HOMEWORK SOLUTIONS: Section 4.9 13.) √ u4 + 3 u f (u) = u2 Splitting the fraction, √ u4 3 u + u2 u2 1 u2 = u2 + 3 2 u 3 = u2 + 3u− 2 . f (u) = So the antiderivative is 1 1 3 3u− 2 u + +C 3 − 21 1 1 = u3 − 6u− 2 + C 3 F (u) = 14.) By examining each part, F (u) = 3ex + 7 tan x + C. 23.) Taking the anti-derivative of f 00 , we have f 0 (x) = 3x2 + 4x3 + C. Taking the anti-derivative again, we have f (x) = x3 + x4 + Cx + D. where C and D are constants. 30.) Here, we first take the antiderivative of f 0 (x): f (x) = 2x4 + 6x2 + 3x + C. Now, we use the fact that f (1) = 6 to find C: f (1) = 2(1) + 6(1) + 3(1) + C = 6 11 + C = 6 C = −5. 1 So f (x) = 2x4 + 6x2 + 3x − 5. 31.) Here, 1 1 3 f 0 (x) = x 2 (6 + 5x) = 6x 2 + 5x 2 . So f (x) = 6 3 2 3 x2 + 5 5 2 3 5 x2 + C 5 = 4x 2 + 2x 2 + C Now, we use the fact that f (1) = 10 to find C: f (1) = 4(1) + 2(1) + C = 10 C = 4. So 3 5 f (x) = 4x 2 + 2x 2 + 4. 44.) First, we take the anti-derivative of f 00 (t) to find f 0 (t): f 0 (t) = 2et − 3 cos t + C. Next, we take the anti-derivative again to find f (t): f (t) = 2et − 3 sin t + Ct + D, where C and D are both constants. Now, to find C and D, we use the initial conditions. First, let us use the condition f (0) = 0: f (0) = 2e0 − 3 sin 0 + C(0) + D = 0 2+D =0 D = −2. So f (t) = 2et − 3 sin t + Ct − 2. Now, we use the condition that f (π) = 0: f (π) = 2eπ − 3 sin π + C(π) − 2 = 0 2eπ − 2 + Cπ = 0 2 − 2eπ . C= π Thus, f (t) = 2et − 3 sin t + 2 2 − 2eπ t − 2. π Section 5.2 2.) We split the interval 0 to 3 into 6 intervals, each with size 12 . So 1 1 3 5 (f ( ) + f (1) + f ( ) + f (2) + f ( ) + f (3) 2 2 2 2 1 3 3 5 = (− − 1 − + 0 + + 3) 2 4 4 4 1 7 = ( ) 2 4 7 = 8 R6 = 5.) I think I meant to assign problem 4. Oops. Well, whatever. For this one, the left endpoints give area 6 and the right ones give 4. See the diagram once I upload the diagram. 21.) Let’s split this into three intervals (the problem doesn’t specify, so I will). The total length of the region is 6, so each rectangle has length 2. So L3 = 2(f (−1) + f (1) + f (3)) = 2(−2 + 4 + 10) = 24 and R3 = 2(f (1) + f (3) + f (5)) = 2(4 + 10 + 16) = 38. 24.) Let’s split this into 5 intervals of length 1 apiece: L5 = 1(f (0) + f (1) + f (2) + f (3) + f (4)) = 1(1 + 3 + 17 + 55 + 129) = 205 and R5 = 1(f (1) + f (2) + f (3) + f (4) + f (5)) = 1(3 + 17 + 55 + 129 + 251) = 455 3 Section 5.3 25.) Bringing the denominator up, Z 2 1 3 dt t4 Z = 2 3t−4 dt 1 2 = −t−3 1 2 1 =− 3 t 1 1 =− −1 8 7 = . 8 √ 3 28.) Noting that x x = x 2 , Z 1 3 (3 + x 2 )dx 0 2 5 = 3x + x 2 5 2 =3+ −0 5 17 = 5 1 0 32.) In this case, Z π 4 sec θ tan θdθ 0 π4 = sec θ 0 π = sec( ) − sec 0 4 1 1 = π − cos( ) cos 0 √ 4 = 2−1 4 40.) Here, we split up the fraction: Z 2 4 u2 + 3 )du 3 u u Z 2 1 = (4u−3 + )du u 1 2 −2 = −2u + ln |u| ( 1 1 2 2 = − 2 + ln |u| u 1 2 = − + ln |2| − [−2 + ln 1] 4 3 = + ln 2 2 since ln 1 = 0. 5 Section 5.4 14.) Splitting the integral up, Z (csc2 t − 2et )dt Z Z = csc2 tdt − 2et dt = − cot x − 2et + C 6 Section 5.5 13.) In the case of Z dx , 5 − 3x let us take u = 5 − 3x. So du = −3dx du dx = −3 Plugging back in: Z du −3(u) Z 1 du =− 3 u 1 = − ln |u| + C 3 1 = − ln |5 − 3x| + C. 3 33.) Here, we note that cot x appears to be the ”inside” function. So we take u = cot x. Then du = − csc2 xdx du dx = − 2 csc x Plugging back in: Z √ cot x csc2 x Z √ du = u csc2 x( ) − csc2 x Z √ =− udu 2 3 = − u2 + C 3 3 2 = − (cot x) 2 + C. 3 7
© Copyright 2026 Paperzz