FROM BHANU KUMAR SRI CHAITANYA EDUCATIONAL INSTITUTIONS JUNIOR INTER ( INTERMEDIATE ) JUNIOR INTER MATHEMATICS- IB (MAX MARKS 75) STUDENT HAS TO ANSWER ALL 10 VSAQ (2MARKS EACH) QUESTIONS, 5 OUT OF 7 SAQ( 4 MARKS EACH) QUESTIONS AND 5 OUT OF 7 LAQ (7 MARKS EACH) QUESTIONS MATHEMATICS - 1B BLUE PRINT S.NO TOPIC NAME NUMBER OF VSAQ (2M) SAQ (4M) LAQ (7M) TOTA L 1 LOCUS 1 4 2 CHANGE OF AXES 1 4 3 STRAIGHT LINES 4 PAIR OF STRAIGHT LINES 5 3D GEOMENTRY 1 6 PLANES 1 2 7 LIMITS & CONTINUITY 3 6 8 DIFFERENTIATIONS 1 9 TANGENT & NORMALS 1 10 MAXIMA & MINIMA 11 RATE OF CHANGE 12 ERRORS & APROXIMATIONS 13 PARTIAL DIFFERENTIATION TOTAL NO. OF QUESTIONS 2 1 2 1 13 2 14 1 9 1 17 1 9 1 7 1 4 1 2 1 10 7 4 7 95 Maths - I Year IB - Part I DIFFERENTIATION LAQ 1. If x y e x y then S.T Sol : x y e dy log x dx 1 log x 2 (Mar 08, 07, Sep 00) x y Apply log on both sides log e x y loge x y y.log x x y .log e log e 1 y.log x x y y y log x x y 1 log x x y dy dx x 1 log x d 1 log x dx 2 1 log x 1 log x .1 x. 1 1 log x x. x 1 log x 2 1 log x 1 1 log x 2 dy log x dx 1 log x 2 2. Find the derivative of x tan x sin x cos x Sol: Let y x tan x sin x cos x u x tan x , v sin x cos x dy d du dv u v dx dx dx dx w.r.t ‘x’ (Mar 08, 07, May 06) u x tan x Apply log on both sides log u = tan x.log x diff . w.r.to ' x ' d d log u tan x.log x dx dx d dv du uv u v dx dx dx 1 du d d tan x log x log x tan x u dx dx dx 1 du d d tan x log x log x tan x u dx dx dx tan x du x tan x sec 2 x.log x ----- (1) x dx v sin x cos x Apply log on both sides log v log sin x cos x log v cos x.log sin x diff . w.r.to ' x ' d d log v cos x.log sin x dx dx d dv du uv u v dx dx dx 1 dv 1 d sin x cos x. log sin x. sin x v dx sin x dx dv cos x sin x cot x cos x sin x.log sin x ------ (2) dx From (1) and (2) tan x dy cos x x tan x sec 2 x.log x sin x cos x.cot x sin x.log sin x x dx 1 y 2 dy 3. If 1 x 1 y a x y then S.T (Mar 08, 05) dx 1 x 2 SOL: Put x sin a and y sin b 2 2 1 x 2 1 y 2 a x y 1 sin 2 a 1 sin 2 b a sin a sin b cos a cos b a sin a sin b a b a b a b a b 2 cos cos a 2 cos sin 2 2 2 2 a b cos a b 2 a cot a a b sin 2 cot a b 2a a b cot 1 2a sin1 x sin 1 y cot 1 2a diff . w.r.to ' x ' d d sin1 x sin 1 y cot 1 2a dx dx 1 1 x 2 1 1 x 2 dy 0 1 y dx 1 y 2 dy dy dx 1 y 2 dx 1 x 2 1 2 1 4. If x y y x ab then Show that yx y1 y x log y dy (Mar 2003) y x log x xy x1 dx SOL: Given x y y x ab Let u = xy and v = yx u + v = ab du dv diff . w.r.to ' x ' 0 -----------(2) dx dx u = xy take log on both sides log u log x y log u y log x diff . w.r.to ' x ' 1 du 1 dy . y. log x. u dx x dx 1 du 1 dy . y. log x. u dx x dx du dy x y y.x1 log x. dx dx du dy y. x y1 x y log x dx dx x v = y take log on both sides log v = log yx log v x.log y diff . w.r.to ' x ' d d log v x.log y dx dx 1 dv 1 dy . x. log y v dx y dx dv dy y x xy 1 log y dx dx dv dy xy x1 y x log y dx dx From (2) yx y1 x y log x dy dy xy x1 y x log y 0 dx dx dy y x log x xy x1 xy y1 y x log y dx xy y1 y x log y dy y x1 dx x log x xy 5. Find the derivative 2 3 5 6 dy 1 2 x 1 3x of each of the functions y dx 1 6 x 1 7 x 3 4 . 6 7 (2010) SOL: take log on both sides and diff. w.r.to x SAQ 1) Find the derivative of Sol : Let x 1, with respect to x using first principle f x x 1 f x h x h 1 f 1 x Lt h 0 f x h f x x h 1 x 1 Lt h 0 h h x h 1 x 1 1/ 2 Lt h 0 h 1/ 2 x h 1 x 1 1/ 2 1/ 2 x h 1 x 1 1/ 2 1/ 2 (JUNE2005) 2. 1 x 1 x 1 1/ 2 1/ 2 1 2 x 1 Find the derivative of cos ax with respect to x using first principle (MAR2009) Let f (x) = cos ax f(x + h) = cos ax ah f 1 x Lt h 0 f x h f x h ax ah ax ax ah ax 2 sin .sin cos ax ah cos ax 2 2 Lt Lt h 0 h 0 h h 2ax a Lt sin nq n 2sin . 2 2 q0 q = a.sin ax 3. Find the derivative of sin 2x with respect to x using first principle (2010, 2002) Let f(x) = sin 2x f x h sin 2 x 2h f x h f x sin 2 x 2h sin 2 x Lt h 0 h 0 h h 2 x 2h 2 x 2 x 2h 2 x 2 cos .sin 2 2 Lt h 0 h 4 x 2h 4x sin h 2. Lt cos . Lt 2.cos 2.cos 2 x 2 h 0 2 h 0 h f 1 x Lt 4. Find the derivative of tan 2x with respect to x using first principle (MAR2005) SOL: let f x tan 2 x and f x h tan 2 x 2h f 1 x Lt h 0 f x h f x h sin 2 x 2h sin 2 x tan 2 x 2h tan 2 x cos 2 x 2h cos 2 x Lt Lt h 0 h 0 h h sin 2 x 2h.cos 2 x cos 2 x 2h.sin 2 x h 0 h.cos 2 x 2h .cos 2 x Lt sin 2 x 2h 2 x h 0 h.cos 2 x 2 h .cos 2 x Lt sin 2h 1 1 Lt . h 0 h 0 cos 2 x 2h cos 2 x h Lt 1 1 1 2 2.sec 2 2 x cos 2 x cos 2 x cos 2 2 x Find the derivative of sec 3x with respect to x using first principle(MAR2008) 2 5. let f x sec3x f x h sec 3 x 3h f 1 x Lt h 0 f x h f x h sec 3 x h sec3 x Lt h 0 h 0 h Lt Lt h 0 1 1 cos 3 x 3h cos 3x h cos 3x cos 3x 3h cos 3x 3h.cos 3 x.h 3 x 3x 3h 3x 3 x 3h 2sin .sin 2 2 Lt h 0 h.cos 3 x 3h.cos 3 x 6 x 3h 2 Lt sin . Lt 2 h0 h 0 6. 3h sin 2 h 6 x 3 2 sin . 2 2 sin 3 x 1 3. cos 3x.cos 3x cos 3 x cos 3x 3.sec3 x.tan 3 x Find the derivative of cos2 x with respect to x using first principle let f x cos 2 x f x h cos 2 x h cos 2 x h cos 2 x h 0 h f 1 x Lt cos 2 x h cos 2 x sin x x h.sin x x h Lt Lt h 0 h 0 h h sin h sin 2 x 1 h 0 h Lt sin 2 x h. Lt h 0 sin 2x 7. If x tan e y find dy (MAR2005,JUNE2003) dx Sol : tan e y x e y tan 1 x d y d e tan1 x dx dx dy 1 e y . dx 1 x 2 dy e y dx 1 x 2 8. Find dy if x a cos 3 t , y a sin 3 t dx Sol : x a cos3 t diff . w.r.to ' t ' diff . w.r.to ' t ' dx d a cos3 t dt dt d a 3cos 2 t cos t dt dy d a sin 3 t dt dt d = a 3sin 2 t sin t dt 3a cos 2 t sin t 3a sin 2 t.cos t dy dy / dt 3a sin 2 t.cos t tan t dx dx / dt 3a cos2 A.sin A dy Find if x a cos t t sin t , y a sin t t cos t (MAR2008, EP2002) dx 9. y sin t Sol : x a cos t t sin t diff . w.r.to ' t ' dx d a cos t t sin t dt dt d dx d a cos t t sin t dt dt dt a sin t t cos t sin t at cos t y a sin t t cos t diff . w.r.to ' t ' dy d a sin t t cos t dt dt d d a sin t t cos t dt dt a cos t t sin t cos t a cos t t sin t cos t at sin t 10. dy dy / dt at sin t tan t dx dx / dt at cos t Find 2 x dy if y tan 1 (MAR2004, SEP92,98) 1 x 2 dx 2 x Sol : Let y tan 1 1 x 2 put x tan q q tan 1 x 2 tan q y tan 1 1 tan 2 q y tan 1 tan 2q y 2q y 2 tan 1 x diff . w.r.to ' x ' dy d 2 2 tan 1 x dx dx 1 x2 11. 1 x 2 1 x 2 w.r.to.x ( MAR2010,2004, 06, MAY97) Find the derivatives of tan 1 1 x 2 1 x 2 1 x 2 1 x 2 Sol : Let y tan 1 1 x 2 1 x 2 put x 2 cos 2q 2q cos1 x 2 1 q .cos1 x 2 2 2 2 1 cos 2q 1 cos 2q 1 2 cos q 2 sin q y tan = y tan 1 cos 2q 1 cos 2q 2 cos 2 q 2 sin 2 q 1 p cos q sin q y tan 1 = y tan 1 tan q cos q sin q 4 p p 1 q y cos1 x 2 4 4 2 diff . w.r.to ' x ' = y dy d p 1 1 1 cos1 x 2 2x = dx dx 4 2 2 1 x 4 12. Find the derivative of tan 1 Sol : Let y tan 1 y tan 1 x 1 x 4 1 cos x w.r .to ' x ' (JUN2002) 1 cos x 1 cos x 1 cos x 2 sin 2 x / 2 2 cos 2 x / 2 y tan 1 tan x / 2 y x/2 diff . w.r.to ' x ' dy d x / 2 dx dx dy 1 dx 2 13. 2 dy sin a y Find the derivative of sin y = x sin (a + y) then S.T dx sin a Sol : Given sin y x sin a y x sin y sin a y Diff. w. r. to y dx d sin y dy dy sin a y sin a y d sin y sin y d sin a y dy dy sin 2 a y sin a y .cos y sin y.cos a y sin 2 a y dx sin a y y dy sin 2 a y 2 dy sin a y dx sin a 15. x 2 x 2 Find the derivative of log 2 x x 2 x 2 x x = log x 2 x 2 log x 2 x 2 Let y log 2 x x 2 Diff. w. r. to x 2 x 1 dy 2 x 1 2 2 dx x x 2 x x 2 2 2 dy 2 x 1 x x 2 2 x 1 x x 2 dx x 2 x 2 x 2 x 2 2 1 x 2 x 2 2 2 x2 = 2 1 x 2 x4 3x2 4 3D GEOMETRY LAQ 1) If the relations between the direction cosines of any two lines are given by l m n 0 , l 2 m 2 n 2 0, find the angle between the lines (2007, 2004) Sol : Let a1, b1, c1 and a2, b2, c2 are the d.r’s of the two lines satisfying the equations l m n 0 ------ (1) and l 2 m 2 n 2 0 ------ (2) From (1), l = – m – n = –(m + n) Substituting in (2) m n m 2 n 2 0 2 m2 n 2 2mn m 2 n 2 0 2m 2 2mn 0 2m m n 0 m = 0 or m = –n case I :- m = 0, substituting in (1) l n 0 l n l : m : n n : o : n D.R’s of the first line l1 are a1 , b1 , c1 1, 0,1 case II :- m = – n, substituting in –(1) l = 0, l : m : n 0 : n : n D.R’s of the second line l2 are a2 , b2 , c2 0,1, 1 Suppose q be the acute angle between the two lines cos q cos q 2. a1a2 b1b2 c1c2 a12 b12 c12 a22 b22 c22 0 0 1 2. 2 1/ 2 cos p / 3 q 60o If the relations between the direction cosines of any two lines are 3l m 5n 0, 6mn 5lm 2l n 0 find the angle between the lines (MARCH 2010 , 2009, 2006) Sol :- Let a1, b1, c1 and a2, b2, c2 are the d.r’s of the two lines satisfying the equations 3l m 5n 0 (1) and 6mn 5lm 2nl 0 (2) from (1) m = –3l – 5n substituting in (2) 6n 3l 5n 5l 3l 5n 2nl 0 18nl 30n 2 15l 2 25nl 2nl 0 15l 2 45nl 30n 2 0 15 l 2 3nl 2n 2 0 l 2 3nl 2n 2 0 l 2 2nl nl 2n 2 0 l l 2nl n l 2n 0 l 2nl n 0 l 2n, l n Case – I :- If l n substituting in (1) 3n m 5n 0 m 2n 0, m 2n l : m : n = –n : –2n : n DR’s of the first line l1 are a1 , b1 , c1 1, 2,1 Case – II :- If l 2n, substituting in 6 n m 5n 0 m n 0, m n – (1) l : m : n 2n : n : n 2,1,1 D.R’s of the second line l2 are a2 , b2 , c2 2,1,1 Suppose q be the acute angle between the two lines cos q a1a2 b1b2 c1c2 a12 b12 c12 a22 b22 c22 2 2 1 6. 6 1/ 6 q cos1 1/ 6 3. A line makes angles a, b , g , d with the four diagonals of a cube S.T 4 ( 2008, 2005) 3 Sol :- Consider a unit cube OALB; CNPM as shown in the figure Y cos 2 a cos 2 b cos 2 g cos 2 d 0,1,0 B M L 1,1,0 1,1,1P 0,1,1 A1,0,0X O 0,0,0 Z C 0,0,1 N 1, 0,1 Let one of the vertices of the cube be the origin O and the co-ordinate axes be along three edges OA, OB, OC passing through the origin. The co-ordinates of the vertices of the cube with respect to the frame of reference OABC are as shown in figure. The diagonals of the cube are OP, CL, AM, BN 1 1 1 D.R’s of OP = (1, 1, 1) ; D.C’s of OP = , , 3 3 3 1 1 1 D.R’s of CL = (1, 1, –1) ; D.C’s of CL = , , 3 3 3 D.R’s of AM = (–1, 1, 1); 1 1 1 D.C’s of AM = , , 3 3 3 D.R’s of BN = (1, –1, 1) ; 1 1 1 D.C’s of BN = , , 3 3 3 Let the direction cosines of the given ray be (l, m, n). If this ray makes the angles with the four diagonals of the cube then l m n l m n cos a 3 3 3 3 cos b l m n l mn 3 3 3 3 cos g l m n l m n 3 3 3 3 cos d l m n l m n 3 3 3 3 cos 2 a cos 2 b cos 2 g cos 2 d l m n 2 3 l m n 2 4 l 2 m 2 n 2 3 3 l m n 2 3 l m n 2 3 4 l 2 m2 n2 1 3 SAQ 1. If two vertices of a triangle are (3, –9, 11), (–2, 5, 7) and the centroid is (–3, 0, 3) then find the third vertex Sol: A(3, –9, 11), B(–2, 5,7), C(x, y, z) Given centroid = (–3, 0, 3) Centroid le of ABC is x x2 x3 y1 y2 y3 z1 z 2 z3 G 1 , , 3 3 3 3 2 x 9 5 y 11 7 z , , 3, 0,3 3 3 3 1 x 4 y 18 z 3, 0, 3 3 3 3 1 + x = –9 4 y 0 18 z 9 y4 x 9 1 z 9 18 x 10 z 9 Third vertex C(–10, 4, –9) 2. Find the centroid of the tetrahedron formed by the points (3, 2, –4), (5, 4, –6), (9, 8, –10), (3, 4, 10) Sol : Let A(3, 2 –4), B(5, 4, –6), C(9, 8, –10), D(3, 4, 10) x1 x2 x3 x4 y1 y2 y3 y4 z1 z2 z3 z4 , , 4 4 4 Centroid of the tetrahedron = 3 5 9 3 2 4 8 4 4 6 40 10 20 18 10 9 5 , , , , 5, , 4 4 4 2 2 4 4 4 3. Find the centroid of the triangle formed by the points (2, 1, 4), (3, –1, 2), (5, 0, 6) Sol : Let A 2,1, 4 B 3, 1, 2 C 5, 0, 6 10 centroid , 0, 4 3 4. Find the coordinates of the point at which yz – plane intersects the line segment joining the points (–2, 3, 7) an (6, –1, 2) Sol : Let A (–2, 3, 7), B(6, –1, 2) yz – plane divides AB in the ratio x1 : x2 2 : 6 2 : 6 1: 3 1 6 32 11 33 12 37 Required point = , , 1 3 1 3 1 3 6 6 1 9 2 21 0, 2, 23 , , 4 4 4 4 Note : xy plane divides z1 : z2 zy plane divides x1 : x2 5. Find the coordinates of the point (1, –5, 3) in the new system when the origin is shifted to (–4, 3, 9) Sol : Let x, y, z 1, 5, 3 , h, k , l 4,3,9 x x h, y y k , z z l x 5, y 8 z 6 x, y, z 5, 8, 6 6. S.T the point (1, 2, 3), (7, 0, 1) (–2, 3, 4) are collinear Sol : Let A(1, 2, 3), B(7, 0, 1), C(–2, 3, 4) AC 9 1 1 11, AB 36 4 4 44, 2 11, BC 81 9 9 99, 3 11, AC AB 11 2 11 3 11 BC , Given points are collinear If 3, 2, 1 , 4,1,1 , 6, 2,5 are three vertices and 4, 2, 2 is the centroid of a tetrahedron, find the fourth vertex of the tetrahedron Sol: Let A(3, 2, –1), B(4, 1, 1), C(6, 2, 5), D(x, y, z) centroid = (4, 2, 2) 3 4 6 x 2 1 2 y 1 1 5 z , , 4, 2, 2 4 4 4 7. x 13 4, 4 x + 13 = 16 x=3 5 y 2, 4 5+y=8 y=3 x, y, z 3,3,3 LIMITS and CONTINUTY VSAQ 1)Show that Lt x 2 Sol: Lt x 2 x2 1 x2 x2 x2 Lt x 2 x 2 h x 2 Lt 2h2 2h2 Lt h h Lt 1 h0 h h h 0 h 0 5 z 2, 4 5+z=8 z=3 a x 1 2) Evaluate Lt x x 0 b 1 Sol: ax 1 Lt a x 1 x0 x Lt x x 0 b 1 bx 1 Lt x0 x log e a logb a log e b sin 2 x 3) Is f(x) defined by x 1 sin 2 x Sol: f(x)= x 1 if x0 if x0 if x0 if x0 continuous at 0? sin 2 x x 0 x Given f(0)=1 and Lt f ( x) = Lt x 0 sin 2 x sin 2 x = Lt 2 2 Lt 2.1 2 x 0 2 x 0 2x 2x Since Lt f ( x ) f (0) f(x) is not continuous at x=0 x 0 cos ax cos bx if 2 x 4)Show that f(x) = 1 b2 a 2 if 2 Sol: Given f(0)= x0 where a and b are real constants, is continues at ‘0’ x0 1 2 b a2 2 bx ax bx ax 2sin sin cos ax cos bx 2 2 Lt f ( x) = Lt = Lt x 0 x 0 x 0 x2 x2 ba ba 2sin x .sin x 2 2 = Lt x 0 x2 ba ba sin x sin x ba 2 2 ba = 2 Lt . . . Lt x 0 b a 2 x 0 b a 2 x x 2 2 ba ba 1 2 2 = 2.1. .1. = b a 2 2 2 Since Lt f ( x ) f (0) f(x) is continuous at x=0 x 0 IMPARTENT LONG ANSWER QUESTIONS 1. Find the centroid of the triangle formed by the lines 12 x 2 20 xy 7 y 2 0 and 2x 3 y 4 0 2. The product of the perpendiculars from a, b to the pair of lines ax 2 2hxy by 2 0 is aa 2 2hab bb 2 a b 4h 2 2 3 Show that the area of the triangle formed by the lines ax 2 2hxy by 2 0 and lx my n 0 is n 2 h 2 ab Sq. units am 2 2hklm bl 2 4. Show that the lines x 2a 3 y 2 0, x a form an equilateral triangle and find the area of triangle 5 Prove that the lines represented by the equations x 2 4 xy y 2 0, x y 3 form an equilateral triangle and find the area of triangle 6 If S ax 2 2hxy by 2 2 gx 2 fy c 0 represents a pair of parallel lines then S.T 2 h 2 ab, af 2 bg 2 . also the distance between the parallel lines 2 g 2 ac f 2 bc 2 a a b b a b 7 Find the angle between the lines joining the origin to the points of intersection of the curve x 2 2 xy y 2 2 x 2 y 5 0 and the line 3 x y 1 0 8 Find the condition for the chord lx my 1 of the circle x 2 y 2 a 2 (whose centre is the origin) to subtend a right angle at the origin Find the values of k, if the lines joining the origin to the points of intersection of the curve 2 x 2 2 xy 3 y 2 2 x y 1 0 and the lines x 2 y k are mutually perpendicular 9 10 Show that the lines joining the origin to the points of intersection of the curve x 2 xy y 2 3 x 3 y 2 0 and the straight line x y 2 0 are mutually perpendicular 11 12 13 Show that the pairs of lines 3 x 2 8 xy 3 y 2 0 and 3 x 2 8 xy 3 y 2 0 2 x 4 y 1 0 form a square Show that the equation 2x2 – 13xy – 7y2 + x + 23y – 6 = 0 represents a pair of straight lines. Also find the angle between the co-ordinates of the point of intersection of the lines If p, q are the lengths of the perpendicular’s drawn from the origin to the tangent and normal drawn at any point on x 2/ 3 y 2 / 3 a 2 / 3 respectively, then show that 4 p 2 q 2 a 2 14 Show that the curved surface of a cylinder inscribed in a sphere of radius R is maximum then the height of the cylinder is 2 R. 15 Show that the semi-vertical angle of the right circular cone of maximum volume and of given slant height is tan 1 2 16 If the tangent at any point on the curve x 2/ 3 y 2 / 3 a 2 / 3 Intersects the coordinate axes in A, B then show that the length AB - is constant. 17 The tangent at any point ‘P’ on the curve x m y n a mn cuts the coordinate axes in A and B. Show that AP : PB is constant 18 If x y y x a b then S .T 19 20 yx y1 y x log y dy y x log x xy x1 dx 1 y 2 dy If 1 x 1 y a x y then S.T dx 1 x 2 Find the orthocentre of the triangle whose sides are given by 7x + y – 10 = 0, x 2 y 5 0 and x y2 0 2 2 21 Find the circumcentre of the triangle whose sides are given by x + y + 2 = 0, 5x – y – 2 = 0 and x – 2y + 5 = 0 22 If a, b is the centroid of the triangle formed by lines ax 2 2hxy by 2 0 and a b 2 lx my n 0 then prove that 2 bl hm am hl 3am 2hlm bl 2
© Copyright 2026 Paperzz