Constant Acceleration kinematic equations Skytrain revisited Skytrain Velocity 30 v (m/s) 20 acceleration Constant acceleration approximation a = Δv Δt 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 t (s) Skytrain revisited Skytrain Velocity 30 v (m/s) 20 10 acceleration a = Δv Δt Positive a Negative a 0 10 20 30 40 50 60 70 80 90 100 110 120 130 t (s) Skytrain revisited Skytrain Velocity 30 v (m/s) 20 10 acceleration a = Δv Δt a= 0.35 (m/s)/s 0 10 20 30 40 50 60 70 80 90 100 110 120 130 t (s) Skytrain revisited Skytrain Velocity 30 v (m/s) 20 10 acceleration a = Δv Δt 2 a= 0.35 m/s 0 10 20 30 40 50 60 70 80 90 100 110 120 130 t (s) Going the Other Way When is a positive, when is a negative? –10 –20 –30 Ne g at ive a = Δv Δt iti ve 0 10 20 30 40 50 60 70 80 90 100 110 120 130 Po s v (m/s) t (s) vf = vi + at The Kinematic Equations vf ∆x= vit + 1/2(vf–vi)t a = Δv Δt v ∆x= 1/2vit + 1/2vft 1/ (v –v )t 2 f i vi+vf ∆x= ———— 2 vi vit ti t tf t vf = vi + at vf vavg vi+vf ∆x= ———— 2 vi ti t tf vavg= vi+vf t ———— 2 vf = vi + at vi+vf ∆x= ———— 2 vf a = Δv Δt vavg t ∆x = vit + 1/2(vf–vi)t vf–vi = at vi ∆x = vit + 1/2(at)t ∆x = vit + ti t tf 1/ at2 2 or 2 1 x = xi + vit + /2at vf = vi + at 1/ at2 2 ∆x = vit + vi+vf ∆x= ———— 2 vf a = Δv Δt vavg t 2 t= ————∆x vf–vi = at vi vi+vf vf–vi = at 2 vf–vi = a————∆x v +v i f ti t tf (vf–vi)(vf+vi)= 2a∆x v2f –v2i = 2a∆x vf = vi + at 1/ at2 2 ∆x = vit + vi+vf ∆x= ———— 2 vf v2f – v2i = 2a∆x a = Δv Δt vavg t This is your arsenal of weapons for kinematics problems vi They work for constant acceleration only. ti t tf You only need to remember the basic definitions — use algebra to go from one to another. and ALWAYS draw a graphical representation of the motion before using the equations.
© Copyright 2026 Paperzz