PROGRESS OF THE STATE-SELECTED BEAM LOW TEMPERATURE HYDROGEN MASER S. Crampton, J. Krupczak, S. Souza To cite this version: S. Crampton, J. Krupczak, S. Souza. PROGRESS OF THE STATE-SELECTED BEAM LOW TEMPERATURE HYDROGEN MASER. Journal de Physique Colloques, 1981, 42 (C8), pp.C8-181-C8-184. <10.1051/jphyscol:1981820>. <jpa-00221715> HAL Id: jpa-00221715 https://hal.archives-ouvertes.fr/jpa-00221715 Submitted on 1 Jan 1981 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. JOURNAL DE PHYSIQUE Colloque C8, s u p p l h e n t au n012, Tome 42, de'cembre 1981 PROGRESS OF THE STATE-SELECTED page C8-18 1 BEAM LOW TEMPERATURE HYDROGEN MASER S.B. Crampton, J.J. Krupczak and S.P. Souza WilZiams College, WiZZiamstown, MA, U. S.A. Abstract.- We describe the source of a beam of liquid helium temperature state-selected hydrogen atoms to be used in the development of a very low temperature atomic hydrogen maser frequency standard. Recent experimental results which affect the design of such a beam are presented, and future experimental plans are outlined. Introduction.- Recently published1,2 and as yet unpublished studies by our laboratory of hydrogen atom (H) adsorption on polycrystalline molecular hydrogen (Hz) surfaces provide the basis for designing a source of a state-selected beam of polarized hydrogen atoms (HI.) thermalized at liquid helium temperatures. Attainable beam intensities and beam densities promise to be one or two orders of magnitude higher than those achieved with room temperature thermal HI. beams. Any impurities other than He atoms should be effectively eliminated by cryopumping. Such beams should improve the signal-to-noise of low temperature studies of H , ~ -and ~ they may prove useful as sources and targets of polarized protons. Adsorption of H on H7.- Figure 1 illustrates the apparatus we have used to study the adsorption of H on H2 at temperatures from 3.2 K to 4.6 K. H atoms are produced in a rf discharge cooled by liquid nitrogen. Atoms emerging from a 2 mm diameter source orifice travel down about 20 cm of 11 mm ID pyrex tubing to a 5 cm ID quartz storage bottle. Everything below the source liquid nitrogen dewar is immersed in a liquid helium bath whose temperature is controlled by regulating the helium gas pressure over the bath. All interior surfaces below the source are covered by solid molecular hydrogen frozen slowly from about 0.1 mole Hz vapor as the cryostat is cooled. A short pulse of microwave radiation near the 1420 MHz H ground state hyperfine transition frequency induces the atoms to radiate a signal that decays in times of the order of milliseconds and whose frequency is shifted from the free space hyperfine frequency by amounts of the order of hundreds of Hz. From the data we are able to extract the mean phase shift @ of the hyperfine frequency radiation phase per trip across the storage bottle and the mean probability a that an atom is adsorbed at least once while rattling around on the surface after a trip across the storage bottle. Figure 2 E Fig. 1 : Schematic of the Adsorption Study Apparatus. (A) Hz inlet; (B) stainless steel liquid nitrogen dewar; (C) dissociator rf coil; (D) orifice; (E) quartz storage bottle; (F) microwave cavity; (G) coupling loop; (H) quartz cavity tuning rod; (I) cylindrical capacitor; (J) temperature sensors. Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981820 JOURNAL DE PHYSIQUE 0.6- RUN 17 mun 19 it 0.5- - 0.4 - B 0.3- t Fig. 3 : The parameter f3 = a-'-1 plotted against temperature with la error bars. Results are presented for two independently prepared surfaces. Fig. 2 : Mean phase shift $ per trip across the storage bottle, plotted on a logarithmic scale against inverse temperature with lo error bars. The open circles represent results from independently prepared H2 surfaces. Liquid Nitrogen "Source Dewar" Indium Seal Accomodator Hexapole Magnet displays 6 as a log plot against inverse temperature. The mean adsorption time <ta> per trip across the storage bottle, proportional to $, is exponential in inverse temperature with exponent 39.8(3)/T. Figure 3 displays the adsorption probability a, plotted as = a-'-1 against temperature. a is fairly flat and of order 0.8 at the lowest temperatures studied, but begins to fall above 4 K, passing through 0.65 at about T=4.6 K. <ta> and a are so large that the atoms should be thermalized at the temperature of the surface after only a few collisions at temperatures near 4 K. For the same reason recombination losses are dominated by two body collisions be.tween atoms while adsorbed. By measuring the surface heating due to recombination at high atom fluxes, we find that the probability y of recombination per trip across the storage bottle is indeed proportional to atom density nH. The proportionality is approximately2 y=4x10-l6 n ~ ' y is proportional to two factors of <ta>, so that we expect its temperature dependence to be dominated by an exponential with exponent =80/T. Extrapolating to T=6 K predicts y of order 1.5x10-" nH. Storage Bottle Figure 4 illustrates the present configuration of our stateselected H+ beam. Atoms emerging from a source like that depicted in Fig. 1 pass through a 5 mm ID by 3.2 cm long cylindrical "accomodator " Two semi- H Beam Design.- Fig. 4 : State-selected H+ Beam . c i r c u l a r b a f f l e s e l i m i n a t e l i n e of s i g h t p a r t i c l e s and r a d i a t i o n . Atoms i n t h e upper two (F=l,m=l) and (F=l,m=O) ground s t a t e H hyperfine l e v e l s a r e focused by a hexapole magnet i n t o a s t o r a g e b o t t l e coated w i t h frozen H2. They a r e d e t e c t e d by pulsing t h e h y p e r f i n e t r a n s i t i o n , a s i n t h e previous experiment. The accomodator i s cooled by conduction t o t h e l i q u i d helium b a t h through a 1 cm t h i c k b r a s s flange. A h e a t e r wound on t h e o u t s i d e of t h e accomodator allows i t s temperature t o be a d j u s t e d upwards. The hexapole magnet i s 10 cm long and has a 1.3 cm diameter gap between pole p i e c e s . The f i e l d a t t h e p o l e p i e c e s i s about 2700 gauss. The magnet parameters have been chosen t o Optimally focus (F=l,m=O) atoms having thermal speeds a t 7 K and s t a r t i n g a s f a r o f f a x i s a s possible. The average number of s u r f a c e c o l l i s t o n s made by an atom a s s i n g through t h e If the density accomodator i s Ac=lOO, s o t h a t a t T = 4 K , yTTc=,;I a t nH=Z.5 x 1011 cm". a t t h e accomodator were t o s a t u r a t e a t about t h a t v a l u e , t h e maximum f l u x from t h e ~ accomodator would be about 4 x 1 0 ~sec-l. However, measurements of H2 s u r f a c e heati n g by H recombination i n t h e s t o r a g e b o t t l e during t h e F i 1 experiment i n d i c a t e d ~ were d e l i v t h a t a t optimum d i s s o c i a t o r p r e s s u r e and power about 4 ~ 1 0 ~ " s e c - atoms ered t o t h e s t o r a g e b o t t l e a t t h e end of an i n l e t tube i n which atoms made 400 surf a c e c o l l i s i o n s on t h e average. A t t h o s e high atom f l u x e s t h e temperature of t h e In t h e i n l e t tube s t o r a g e b o t t l e s u r f a c e was observed t o r i s e by about 0.13 K. above t h e s t o r a g e b o t t l e t h e d e n s i t y was much higher and t h e recombination h e a t i n g p e r u n i t s u r f a c e a r e a t h a t much g r e a t e r . Evidently, t h e elevated H2 s u r f a c e tempe r a t u r e l e d t o decreased y and consequently t o h i g h e r atom d e l i v e r y than would have been expected i f t h e i n l e t tube s u r f a c e temperature had been only 4.2 K. A s t h e s u r f a c e temperature r i s e s , e f f e c t s o t h e r than simply t h e decrease of y come i n t o play. From t h e measurements of Hardy e t . a1. we know t h a t t h e mean f r e e p a t h of H atoms i n t h e s a t u r a t e d vapor of H2 a t 6 K i s of t h e o r d e r of 0.2 mm. Unless t h e frozen H2 above a few l a y e r s t i g h t l y bound t o t h e s u b s t r a t e i s pumped away t o c o l d e r r e g i o n s , t h e d e n s i t y of H2 vapor above t h e H2 s u r f a c e w i l l impede t h e H atoms and thereby ilncrease t h e number of s u r f a c e c o l l i s i o n s they make i n t h e accomodator. A s y decreases and t h e d e n s i t y of H t h a t can b e maintained above t h e s u r f a c e i n c r e a s e s , t h e mean f r e e p a t h of H i n t h e H gas w i l l f a l l below t h e charact e r i s t i c dimensions of t h e accomodator and magnet. From t h e c a l c u l a t i o n s of A l l i s o n and smith6 we e s t i m a t e t h a t t h e mean f r e e p a t h of H i n H a t nH=1015 i s of o r d e r 1 mm near 4 K. Not only w i l l H-H s c a t t e r i n g i n c r e a s e t h e number of s u r f a c e c o l l i s i o n s i n t h e accomodator, but s c a t t e r i n g i n t h e magnet w i l l i n t e r f e r e w i t h s t a t e s e l e c t i o n . I f t h e H2 d e n s i t y above t h e s u r f a c e can b e kept low by pumping away t o c o l d e r r e g i o n s , t h e u s e f u l accomodator H d e n s i t y w i l l be l i m i t e d by s c a t t e r i n g i n t h e HI. beam, a s it i s i n t h e c a s e of room temperature H beams, t o about h a l f t h e s a t u r a t i o n d e n s i t y of room temperature beams. The low temperature source has t h e advantage of r e l a t i v e l y e f f i c i e n t pumping by recombination on a warm, uncoated magnet and crypumping of t h e r e s u l t a n t H2 by t h e magnet can w a l l s , so t h a t i t should be p o s s i b l e t o open up t h e source a p e r t u r e more than i s p o s s i b l e f o r room temperature sources. I n a d d i t i o n , almost any impurity emerging from t h e source w i l l be frozen o u t b e f o r e reaching t h e s t o r a g e b o t t l e s u r f a c e , an important c o n s i d e r a t i o n i n frequency standard work. I f t h e accomodator e x i t a p e r t u r e were very small Anticipated Magnet Performance.compared t o t h e magnet gap and t h e magnet gap were i t s e l f small enough t h a t t h e magnetic moment of t h e (F=l,m=O) s t a t e were e f f e c t i v e l y s a t u r a t e d , t h e e f f e c t i v e s o l i d a n g l e of t h e 7 K magnet would be about 30017 t h a t of a magnet f o r focusing However, i f some combination of t h e e f f e c t s discussed above l i m i t s 300 K atoms. t h e accomodator d e n s i t y t o some s a t u r a t i o n v a l u e and i f t h a t s a t u r a t i o n v a l u e i t s e l f depends on t h e number of s u r f a c e c o l l i s i o n s made i n t h e accomodator, then i t i s u s e f u l t o open up t h e accomodator e x i t a p e r t u r e and choose magnet parameters so a s t o optimize focusing of o f f - a x i s atoms. We f i n d t h a t t h e magnet gap must be about t h r e e times t h e accomodator e x i t a p e r t u r e diameter. For a l a r g e magnet gap t h e magnetic moment of t h e (F=l,m=O) s t a t e i s f a r from s a t u r a t i o n , and t h e u s u a l methods f o r designing s t a t e - s e l e c t i n g magnets7 7 8break down appreciably. Consequentl y , we have r e s o r t e d t o Monte Carlo techniques i n which t h e s t a r t i n g angles i n f r o n t of t h e magnet a r e randomly s e l e c t e d and t h e t r a j e c t o r i e s a r e c a l c u l a t e d numerically. We f i n d t h a t t h e s o l i d angle f o r focusing 7 K atoms from a small a p e r t u r e through a c i r c u l a r h o l e 20 cm downstream having a diameter of t h e order of t h e 1.3 JOURNAL DE PHYSIQUE cm magnet gap i s about 15 times t h e s o l i d a n g l e f o r f o c u s i n g 300 K atoms through a h o l e 20 cm downstream having a d i a m e t e r of t h e o r d e r of t h e p r o p o r t i o n a t e l y s m a l l e r magnet gap. I f t h e s a t u r a t i o n d e n s i t y i s of t h e o r d e r of h a l f t h e s a t u r a t i o n dens i t y f o r room t e m p e r a t u r e s o u r c e s , b u t t h e u s a b l e s o u r c e a p e r t u r e d i a m e t e r i s f o u r t i m e s a s l a r g e w h i l e t h e mean speed is 6.5 t i m e s l e s s , t h e expected g a i n of H+ beam i n t e n s i t y a t 7 K compared t o 300 K i s about 20. T h i s improvement w i l l b e r e a l i z e d i n p r a c t i c e only i f t h e r e i s e f f i c i e n t pumping of unwanted H and H2 away from t h e Higher magnet e n t r a n c e . The expected g a i n of beam d e n s i t y i s only of o r d e r 7.5. beam d e n s i t y i n narrower beams could b e achieved u s i n g s h o r t e r magnets w i t h s m a l l e r gaps a t some c o s t of t o t a l beam i n t e n s i t y . Zxperimental Plans.P r a c t i c a l r e a l i z a t i o n of improved H beam i n t e n s i t y a t low t e m p e r a t u r e s h a s been delayed by l e a k s t o t h e l i q u i d helium b a t h through t h e f a r t o o many indium s e a l e d j o i n t s i n t h e p r e s e n t a p p a r a t u s . We have been a b l e t o v e r i f y t h a t t h e i n t e n s i t y i s improved a t c o n s t a n t i n p u t from t h e d i s s o c i a t o r by h e a t i n g t h e accomodator t o 6 t o 8 K. A f t e r r e b u i l d i n g t h e vacuum envelope of t h e a p p a r a t u s shown i n Fig. 4 , we p l a n t o t r y a few d i f f e r e n t accomodator and magnet g e o m e t r i e s , i n o r d e r t o f i n d o u t what t h e l i m i t i n g f a c t o r s are and how b e s t t o circumvent them. C o n c u r r e n t l y , we p l a n t o u s e t h e beam t o i n v e s t i g a t e t h e u s e of f r o z e n neon as a hydrogen s t a n d a r d s t o r a g e s u r f a c e . Our own experiments2 have i n d i c a t e d only t h a t a neon coated pyrex t u b e seems t o d e l i v e r more H f l u x t o t h e Fig. 1 s t o r a g e b o t t l e t h a n H2 a t about 4.2 K. Foner e t . a l . a t t r i b u t e d 9 t h e i r i n a b i l i t y t o s t a b i l i z e H i n a neon m a t r i x t o i n e f f i c i e n t c o n d e n s a t i o n of H on a neon s u r f a c e . At t e m p e r a t u r e s of t h e o r d e r of 10 K t h e Hz vapor p r e s s u r e should b e h i g h enough t o remove recombination p r o d u c t s , w h i l e t h e vapor p r e s s u r e of neon should b e low enough t o avoid t h e d i f f i c u l t i e s a s s o c i a t e d w i t h h i g h s u b s t r a t e vapor p r e s s u r e d i s c u s s e d i n t h e p r e v i o u s paper a t t h i s meeting. Acknowledgements.We thank P e t e r Kramer f o r h e l p i n t h e e a r l y s t a g e s of t h e magnet c a l c u l a t i o n s and t h e Williams C o l l e g e Computer Center f o r generous a l l o c a t i o n s of computer time. T h i s r e s e a r c h was supported by t h e O f f i c e of Naval Research under c o n t r a c t #N00014-80-C-0240, by t h e NSF under g r a n t PHY79 10967 and by t h e Jet P r o p u l s i o n L a b o r a t o r y under c o n t r a c t 6955441. CRAMPT TON, S. B., and WEINRXB, A., GREYTAK, T. J . , KLEPPNER, D., PHILLIPS, Phys. Rev. L e t t . 2 (1979) 1039. 2 ~ R A M P ~S.~ B., ~ , J. Physique Colloq. N~. , ~ W. 3 41 (1980) IJ. D . , SMITH, D. A., c7-249. BERLINSKY, ~ ~ A. J~. , and, WHITEHEAD, L. A,, Phys. Rev. L e t t . 2 (1979) 1042. JOCHEMSEN, R., BERLINSKY, A. J . , and HARDY, W. N . , 195 and 7 (1981) 455(E). 4 ~ ~ R R O WM., , 46(1981) 5 ~ R., MORRO ~W, M . , BERLINSKY, ~ A.~ J . , and HARDY, ~ W. N., ~ Phys. Rev. L e t t . Phys. Rev. ~ Lett. ~ ~ 47 (1981) 852. 6 7 ~ A. C. and ~ SMITH, ~ F. J . ,~ Atomic ~Data ~ R. L. and HAMILTON, ~ D. ~ R., 3 (1971) ~ 3 1~7 . , The Review ~ of S c i e n t ~ i f i c I n s t r u m e~n t s 30 (1959) 356. *AUDOIN, C., DESAINTFUSCIEN, M. and S C H E W N , J. P . , Nuclear I n s t r u m e n t s and Methods 3 (1969) 1 . 9 ~ S. N .~, COCHRAN, ~ E. ~ L., ~BOWERS,, V. A. and JEN, C . K., J o u r n a l of Chemical P h y s i c s 2 (1960) 963. ~
© Copyright 2026 Paperzz