period = π, passing through (0, 1): 11) amplitude = 2.7, period = π/9, passing through (2, 0): Find the amplitude, period, horizontal shift, and vertical shift for each graph: AMP 12) y = - sin (5x) - 2 13) y = -6 cos (8x - 4 ) 14) y = sin (4x - 5) + 3 15) y = cos (.5x + 2) + 1 PER HORIZ VERT 5
© Copyright 2026 Paperzz