2 [ZX-3 +%+5-) - --

MATH001
PAGE 1
CODE 000
MATOR EXAM I1 TERM 132
1 ) The solution set of the equation
4 [2x - ( 3 - x ) + 51
=
- 6x - 28
consists of
A
) one negative even integer
2 [ Z X - 3 +%+5-)
B ) one positive even integer
C ) one negative odd integer
D ) one positive odd integer
- -3x-I9
,
~ 3 x t . 2 7= - 3 % - 14
6 % + 4
9%
%
-
- -3x
- I4
-- -157
- -2-
E ) no real nuniber
Text Section 1-1, excercise 18, Page 84
2) If x = -10 is a solution of the equation
3 x + 6 - -1 x
10
2
then k =
Text Section 1-1, similar to example 2, Page 81
=
-2x + - ,33
k
k
MATH001
PAGE 2
CODE 000
MATOR EXAM I1 TERM 132
3) If the difference between seven times a number and 8 is equal to five
times the sum of the number and 2, then the number is equal to
Text Section 1-2, exercise 8, Page 92
4) If 3 (3 - 2i) - (3 - 2i)2 = X + i Y, where i =
numbers, then 2X - Y
fi,X
and Y are real
=
Text Section 1-3, similer to exercises 65, 66, 101 and 102, Pages 103 - 104
MATH001
5) If z =
d-- 20
-5i
+
where i = @/ then the complex conjugate
27/
of z is equal to
z=
/A)
PAGE 3
CODE 000
MATOR EXAM I1 TERM 132
fi; J
-
B) - 1 + 2 i
si
-2-
1+2i
13
c;?
- 1 2+L'
C
LC
9
T L ' + L * ~
--.
- -lZ-
- 2-5
i
-2 -5
C
1
Text Section 1-3, revieul exercise 29, Page 163
6) If the equation
then a + b
=
-3x2 + 6x + 5 = 0 is written in the form (x - a)'
2
+
/A)
11
3
B) --5
3
8
C) 3
14
D) 7
-
L X -
-5 -3
2
x - % X + 1 2,
(7c--\)
=
= b,
0
- -5 t - I
3
-5I(
=;z
g
I + Y
4
-
/
9
a=,
f b = y
I\
3
Text Sect ion 1-4, exercise 46, Page 1 12
MATH001
PAGE 4
CODE 000
MATOR EXAM I1 TERM 132
7) The solution set of the equation x -
=
0
contains
one positive integer only
one negative integer only
two negative integers
one positive and one negative integers
no real number
Text Section 1-6, example 4, Page 129
k
reje c t 4
8) The sum of the solutions of the equation
(2x - 1)2/3+ 2 ( 2 x - 1)'13- 3
=0
is equal to
I
-
3
/ A )
- 12
2,
3+2~-3
2 ~ - =\ - 2 7
wker-e
o r
y= ( ~ F - - I )
AX-\
=
Text Section 1-6 exercise 82, Page 135
2% =
--2L
x - 1 3
GT
ur
2 . ~ =2
X = \
MATH001
PAGE 5
CODE 000
MATOR EXAM I1 TERM 132
9) The solution set, in interval notation, of the inequality
ss= (-*,-43
u
C-3:-3,ql
Text Section 1-7, exercise 66, Page 147
10) The solution set of the inequality
3 - x2
I 2,
in interval notation, is
V
equal to
Text Section 1-7, similar to exercises 87 - 92, Page 147
MATH001
PAGE 6
CODE 000
MAJOR EXAM I1 TERM 132
11) If Q is the solution set of the inequality
1
3
x +- 5 4
2
I - 1 I > 1,
and R is the solution set of the inequality x
then Q n R
=
Text Section 1-8, sinzilar to exercises 27 - 40, Page 154
12) If a line segment PQ has the midpoint M (- 9,8) and one endpoint
P (- 16,9), then the other endpoint is
C"J
5)
Text Section 2-1, exercise 34, Page 179
MATH001
MATOR EXAM I1 TERM 132
PAGE 7
CODE 000
13) If the point (a, b) is in the second quadrant, then the point (-a, -b )
is in the
1/ A)
fourth quadrant
B)
third quadrant
C)
second quadrant
D)
firtst quadrant
E)
first or second quadrant
Text Section 2-1, exercise 57, Page 180
14) If the circle 2x2 + 2y2- 6x + 10y = 1 has center C (h, k) and radius r,
then 2 h + 2 k + r =
Text Section 2-2, example 4, Page 183
PAGE 8
CODE 000
MATOR EXAM I1 TERM 132
MATH001
15) The general equation of the circle with center at C (3,2) and tangent
to the x-axis is given by
/A)
x2-6x+y2-4y+9
2
B)
~ ~ - 4 -x6 y++ ~
9
C)
x2+6x+y2+4y+
4
41h
=
0
=
0
0
=
0
\
/
1
I
3
Text Secfion 2-2, exercise 45, Page 187
16) Which one of the following equations or set of ordered pairs (x, y)
defines y as a function of x ?
Text Secfion 2-3, exercises 3 , 4 and 23 - 26, Page 199-200
X
PAGE 9
CODE 000
MATOR EXAM I1 TERM 132
MATH001
17) The adjacent figure is the graph of a function which is increasing over
the interval (s):
Y
[- 4, - 21 and [4,8]
/A)
B)
[-2,0] and [0,4]
c)
[-4,01
D)
[0,81
E)
[-2,41
...............................................................................
.
.
.
.,
..
..
..
..
...
,..
...
...
...
..
..
.
.
.
.
.
...
...
...
...
..
..
.
...............-...
.
.
.
X
.
.....
..
....
.
*
.
..
....
.
..
...
.
.
.
.
..
..
... ... ... ... ... .. ..
.. .... ....
......................................................................................
.
.
.
.
.
.
.
Text Section 2 -3, review exercise 101, Page 2 79
18) Which one of the following statements is FALSE ?
/A)
The domain of the function f (x) = - 5 is (- 5) B ~t
B) The range of the relation x
=
- 7 is
(-
a, m )
,T
,
?=
R
(-&
J*)
~ 1-5) =
C) The domain and range of the function 6 x - 7y = 0 are both (- m, a)
TraQ
D) The slope of a vertical line is undefined TrKe
E) The graph of a constant function is a horizontal line
Text Section 2-4 concept clleckilzg : examples 2-4, Pages 204-205
MATH001
MATOR EXAM I1 TERM 132
PAGE 10
CODE 000
19) If the graph of a linear function has y-intercept (0,6) and slope - 2,
then the graph is passing through the point
Te:if Section 2-4, example 1, Page 204
20) The equation of a line through the point (2, -10) and perpendicular to
a line with undefined slope is
Text Section 2-5, rezliezo excercise 67, Page 278