Partial Fraction Decomposition SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 7.5 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes. EXPECTED SKILLS: • Be able to recognize an improper rational function, and perform the necessary long division to turn it into a proper rational function. • Know how to write down the partial fraction decomposition for a proper rational function, compute the unknown coefficients in the partial fractions, and integrate each partial fraction. PRACTICE PROBLEMS: For problems 1-3, write out the partial fraction decomposition. (Do not solve for the numerical values of the coefficients.) 1. 2x + 3 (x − 2)(x − 5) B A + x−2 x−5 2. 6 x2 (x2 − 9) C D A B + 2+ + x x x−3 x+3 3. 5x4 − 1 x(x − 2)(x2 + x + 1)2 A B Cx + D Ex + F + + 2 + 2 x x − 2 x + x + 1 (x + x + 1)2 For problems 4 & 5, use the given partial fraction decomposition to evaluate the integral. Z 11x2 − 28x + 20 4. dx (2x + 1)(x − 3)2 1 Hint: 4 5 11x2 − 28x + 20 3 + + = 2 (2x + 1)(x − 3) 2x + 1 x − 3 (x − 3)2 5 3 ln |2x + 1| + 4 ln |x − 3| − +C 2 (x − 3) Z 5. 11x2 + 7x − 15 dx (3x − 4)(x2 + 1) Hint: 11x2 + 7x − 15 5 2x + 5 = + (3x − 4)(x2 + 1) 3x − 4 x2 + 1 5 ln |3x − 4| + ln(x2 + 1) + 5 tan−1 x + C 3 For problems 6-17, evaluate the given integral. Z 4 6. dx 2 x −1 2 ln |x − 1| − 2 ln |x + 1| + C Z 4x − 1 dx 7. 2 x − 5x + 6 11 ln |x − 3| − 7 ln |x − 2| + C Z 8. x2 dx x2 + 1 x − tan−1 x + C Z 3x2 − 4 9. dx x+1 3 2 x − 3x − ln |x + 1| + C 2 Z 4x − 1 10. dx 2 2x − 18x + 36 23 11 ln |x − 6| − ln |x − 3| + C 6 6 Z 1 11. dx x2 (x − 1)2 2 ln |x| − 1 1 − 2 ln |x − 1| − + C; Detailed Solution: Here x (x − 1) 2 Z 12. 2x + 3 dx (x − 3)(x + 1)2 9 1 9 ln |x − 3| − ln |x + 1| + +C 16 16 4(x + 1) Z 4 x − 4x2 + 5 13. dx x3 − 4x x2 5 5 5 − ln |x| + ln |x + 2| + ln |x − 2| + C 2 4 8 8 Z 5 x − 3x3 + 6 14. dx x3 + x 1 3 x − 4x + 6 ln |x| − 3 ln |x2 + 1| + 4 arctan (x) + C; Detailed Solution: Here 3 Z 3 x − 6x2 + 3x − 17 15. dx x2 + 3 x 1 2 1 −1 √ +C x − 6x + √ tan 2 3 3 Z 2x2 16. dx (x − 1)3 2 ln |x − 1| − Z 17. 4 1 − +C x − 1 (x − 1)2 4x2 − 4x + 2 dx x2 − x 4x − 2 ln |x| + 2 ln |x − 1| + C For problems 18-19, evaluate the given integral by making substitution that transforms the problem into integrating a rational function. Z sin x 18. dx 2 cos x + 6 cos x + 5 1 1 ln | cos x + 5| − ln | cos x + 1| + C 4 4 Z e5x 19. dx e4x − 1 ex + 1 1 1 ln |ex − 1| − ln(ex + 1) − tan−1 (ex ) + C 4 4 2 3 20. By the end of this problem, you will know the antiderivatives of sec x. Observe the following: Z Z 1 dx cos x Z cos x = dx cos2 x Z cos x dx = 1 − sin2 x sec x dx = (a) Use the substitution u = sin x to convert the given integral to an integral of a rational function. Z 1 du 1 − u2 (b) Use partial fractions to evaluate your integral from part (a). Show that the 1 u + 1 +C antiderivatives have the form ln 2 u − 1 Z 1 1 − du 2 u−1 1 1 = ln |u + 1| − ln |u − 1| + C 2 2 1 u + 1 +C = ln 2 u − 1 1 du = 1 − u2 Z 1 2 1 u+1 Notice that substituting back in for u yields: Z 1 sin x + 1 sec x dx = ln +C 2 sin x − 1 1 (sin x + 1)(sin x + 1) = ln +C 2 (sin x − 1)(sin x + 1) 1 (sin x + 1)2 = ln +C 2 sin2 x − 1 1 (sin x + 1)2 = ln +C 2 cos2 x sin x + 1 +C = ln cos x = ln |tan x + sec x| + C 4
© Copyright 2026 Paperzz