MATH001 PAGE 1 CODE 000 MATOR EXAM I1 TERM 132 1 ) The solution set of the equation 4 [2x - ( 3 - x ) + 51 = - 6x - 28 consists of A ) one negative even integer 2 [ Z X - 3 +%+5-) B ) one positive even integer C ) one negative odd integer D ) one positive odd integer - -3x-I9 , ~ 3 x t . 2 7= - 3 % - 14 6 % + 4 9% % - - -3x - I4 -- -157 - -2- E ) no real nuniber Text Section 1-1, excercise 18, Page 84 2) If x = -10 is a solution of the equation 3 x + 6 - -1 x 10 2 then k = Text Section 1-1, similar to example 2, Page 81 = -2x + - ,33 k k MATH001 PAGE 2 CODE 000 MATOR EXAM I1 TERM 132 3) If the difference between seven times a number and 8 is equal to five times the sum of the number and 2, then the number is equal to Text Section 1-2, exercise 8, Page 92 4) If 3 (3 - 2i) - (3 - 2i)2 = X + i Y, where i = numbers, then 2X - Y fi,X and Y are real = Text Section 1-3, similer to exercises 65, 66, 101 and 102, Pages 103 - 104 MATH001 5) If z = d-- 20 -5i + where i = @/ then the complex conjugate 27/ of z is equal to z= /A) PAGE 3 CODE 000 MATOR EXAM I1 TERM 132 fi; J - B) - 1 + 2 i si -2- 1+2i 13 c;? - 1 2+L' C LC 9 T L ' + L * ~ --. - -lZ- - 2-5 i -2 -5 C 1 Text Section 1-3, revieul exercise 29, Page 163 6) If the equation then a + b = -3x2 + 6x + 5 = 0 is written in the form (x - a)' 2 + /A) 11 3 B) --5 3 8 C) 3 14 D) 7 - L X - -5 -3 2 x - % X + 1 2, (7c--\) = = b, 0 - -5 t - I 3 -5I( =;z g I + Y 4 - / 9 a=, f b = y I\ 3 Text Sect ion 1-4, exercise 46, Page 1 12 MATH001 PAGE 4 CODE 000 MATOR EXAM I1 TERM 132 7) The solution set of the equation x - = 0 contains one positive integer only one negative integer only two negative integers one positive and one negative integers no real number Text Section 1-6, example 4, Page 129 k reje c t 4 8) The sum of the solutions of the equation (2x - 1)2/3+ 2 ( 2 x - 1)'13- 3 =0 is equal to I - 3 / A ) - 12 2, 3+2~-3 2 ~ - =\ - 2 7 wker-e o r y= ( ~ F - - I ) AX-\ = Text Section 1-6 exercise 82, Page 135 2% = --2L x - 1 3 GT ur 2 . ~ =2 X = \ MATH001 PAGE 5 CODE 000 MATOR EXAM I1 TERM 132 9) The solution set, in interval notation, of the inequality ss= (-*,-43 u C-3:-3,ql Text Section 1-7, exercise 66, Page 147 10) The solution set of the inequality 3 - x2 I 2, in interval notation, is V equal to Text Section 1-7, similar to exercises 87 - 92, Page 147 MATH001 PAGE 6 CODE 000 MAJOR EXAM I1 TERM 132 11) If Q is the solution set of the inequality 1 3 x +- 5 4 2 I - 1 I > 1, and R is the solution set of the inequality x then Q n R = Text Section 1-8, sinzilar to exercises 27 - 40, Page 154 12) If a line segment PQ has the midpoint M (- 9,8) and one endpoint P (- 16,9), then the other endpoint is C"J 5) Text Section 2-1, exercise 34, Page 179 MATH001 MATOR EXAM I1 TERM 132 PAGE 7 CODE 000 13) If the point (a, b) is in the second quadrant, then the point (-a, -b ) is in the 1/ A) fourth quadrant B) third quadrant C) second quadrant D) firtst quadrant E) first or second quadrant Text Section 2-1, exercise 57, Page 180 14) If the circle 2x2 + 2y2- 6x + 10y = 1 has center C (h, k) and radius r, then 2 h + 2 k + r = Text Section 2-2, example 4, Page 183 PAGE 8 CODE 000 MATOR EXAM I1 TERM 132 MATH001 15) The general equation of the circle with center at C (3,2) and tangent to the x-axis is given by /A) x2-6x+y2-4y+9 2 B) ~ ~ - 4 -x6 y++ ~ 9 C) x2+6x+y2+4y+ 4 41h = 0 = 0 0 = 0 \ / 1 I 3 Text Secfion 2-2, exercise 45, Page 187 16) Which one of the following equations or set of ordered pairs (x, y) defines y as a function of x ? Text Secfion 2-3, exercises 3 , 4 and 23 - 26, Page 199-200 X PAGE 9 CODE 000 MATOR EXAM I1 TERM 132 MATH001 17) The adjacent figure is the graph of a function which is increasing over the interval (s): Y [- 4, - 21 and [4,8] /A) B) [-2,0] and [0,4] c) [-4,01 D) [0,81 E) [-2,41 ............................................................................... . . . ., .. .. .. .. ... ,.. ... ... ... .. .. . . . . . ... ... ... ... .. .. . ...............-... . . . X . ..... .. .... . * . .. .... . .. ... . . . . .. .. ... ... ... ... ... .. .. .. .... .... ...................................................................................... . . . . . . . Text Section 2 -3, review exercise 101, Page 2 79 18) Which one of the following statements is FALSE ? /A) The domain of the function f (x) = - 5 is (- 5) B ~t B) The range of the relation x = - 7 is (- a, m ) ,T , ?= R (-& J*) ~ 1-5) = C) The domain and range of the function 6 x - 7y = 0 are both (- m, a) TraQ D) The slope of a vertical line is undefined TrKe E) The graph of a constant function is a horizontal line Text Section 2-4 concept clleckilzg : examples 2-4, Pages 204-205 MATH001 MATOR EXAM I1 TERM 132 PAGE 10 CODE 000 19) If the graph of a linear function has y-intercept (0,6) and slope - 2, then the graph is passing through the point Te:if Section 2-4, example 1, Page 204 20) The equation of a line through the point (2, -10) and perpendicular to a line with undefined slope is Text Section 2-5, rezliezo excercise 67, Page 278
© Copyright 2026 Paperzz