Document

Station 1: Log Transformation Placemats
𝑔(π‘₯)
ln⁑(π‘₯)
1
𝑔(3π‘₯)
B
+
D
?
E
$
A

C
∞
ln(π‘₯) + ln(3)
2
π‘₯
𝑔( )
3
ln(π‘₯) βˆ’ ln⁑(3)
3
ln(π‘₯ 3 )
3𝑔(π‘₯)
4
𝑔(π‘₯)
3
3
ln( √π‘₯ )
5
Station 2: Log Properties Placemats
125
log 5 (
)
π‘₯
3 βˆ’ log 5 π‘₯
1
log 5 (25π‘₯)
J
2 + log 5 π‘₯
2
π‘₯3𝑦4
log 5 ( 5 )
𝑧
F
3log 5 π‘₯ βˆ’ 5 log 5 𝑧 + 4 log 5 𝑦
E
3
log 5 (
1
1
1
βˆ’ log 5 𝑧 + log 5 𝑦 + log 5 π‘₯
5
4
3
1
3
√π‘₯ 𝑦 4
1
𝑧5
)
4
I
2
√π‘₯𝑦
log 5 ( 3 )
𝑧
log 5 π‘₯ + 2 log 5 𝑦 βˆ’ 6 log 5 𝑧
5
C
π‘₯2𝑦
√
log 5 ( 3 )
βˆšπ‘§
1
1
log 5 π‘₯ + log 5 𝑦 βˆ’ log 5 𝑧
2
6
B
6
π‘₯2 + 9
log 5 ( 2
)
π‘₯ βˆ’9
log 5 (π‘₯ 2 + 9) βˆ’ log 5 (π‘₯ + 3) βˆ’ log 5 (π‘₯ βˆ’ 3)
7
(π‘₯ + 9)2
log 5 (
)
(π‘₯ βˆ’ 9)2
A
2 log 5 (π‘₯ + 9) βˆ’ 2 log 5 (π‘₯ βˆ’ 9)
G
8
𝑙𝑛 5
𝑙𝑛4
log 4 5
H
9
π‘™π‘œπ‘”4
π‘™π‘œπ‘”5
log 5 4
10
D
Station 3: Exponential and Logarithmic Equation Placemats
log 2 π‘₯ = 8
π‘₯ = 256
1
A
log 2 8 = π‘₯
π‘₯=3
2
log π‘₯ 8 = 2
C
π‘₯ = 2√2
3
E
32π‘₯+2 = 27π‘₯βˆ’1
π‘₯=5
4
42π‘₯ = 5π‘₯+1
G
π‘₯=
5
𝑙𝑛5
2𝑙𝑛4 βˆ’ 𝑙𝑛5
D
π‘₯=
𝑙𝑛(π‘₯ + 1) + 𝑙𝑛4 = 𝑙𝑛5
1
4
B
6
π‘₯=
log 4 (2π‘₯ + 1) βˆ’ log 4 64 = βˆ’1
15
2
H
7
25π‘₯ βˆ’ 8 βˆ™ 5π‘₯ = 20
π‘₯ = log 5 10
8
F