Chem 400 Inorganic Chemistry Practice Exam 3 1____of 10 2____of 10 3____of 20 4____of 10 5____of 10 6____of 10 7____of 10 8____of 10 9____of 10 Σ_______of 100 KEY Name _________________________________________________________ (please print) 1. Show all the steps (i.e., draw the catalytic cycle) for the Monsanto acetic acid synthesis. Include a detailed description of the processes taking place and point out the rate determining step. (10 points) MeOH + CO → MeCO2H Two interrelated cycles: - Me I MeOH CO CO I II MeI Rh I III I CO I HI - O I Rh H2O I Rh I CO - CO I VI O OH O V I I OC I Rh O - IV CO CO I I: MeOH is converted to MeI, rate determining step, critical for whole process; II: MeI enters the Rh-cycle, oxidative addition to the 16-electron complex cis[Rh(CO)2I2]; III: methyl migration to form 5 coordinate, 18 electron species (dimer at 253 K, solvated monomer above 273 K); IV: addition of CO, formation of octahedral 18-e- complex; V: elimination of MeC(O)I, enters left handed cycle; VI: formation of acetic acid. 1 2. [Co(NH3)6]2+ has absorption bands at 9,000 and 21,100 cm-1. Calculate ∆0 and B for this ion, using the attached Tanabe-Sugano Diagram. Hint: The 4T1g → 4A2g transition in this complex is too weak to be observed. (10 points) [Co(NH3)6]2+, d7. ν2/ ν1 = 2.34 at ∆0/B = 11 From the Tanabe-Sugano diagram at ∆0 = 11 B = 9000 cm-1 ν1: E/B = 10 E = 10 ν2: E/B = 22.5 E = 22.5 B B = 21,100 cm-1 Average B = 920 cm-1 ∆0 = 10,120 cm-1 2 B = 900 cm-1 B = 938 cm-1 3. State the types of isomerism that may be exhibited by the following complexes, and draw structures of the isomers. (4 points each) a. [Co(en)2(ox)]+ optical isomers + O N Co N O O N N N N [Cr(ox)2(H2O)2]trans isomer, cis isomer with two optical isomers - OH2 O Cr O O O O O O O Cr H2O OH2 - O OH2 O [Co(en)(NH3)2Cl2]2+ may have trans-Cl, trans-NH3, or both sets mutually cis and for the latter, there are also optical isomers. N Co N Cl + N NH3 N N Cl Co Co N Cl NH3 NH3 [PtCl2(PPh3)2] cis- and trans-isomers Cl Pt Cl PPh3 Cl PPh3 Pt PPh3 Cl [Co(en)3]3+ optical isomers 3+ N N Co N N 3+ N N N N N N Co N N 3 + Cl + NH3 NH3 PPh3 e. O Cr OH2 Cl d. - O OH2 c. N Co N b. + O + Cl NH3 H3N Cl Cl Co N N NH3 4. Describe the bonding in (η4-C4H4)Fe(CO)3 (i.e., develop MO diagrams for both the C4H4 fragment and the Fe(CO)3 fragment). Explain why the complex is diamagnetic. (10 points) EMO EMO pzdz2 ψ4 dxz ψ3 ψ2 dyz ψ1 OC Fe CO CO The Fe(CO)3 unit provides 2 electrons and the C4H4 ligand has 4π-electrons. Match fragment orbitals by looking at their symmetry: the Fe pzdz2 hybrid overlaps with ψ1 of the organic ligand, and the Fe dxz and dyz orbitals overlap with ψ2 and ψ3 of the ligand. Orbital ψ4 becomes non-bonding in (η4-C4H4)Fe(CO)3. In the complex, there are 3 bonding MOs involving Fe-C4H4 character and the 6 electrons fully occupy there MOs – electrons are paired and the complex is diamagnetic. 4 5. Give likely products for the following reactions. Do not forget to assign stereochemistry where appropriate. (2 points each) a. Fe(H2O)63+ + SCN- → [Fe(H2O)5(SCN-N]2+ + H2O b. [(C2H4)PtCl3]- + NH3 → trans-[(C2H4)PtCl2(NH3)] + Cl- c. cis-[RhCl4(H2O)2]- + H2O → fac-[RhCl3(H2O)3] + Cl- d. NiCl2 + 2C3H5MgBr → (η3-C3H5)2Ni + 2 MgBrCl e. (η5-Cp)2(CH3)Ta=CH2 + Al(CH3)3 → (η5-Cp)2(CH3)Ta+CH2Al-(CH3)3 6. Give chemical names for the following compounds or ions: (2 points each) a. b. b. [ReH9]2- Rb[AgF4] Na[AlCl4] nonahydridorhenate(VII) rubidium tetrafluoroargentate(III) sodium hexachloroaluminate(III) d. [Ag(NH3)2][BF4] diamminesilver(I) tetrafluoroborate(III) e. [Mn(CN)6]4- hexacyanomanganate(II) 5 7. Carbonic anhydrase II is present in red blood cells and catalyzes the reversible hydration of CO2: H2O + CO2 ↔ [HCO3]- + H+ Based on the schematic representation of the active site in human carbonic anhydrase II (CAII) given below, develop a detailed catalytic cycle for the hydration of CO2 catalyzed by CAII. (10 points): H O Zn2+ N N N H NH N NH Mechanism: H O C H Zn H O O (His)N O O 2+ Zn (His)N 2+ N(His) N(His) O O N(His) N(His) O O 2+ Zn (His)N N(His) N(His) H2O CO2 H H O O (His)N Zn 2+ N(His) N(His) H+ transferred to His not in active site. 6 (His)N Zn H HCO3- 2+ N(His) N(His) 8. At low temperature and pressure a gas-phase reaction can occur between iron atoms and toluene. The product A, a rather unstable sandwich compound, reacts with ethylene to give compound B. Compound B decomposes at room temperature to liberate ethylene; at –20 ºC it reacts with P(OCH3)3 to give Fe(toluene)[P(OCH3)3]2, C. Suggest structures for compounds A, B, and C. (10 points) Fe Fe A (H3CO)3P Fe P(OCH3)3 C B 9. Determine the number of valence electrons in each of the following compounds. Hint: Not all of the compounds obey the 18-electron rule! (2 points each) a. Fe(CO)5 Fe 8 e5 Co 10 e18 e- b. [Rh(bipy)2Cl]+ Rh 2 bipy Cl + c. [HFe(CO)4]- 9 e8 e1 e-1 e17 e- Fe 8 eH 1 e4 CO 8 e1 e18 ed. RhCl(H)2(η2-C2H4)(PPh3)2 Rh 9 eCl 1 e2H 2 eη2-C2H4 2 e2 PPh3 4 e18 ee. Fe2(CO)9 2 Fe 16 e9 CO 18 eFe-Fe 2 e36 e- → 18 e- per Fe 7
© Copyright 2025 Paperzz