Differential Calculus 201-NYA-05 Vincent Carrier Exercise Sheet 11 3.5 Product and Quotient Rules Find the derivative of the following functions. 1. f (x) = x 3x + 2 2. y = 3 − 2x2 4. y = 2 − 3x2 √ t 7. z = √ t+1 4 − 3x 5 − 2x 3. z = 3t6 7 √ 3x − 4 x √ 6. f (x) = 3 x 2t3 5. g(t) = 3 − t3 √ x+ x √ 8. y = x− x x 9. g(x) = x+ 1 x 3.6 Chain Rule Find the derivative of the following functions. 10. y = (2x2 + 3)9 13. y = 11. f (x) = 3 2 (x + 2x + 3)4 16. g(t) = t3 (t + 3)6 12. y = √ 3 14. f (x) = 9 4 − x2 20. f (x) = t3 (2t + 1)4 x+1 x−1 √ x3 − 2 15. y = √ 4 8 x5 + 6 √ √ 18. f (x) = x( x + 2)8 17. y = x6 (x5 − 4)3 √ 19. y = x3 x4 + 8 22. z = 1 (5 − 3x)8 5 r 21. z = t2 + 4 t2 + 9 x2 24. y = √ x2 + 9 1−z 23. g(z) = √ 3 − 2z 25. f (x) = (2x + 1)4 (2 − 3x)3 26. y = (x2 + 1)5 (x2 − 1)4 27. y = [x3 + (4x + 3)8 ]9 28. g(t) = r 29. f (x) = q √ x+ x+ x p 4t2 + (3 − 4t3 )5 r 30. y = 4 x3 q √ 3 + x2 + x Answers: 1. f 0 (x) = 4. 2 (3x + 2)2 2. 10x dy = dx (2 − 3x2 )2 dy 7 =− dx (5 − 2x)2 5. g 0 (t) = 18t2 (3 − t3 )2 10. dy = 36x(2x2 + 3)8 dx 11. f 0 (x) = 13. dy 24(x + 1) =− 2 dx (x + 2x + 3)5 14. f 0 (x) = − 17. 9. g 0 (x) = 24 (5 − 3x)9 6x (4 − x2 )2/3 dy = 3x5 (7x5 − 8)(x5 − 4)2 dx 19. dy x2 (5x4 + 24) = √ dx x4 + 8 20. f 0 (x) = − 22. dz t2 (3 − 2t) = dt (2t + 1)5 23. g 0 (z) = 25. f 0 (x) = 7(1 − 6x)(2x + 1)3 (2 − 3x)2 10(x + 1)4 (x − 1)6 z−2 (3 − 2z)3/2 26. dz 18t5 = dt 7 6. f 0 (x) = √ dy x √ 2 8. =− dx (x − x) dz 1 7. = √ √ dt 2 t( t + 1)2 16. g 0 (t) = 9t2 (t + 1)(t + 3)5 3. 2 x1/3 (x2 − 2x + 1)2 12. dy 3x2 = √ dx 2 x3 − 2 15. dy 10x4 =− 5 dx (x + 6)5/4 18. f 0 (x) = √ √ (9 x + 2)( x + 2)7 √ 2 x 21. dz 5t √ = 2 3/2 dt (t + 9) t2 + 4 24. dy x(x2 + 18) = 2 dx (x + 9)3/2 dy = 2x(9x2 − 1)(x2 + 1)4 (x2 − 1)3 dx 2t[2 − 15t(3 − 4t3 )4 ] dy = 9[x3 + (4x + 3)8 ]8 [3x2 + 32(4x + 3)7 ] 28. g 0 (t) = p dx 4t2 + (3 − 4t3 )5 " # 1 1 1 0 p √ 29. f (x) = q p √ 1 + 2 x + √x 1 + 2 x 2 x+ x+ x 27. dy 30. = dx 1 p √ 3/4 4 x3 + 3 x2 + x " 1 3x + √ 2/3 2 3 (x + x) 2 2 3x5/6 1 2x + √ 2 x #
© Copyright 2025 Paperzz