Station 1: Log Transformation Placemats π(π₯) lnβ‘(π₯) 1 π(3π₯) B + D ? E $ A ο C β ln(π₯) + ln(3) 2 π₯ π( ) 3 ln(π₯) β lnβ‘(3) 3 ln(π₯ 3 ) 3π(π₯) 4 π(π₯) 3 3 ln( βπ₯ ) 5 Station 2: Log Properties Placemats 125 log 5 ( ) π₯ 3 β log 5 π₯ 1 log 5 (25π₯) J 2 + log 5 π₯ 2 π₯3π¦4 log 5 ( 5 ) π§ F 3log 5 π₯ β 5 log 5 π§ + 4 log 5 π¦ E 3 log 5 ( 1 1 1 β log 5 π§ + log 5 π¦ + log 5 π₯ 5 4 3 1 3 βπ₯ π¦ 4 1 π§5 ) 4 I 2 βπ₯π¦ log 5 ( 3 ) π§ log 5 π₯ + 2 log 5 π¦ β 6 log 5 π§ 5 C π₯2π¦ β log 5 ( 3 ) βπ§ 1 1 log 5 π₯ + log 5 π¦ β log 5 π§ 2 6 B 6 π₯2 + 9 log 5 ( 2 ) π₯ β9 log 5 (π₯ 2 + 9) β log 5 (π₯ + 3) β log 5 (π₯ β 3) 7 (π₯ + 9)2 log 5 ( ) (π₯ β 9)2 A 2 log 5 (π₯ + 9) β 2 log 5 (π₯ β 9) G 8 ππ 5 ππ4 log 4 5 H 9 πππ4 πππ5 log 5 4 10 D Station 3: Exponential and Logarithmic Equation Placemats log 2 π₯ = 8 π₯ = 256 1 A log 2 8 = π₯ π₯=3 2 log π₯ 8 = 2 C π₯ = 2β2 3 E 32π₯+2 = 27π₯β1 π₯=5 4 42π₯ = 5π₯+1 G π₯= 5 ππ5 2ππ4 β ππ5 D π₯= ππ(π₯ + 1) + ππ4 = ππ5 1 4 B 6 π₯= log 4 (2π₯ + 1) β log 4 64 = β1 15 2 H 7 25π₯ β 8 β 5π₯ = 20 π₯ = log 5 10 8 F
© Copyright 2026 Paperzz