Plankton stoichiometry and ocean change Impacts of Ocean Change on Primary Producers Ulf Riebesell Joana Barcelos e Ramos, Antje Klaus von Bröckel, Jan Czerny, UlfBiermann, Riebesell Arne Körtzinger, Sebastian Krug, Michael Meyerhöfer, Marius Müller, Andreas Oschlies, Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel Kai Schulz, Julia Wohlers, Eckart Zöllner SOPRAN Mesocosm CO2 perturbation experiment, Baltic Sea, July 2008 Foto: Mesocosm Facility, University of Bergen, Norway CarboOcean For primary producers the ocean in a high CO2 world will be different from the present ocean in several respects Atmospheric CO2 Climate Ocean acidification Seawater CO2 Ocean warming Temperature Mixing, Circulation stratification Carbonate chemistry Light Atmospheric deposition Nutrients Ocean biota Pelagic ecosystems Stoichiometry Rain ratio (Si/C/N/P/Fe) (CaCO3/POC) C-partitioning Nutrient utilization (POC-DOC-TEP) efficiency Carbon sinks & sources Impacts of Ocean Change on Primary Producers Atmospheric CO2 Overarching questions: • Will the future ocean be more or less productive? • Will primary producers provide more Climate Seawater CO2 Temperature Carbonate chemistry Light less CO2? Atmospheric deposition Nutrients Pelagic ecosystems Ocean biota or less food to higher trophic levels? • Will marine biota sequester more or Mixing, Circulation stratification Stoichiometry Rain ratio C-partitioning Nutrient utilization efficiency Carbon sinks & sources Assess OA- and T-driven feedbacks according to Sign of change positive feedback negative feedback amplifies initial perturbation dampens initial perturbation Sensitivity level of perturbation needed to trigger a feedback Capacity strength of feedback compared to initial perturbation Longevity relevant time-scales: permanent vs. transient Responses to ocean acidification/carbonation There will be winners and losers Winners Eelgrass (Zostera) Cyanobacteria Dinoflagellates Filamentous green algae Losers ? Coccolithophores Hinga 2002 pH range for maximum growth Responses to ocean acidification/carbonation Feedback sign Calcification Sensitivity Capacity Longevity e.g. calcareous microalgae + weak ++ moderate • Decrease in calcification, slight +++ strong present pCO2 increase in photosynthesis photosyn. Riebesell et al. 2000, Zondervan et al. 2001, Sciandra et al. 2003, Delille et al. 2005, Leonardos & Geider 2005, Langer et al. 2006, Feng et al. 2008, Krug et al. unpubl., Müller (talk tomorrow) calcific. Gephyrocapsa oceanica 1 μm Calcidiscus quadriperforatus Coccolithus braarudii pCO2 Responses to ocean acidification/carbonation Feedback sign Calcification negative Sensitivity Capacity Longevity e.g. calcareous microalgae + + • Decrease in calcification, slight ? ∆CaCO3 export increase in photosynthesis Riebesell et al. 2000, Zondervan et al. 2001, Sciandra et al. 2003, Delille et al. 2005, Leonardos & Geider 2005, Langer et al. 2006, Feng et al. 2008. Krug et al. unpubl., Müller (talk tomorrow) ∆pCO2atm • Declining strength of carbonate pump increases CO2 sequestration, but only weak feedback Zondervan et al. 2001, Heinze 2004, Ridgwell et al. 2007, Gehlen et al. 2007 • Open question: Replacement of sensitive species by more robust coccolithophorids or by other groups? see Krug et al. M28 Heinze 2004 Ridgwell et al. 2007: 60-200 PgC until year 3000 corresponding to ∆pCO2~15-49 ppm Responses to ocean acidification/carbonation Feedback sign Ballast effect positive Sensitivity Capacity Longevity e.g. calcareous microalgae ? +++ +++ Klaas & Archer 2002 • POC flux correlates closest with CaCO3 flux Decreased calcification Present CO2 High CO2 decrease deep flux of POC CaCO3 POC • Reduced calcification may POC • CaCO3 serves as ballast CaCO3 Klaas & Archer 2002, Francois et al. 2002, Armstrong et al. 2002, but see Passow 2004 Responses to ocean acidification/carbonation Feedback sign Stoichiometry negative Sensitivity Capacity Longevity e.g. calcareous microalgae • Enhanced drawdown of C vs. N and P Riebesell et al. 2007 • Enhanced C loss from upper layer also Delille et al. 2005 • Mechanism still unclear present CO2 2xCO2 3xCO2 C/N=6.0 C/N=7.1 C/N=8.0 Riebesell et al. 2007 Responses to ocean acidification/carbonation Feedback sign Stoichiometry negative Sensitivity Capacity Longevity e.g. calcareous microalgae ++ ++ • Enhanced drawdown of C vs. N and P Riebesell et al. 2007 • Enhanced C loss from upper layer C:N=const. C:N=f(pCO2) Export production Delille et al. 2005 • Mechanism still unclear • Low to moderate capacity until 2100 Oschlies et al. 2008, see also Matear & McNeil T32 Int(del EP) Int(del C storage) Carbon storage Oschlies et al. 2008 ++ Responses to ocean acidification/carbonation Capacity • Enhanced exudation at 750 ppmv CO2 500 400 300 (µg Xanthan Equiv. L-1) Transparent Exopolymer Particles elevated CO2, leading to enhanced TEP formation Longevity e.g. calcareous microalgae 190 Extracellular Corg Sensitivity 380 Feedback sign Baltic Sea natural community 200 100 Engel (2002) 0 700 500 Emiliania huxleyi lab culture 300 Heemann et al. (unpubl.) 100 0 20 40 60 CO2 (µmol L-1) 80 100 Responses to ocean acidification/carbonation Feedback sign Extracellular Corg negative • Enhanced exudation at Sensitivity Longevity e.g. calcareous microalgae ++ +++ Present CO2 elevated CO2, leading to enhanced TEP formation • Capacity Accelerating aggregation and sinking of organic matter Engel et al. 2004, Schartau et al. 2007 • Uncertainties: longevity (transient responses?) Arrigo (2007) ? High CO2 Responses to ocean acidification/carbonation Feedback sign Capacity Longevity e.g. calcareous microalgae glacial present Nitrogen fixation Sensitivity Trichodesmium (diazotrophic cyanobaterium) • Enhanced N2 fixation by Trichodesmium Hutchins et al. 2007, Barcelos e Ramos et al. 2007, Levitan et al. 2007 •Common phenomenon among all diazotrophs? See Czerny et al. T11 Hutchins et al. 2007 projected 2100 Responses to ocean acidification/carbonation Feedback sign Sensitivity Capacity e.g. calcareous microalgae Nitrogen fixation Trichodesmium (diazotrophic cyanobaterium) • Enhanced N2 fixation by Trichodesmium Barcelos e Ramos et al. 2007, Hutchins et al. 2007, Levitan et al. 2007 • Common phenomenon among all diazotrophs? See Czerny et al. T11 Barcelos e Ramos et al. 2007 Longevity Responses to ocean acidification/carbonation Feedback sign Sensitivity Capacity e.g. calcareous microalgae Nitrogen fixation N:P Trichodesmium (diazotrophic cyanobaterium) C:P • Enhanced N2 fixation by Trichodesmium Barcelos e Ramos et al. 2007, Hutchins et al. 2007, Levitan et al. 2007 • Common phenomenon among all C:N diazotrophs? See Czerny et al. T11 Barcelos e Ramos et al. 2007 Longevity Responses to ocean acidification/carbonation Feedback sign Nitrogen fixation negative Sensitivity Capacity ++ + Longevity ? C:N=f(pCO2). C:N=f(pCO2) + N2fix=g(pCO2) Trichodesmium (diazotrophic cyanobaterium) • Enhanced N2 fixation by Trichodesmium Barcelos e Ramos et al. 2007, Hutchins et al. 2007, Levitan et al. 2007 Oschlies et al. unpubl. • Common phenomenon among all ~ 6 PgC until 2100 diazotrophs? See Czerny et al. T11 • Low capacity (model assumes shallow remineralisation) (feedback kills itself: enhanced N2 fixation more DIN reduced N2 fixation does Tricho-derived org. matter sink? Responses to ocean warming Feedback sign Nutrient supply Sensitivity ++ • Reduced mixing, lower nutrient supply, decreased productivity e.g. Bopp et al. 2001, Boyd & Doney, 2002, Sarmiento et al. 2004, Schmittner et al. 2008, Schneider et al. 2008 Schneider et al. 2008 Capacity ±0 Longevity ++ Responses to ocean warming Feedback sign Nutrient supply Nut. utiliz. efficiency negative • Reduced mixing, lower nutrient supply, decreased productivity e.g. Bopp et al. 2001, Boyd & Doney, 2002, Sarmiento et al. 2004, Schmittner et al. 2008, Schneider et al. 2008 • Reduced mixing, increased light availability, increased productivity Doney 2006 Sensitivity Capacity Longevity +++ ++ ±0 ++ ++ ++ ++ Responses to ocean warming Feedback sign Sensitivity Capacity Longevity Auto- vs.heterotrophy • Expected: bacterial degradation DIC/DIN/DIP increases stronger than primary production Q10 = rate increase for 10°C temperature increase 1<Q10<2 2<Q10<3 Phytoplankton Zooplankton 1<Q10<2 DOM Bacteria 2<Q10<3 Temperatures: ambient +2°C +4°C +6°C Kiel in-door mesocosms Detritus Sinking Responses to ocean warming Feedback sign Auto- vs.heterotrophy positive Sensitivity Capacity ++ • Expected: bacterial degradation increases stronger than primary production ∆DIC etc. = absolute change in pool size Red arrows = temp. - sensitive processes ++ P ∆ DOC ∆ DOC E P R A E ∆ POC ∆ POC ++ • Observed: enhanced community respiration (R), DOC exudation (E), TEP formation (A) decreased sinking (S) decreased DIC drawdown ambient temp. ∆ DIC ∆ DIC Longevity elevated temp. A ∆ DIC ∆ DIC E P P ∆ DOC ∆ DOC E A ∆ POC ∆ POC R S S R Thermocline Thermocline Wohlers et al. subm. R S S A Responses to ocean warming Feedback sign Nutrient inventories ? Sensitivity ? Capacity ++ Longevity +++ • Decreased deep ocean ventilation expands oxygen minimum zones (OMZ) Matear & Hirst 2003 • Decreases N inventory due to denitrification and anammox • Increases P and Fe release from anoxic sediments Impacts of Ocean Change on Primary Producers Responses to ocean acidification/carbonation Feedback sign Sensitivity Capacity Longevity Calcification negative + + ? Ballast effect positive ? +++ +++ Stoichiometry negative ++ ++ ++ Extracellular Corg negative ++ +++ ? Nitrogen fixation negative ++ + ? (Trace) nutr. speciation presentations by H. de Baar and E. Breitbarth (yesterday) Production of CR gases see presentation by F. Hopkins (tomorrow) Responses to ocean warming Feedback sign Nutrient supply Nutr. utiliz. efficiency Nutrient inventory Auto- vs. heterotrophy. Sensitivity Capacity Longevity +++ ±0 ++ negative ++ ++ +++ ? ? ++ +++ positive ++ ++ ++ Impacts of Ocean Change on Primary Producers Responses to ocean acidification Feedback sign Calcification negative Ballast effect positive Stoichiometry negative Extracellular Corg negative Nitrogen fixation negative Overarching questions: • Will the future ocean be more or less productive? Less in low latitudes, more in high latitudes • Will primary producers provide more or less food to higher trophic levels? Responses to ocean warming Feedback sign Nutrient supply Nutr. utiliz. efficiency Nutrient inventory Auto- vs. heterotrophy. Probably less (higher turnover in microbial loop), less nutritious • Will marine biota sequester more or less CO2? negative ? positive Possibly more, may partly compensate for decrease in physical carbon pump Impacts of Ocean Change on Primary Producers Major uncertainties • Short-term (stress) vs. acclimated responses • Species (strain)-specific differences • Synergetic effects with other stressors (e.g. warming) • Single species vs. community level responses • Physiological and genetic adaptation • Species replacement vs. loss of ecosystem functionality
© Copyright 2026 Paperzz