Math 113 Test IV Practice Problems (6.6, 6.7, 9.1 - 9.3) fall 2013 Find all solutions of the equation. 1) 2 cos x + 2 = 0 Write a vector v in terms of i and j whose magnitude v and direction angle θ are given. 17) v = 7, θ = 225° 2) 8 sin x + 6 2 = 6 sin + 5 2 18) v = 11, θ = 270° Solve the equation on the interval [0, 2π). 3 3) sin 4x = 2 Solve the problem. 19) A child throws a ball with a speed of 6 feet per second at an angle of 25° with the horizontal. Express the vector described in terms of i and j. If exact values are not possible, round components to 3 decimals. 4) 2 sin 2 x = sin x Solve the equation on the interval [0, 2π). 5) sin x - 2 sin x cos x = 0 20) Two forces, F1 and F2 , of magnitude 60 and 70 pounds, respectively, act on an object. The direction of F1 is N40°E and the direction of F2 Find the magnitude v of the vector. 6) v = 9i + 12j is N40°W. Find the magnitude and the direction angle of the resultant force. Express the direction angle to the nearest tenth of a degree. 7) v = -4i + 4j 8) v = -i - j Perform the indicated operation. 21) u = 9i + j, v = -4i - 2j, w = i - 8j; Find v - (u w). A vector v has initial point P1 and terminal point P2 . Write v in terms of ai + bj. 9) P1 = (-2, 3); P2 = (-5, -6) Find the magnitude and direction angle (to the nearest tenth) for the vector. Give the measure of the direction angle as an angle in [0,360°]. 22) -4, -3 10) P1 = (6, 6); P2 = (-5, -1) Find the specified vector or scalar. 11) u = -2i - 6j, v = -6i + 8j; Find u + v. Use the given vectors to find the specified scalar. 23) u = 13i - 7j and v = -6i + 7j; Find u · v. 12) u = -4i - 2j, v = 6i + 7j; Find u - v. 24) u = 9i - 6j, v = 3i - 3j, w = 6i - 8j; Find u · (v + w). 13) v = 3i + 4j; Find 2v. 25) u = -5i + 3j and v = 2i - 6j, and w = -3i + 12j; Find u · w + v · w. 14) u = 5i - 2j and v = 8i + 7j; Find v - u . Find the angle between the given vectors. 26) u = 4i + 9j, v = 2i + 8j Find the unit vector having the same direction as v. 15) v = -3i - 4j 27) u = -i + 2j, v = 5i - 6j 16) v = 3i + j 1 Find the angle between the given vectors and use to determine whether the vectors are parallel, orthogonal, or neither. 28) v = 3i + j, w = i - 3j 29) v = i + 35) Major axis horizontal with length 20; length of minor axis = 12; center (0, 0) Graph the ellipse. (x - 1)2 (y - 2)2 36) + =1 9 4 3j, w = i - 2j y 10 30) v = 2i + 4j, w = 4i + 8j 5 Graph the ellipse and locate the foci. x2 y2 31) + =1 49 9 -10 -5 5 10 x 5 10 x y -5 10 -10 5 -10 -5 5 10 37) 16(x - 2)2 + 4(y - 1)2 = 64 x y -5 10 -10 5 Find the standard form of the equation of the ellipse and give the location of its foci. 32) -10 -5 -5 y 10 -10 5 -10 -5 5 10 Find the foci of the ellipse whose equation is given. (x - 1)2 (y + 3)2 38) + =1 36 16 x -5 Convert the equation to the standard form for an ellipse by completing the square on x and y. 39) 25x2 + 36y2 + 150x - 72y - 639 = 0 -10 Find the vertices and locate the foci for the hyperbola whose equation is given. y2 x2 40) =1 64 16 Find the standard form of the equation of the ellipse satisfying the given conditions. 33) Foci: (-3, 0), (3, 0); vertices: (-7, 0), (7, 0) 34) Foci: (0, -3), (0, 3); y-intercepts: -4 and 4 Find the standard form of the equation of the hyperbola satisfying the given conditions. 41) Foci: (-9, 0), (9, 0); vertices: (-6, 0), (6, 0) 2 42) Endpoints of transverse axis: (0, -8), (0, 8); 4 asymptote: y = x 7 Find the focus and directrix of the parabola with the given equation. 48) y2 = -28x 43) Center: (6, 5); Focus: (0, 5); Vertex: (5, 5) Graph the parabola. 49) x2 = -16y Convert the equation to the standard form for a hyperbola by completing the square on x and y. 44) y2 - 9x2 - 2y - 36x - 44 = 0 10 y 5 Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes. y2 x2 45) =1 9 36 -10 -5 5 10 x -5 y 10 -10 5 -10 -5 5 10 Find the standard form of the equation of the parabola using the information given. 50) Vertex: (8, -1); Focus: (8, -3) x -5 Convert the equation to the standard form for a parabola by completing the square on x or y as appropriate. 51) y2 + 2y + 4x - 3 = 0 -10 Find the vertex, focus, and directrix of the parabola with the given equation. 52) (y - 3)2 = -4(x - 2) Find the location of the center, vertices, and foci for the hyperbola described by the equation. (y + 4)2 (x - 3)2 46) =1 9 4 53) (x + 2)2 = -20(y + 3) Use the center, vertices, and asymptotes to graph the hyperbola. (y - 2)2 (x + 1)2 47) =1 9 4 y 10 5 -10 -5 5 10 x -5 -10 3 Answer Key Testname: MATH 113 TEST IV PRACTICE (6.6, 6.7, 9.1-9.3) FALL 2013 1) x = 3π 5π + 2nπ or x = + 2nπ 4 4 2) x = 5π 7π + 2nπ or x = + 2nπ 4 4 3) 31) foci at (2 10, 0) and (-2 10, 0) y 10 π π 2π 7π 7π 13π 5π 19π , , , , , , , 12 6 3 12 6 12 3 12 4) 0, π, 5 π 5π , 6 6 -10 -5 5) First factor out sin x π 5π 0, , π, 3 3 17) v = - 3 i+ 10 x 5 10 x 5 10 x -5 -10 6) 15 7) 4 2 8) 2 9) v = -3i - 9j 10) v = -11i - 7j 11) -8i + 2j 12) -10i - 9j 13) 6i + 8j 14) 3 10 3 4 15) u = - i - j 5 5 16) u = 10 5 32) x2 y2 + =1 16 81 foci at ( 0, - 65) and (0, x2 y2 33) + =1 49 40 1 j 10 34) x2 y2 + =1 7 16 35) x2 y2 + =1 100 36 65) 36) y 10 7 2 7 2 ij 2 2 5 18) v = -11j 19) 5.438i + 2.536j 20) F = 99.37 pounds; θ = 93.7° or N3.7oW 21) -12i - 11j 22) 5; 216.9° 23) -127 24) 147 25) -27 26) 9.9° 27) 166.8° 28) θ = 0 o; orthogonal -10 -5 -5 -10 37) y 10 29) θ = 123.4o; neither 30) θ = 0 o; parallel 5 -10 -5 -5 -10 4 Answer Key Testname: MATH 113 TEST IV PRACTICE (6.6, 6.7, 9.1-9.3) FALL 2013 49) 38) foci at (1 + 2 5, -3) and (1 - 2 5, -3) (x + 3)2 (y - 1)2 39) + =1 36 25 10 40) vertices: (0, -8), (0, 8) foci: (0, - 4 5), (0, 4 5) x2 y2 41) =1 36 45 42) 5 -10 y2 x2 =1 64 196 50) (x - 8)2 = -8(y + 1) 51) (y + 1)2 = -4(x - 1) 52) vertex: (2, 3) focus: (1, 3) directrix: x = 3 53) vertex: (-2, -3) focus: (-2, -8) directrix: y = 2 1 45) Asymptotes: y = ± x 2 y 10 5 -5 5 10 x -5 -10 46) Center: (3, -4); Vertices: (3, -7) and (3, -1); Foci: (3, -4 - 13) and (3, -4 + 13) 47) y 10 5 -10 5 -10 (y - 1)2 - (x + 2)2 = 1 9 -10 -5 -5 (y - 5)2 43) (x - 6)2 =1 35 44) y -5 5 10 x -5 -10 48) focus: (-7, 0) directrix: x = 7 5 10 x
© Copyright 2025 Paperzz