Name , .. Date j^^ai^%^%^5^^ ^^ Class A ILESSONJ froCIICe A teKi Factoring x2 + bx + c Factor each trinomial. 1. x2 + 5x + 6 f^AY 4i- )IY + ^x t- 2. x2 + 5x + 4 )I I\xy 4t- UY + J^A -i- 3. x2 + 9x + 20 (x+ ^I )(x+ ) 4.x 2 + 10X+ 21 5. x2 + 11x+30 6. x2 + 10x+ 16 7. x 2 - 8 x + 1 2 8. x 2 - 8 x + 1 5 9. x2 - 17x+ 16 (*- )(*- ) 10. x2 - 12x +27 11.x2- 15x + 44 13. x2 + 6x - 40 12. x2 - 13x+ 40 15. x2 + 4x- 32 14. x2 + 2x - 3 (x+ 16. x 2 + 1 0 x - 2 4 17. x 2 + 1 2 x - 2 8 20. x2 - 8x - 20 22. x2 - x - 12 25. Factor nz + Qn + 5. Complete the tables to show that the original polynomial and the factored form describe the same sequence of numbers for n = 0, 1, 2, 3, and 4. Copyright © by Holt, Rinehart and Winston. All rights reserved. 0 1 n2 + 6n + 5 0 2 + 6(0) + 5 = 5 24. x2 - x - 2 n 0 1 2 2 3 3 4 4 19 )(x- ) 21.x2-2x-48 23. x2 - 2x - 3 n ) 18. x2 + 3x- 10 (x+ 19. x2 - 2x - 15 )(x- (n+ (0+ )(n + - ) )(0+ ) = 5 Holt Algebra 1 Date Name Class. Practice B Factoring x2 + bx + c Factor each trinomial. 1. x2 + 7x + 10 2. x + 9x + 8 3. x2 + 13x+ 36 4. x + 9x + 14 5. x2 + 7x+ 12 6. x2 + 9x+ 18 7. x2 - 9x+ 18 8. x2 - 5x + 4 9. x - 9x + 20 10. x2 - 12x+ 20 11. x2 - 11x+ 18 12. x2 - 12x+ 32 13. x2 + 7x- 18 14. x2 + 10x- 24 15. x2 + 2x- 3 16. x2 + 2x- 15 17. x2 + 5x - 6 18. x2 + 5x- 24 19. x2 - 5x- 6 20. x2 - 2x - 35 21. x - 7 x - 3 0 22. x2 - x - 56 23. x2 - 2x - 8 24. x2 - x - 20 25. Factor n2 + 5n - 24. Show that the original polynomial and the factored form describe the same sequence of numbers for n = 0, 1, 2, 3, and 4. Copyright © by Holt, Rinehart and Winston. All rights reserved. n + 5n - 24 20 n Holt Algebra 1 Date Name Class. Practice C Factoring x2 + bx+ c Factor each trinomial. 1. x2 + 10x + 24 2. y2 + 12y + 20 3. a2 + 15a + 54 4. h2 + 18/7 + 45 5. x2 + 16*+48 6. c + 15c+ 50 7. x2 - 16x + 48 8. d2 - 19d+ 88 9. x2 - 20x + 36 10. m2 - 43m + 42 11. x2 - 16X+28 12. n2 - 12n + 35 13. f2 + 3f-28 14. b2 + 116- 42 15. x2 + 12x- 160 16. g2 + 2g-48 17. k2 + 16/( - 36 18. x2 + 2x - 63 19. p2 - 2p - 8 20. x2 - x - 72 21. q2 -3q~ 18 22. x2 - 4x - 32 23. t2 - 10?-39 24. w2 -20w- 125 25. Factor n2 + 8n - 48. Show that the original polynomial and the factored form describe the same sequence of numbers for n = 0, 1, 2, 3, and 4. Copyright © by Holt, Rinehart and Winston. All rights reserved. n 8n - 48 21 n Holt Algebra 1 Review for Mastery 1. 5x(4x-3) 2. 11a(4a + 1 3. 12(2y-3x) 4. (x + 7)(5x 2) 5. (a + 4)(3a-2) 6. (4y+1) 2 11. (x-4)(x-11) 12. (x-8)(x-5) 13. 10; 4 17. 14; 2 14. 3; 1 16. 12; 2 18. 5; 2 19. (x + 3)(x-5) 20. (x + 2)(x-10) 21. (x + 6)(x-8) 22. (x + 3)(x-4) 23. (x+1)(x-3) 24. (x + 1 )(x - 2) 15. 8; 4 7. Sx2; 4; Sx2; 4; Sx2 + 4 8. 5a2; 6; 5a2; 6; 5a2 + 6 9. (Sx2 + 2)(7x + 4) 25. 1;5 10. (10x2 + 3)(4x-5) n n2 + 6n + 5 0 O2 + 6(0) + 5 = 5 1 12 + 6(1) + 5 = 1 2 2 22 + 6(2) + 5 = 21 7. (x+1)(x 2 + x+1) 3 32 + 6(3) + 5 - 3 2 8. (x - 2X3X2 + 4x + 5) 4 42 + 6(4) + 5 = 45 9. (x4 + 3)(x2 + 5x + 7) n (n+1)(n+5) 0 (0+1)(0 + 5) = 5 r (1 + 1)(1 +5) = 12 2 (2 + 1)(2 + 5) = 21 3 (3+1)(3 + 5) = 32 4 (4 + 1)(4 + 5) = 45 Challenge 1. (x + 6)(x + 2) 2. ( X -6)(x-7) 3. (2x+7)(x+3) 4. (5x+2)(2x + 3) 5. (5x + 4)(x+3) 6. (2x-5)(2x-3) 10. (6X8 + 7x4 + SXx2 + 4 Problem Solving 1. 4xft; (x+1)ft 2. -3(x2 + 9x-275) 3. 4(3x + 7);31 feet 4. (5x + 4) m; (x2 - 2) m 5. C 7. C 6. G 8. F Practice B Reading Strategies 1. (x + 2)(x + 5) 2. (x+1)(x + 8) 1. 4x2(x + 3) 2. 6t(5? - 3) 3. (x + 4)(x + 9) 4. (x + 7)(x + 2) 3. p(9p+1) 4. 4(7r4 -5f2-2) 5. (x + 3)(x + 4) 6. (x + 6)(x + 3) 5. 15p5(2p3 + 3) 7. (x-6)(x-3) 8. (x - 4)(x - 1) 6. 2m2(3m6 - 8m - 3) 9. (x-5)(x-4) 10. (x-2)(x-10) 11. (x-9)(x-2) 12. (x-8)(x-4) 13. (x + 9)(x-2) 14. (x+12)(x-2) 15. (x + 3)(x-1) 16. (x+5)(x-3) 17. (x + 6)(x-1) 18. (x + 8)(x-3) 19. (x+1)(x-6) 20. (x+5)(x-7) 21. (x+3)(x-10) 22. (x+7)(x-8) 23.(x + 2)(x-4) 24. (x + 4)(x-5) LESSON 8-3 Practice A 1. 3; 2 3. 5; 4 5. (x + 6)(x + 5) 7. 6; 2 9. 16; 1 2. 4. 6. 8. 4; 1 (x + 7)(x + 3) (x + 8)(x + 2) 5; 3 10. (x-9)(x-3) Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A14 Holt McDougal Algebra 1 25. n (n+12)(n-4) 0 (0 + 12)(0-4) = -48 1 (1 + 12)(1 -4) = -39 22 + 5(2)-24 = -10 2 (2+12)(2-4) = -28 3 32 + 5(3) - 24 = 0 3 (3 + 12)(3-4) = -15 4 42 + 5(4)-24 = 12 4 (4 + 12)(4-4) = 0 n (n + 8)(n - 3) 0 (0 + 8)(0 - 3) = -24 1 (1 +8)(1 -3) = -18 Factors 2 (2 + 8)(2-3) = -10 [TJ and [Te] 3 (3 + 8)(3 - 3) = 0 2 and 8 4 (4 + 8)(4-3)=12 n n2 + 5/7 - 24 0 O2 + 5(0) - 24 = -24 1 12 + 5(1)-24 = -18 2 Review for Mastery 1. 16; 10 Sum |4j and (x + 2)(x + 8) Practice C 2. 20; -9 1. (x + 6)(x + 4) 2. (y + 2)(y+10) 3. (a + 9)(a + 6) 4. (/7 + 15)(/7 + 3) 5. (x+12)(x + 4) 6. (c + 5)(c+10) EJJand |-20 7. (x-12)(x-4) 8. (d-11)(d-8) Inland 9. (x-2)(x-18) 10. (m-1)(m-42) 11. (x-2)(x-14) 12. (n-7)(n-5) 13. (f+7)(f-4) 14. (6+14)(b-3) 15. (x + 20)(x-8) 16. (flf + 8)(g-6) 17. (/c+18)(/c-2) 18. (x+9)(x-7) 19. (p + 2)(p-4) 20. (x+8)(x-9) 21. (<7 + 3)(</-6) 22. (x + 4)(x-8) 23. (f+3)(f-13) 24. (w+5)(w-25) and (x-4)(x-5) 4. (x+10)(x + 5) 5. (x-9)(x-4) 6. -20; 1 n2 + 8n -48 0 O2 + 8(0) - 48 = -48 1 12 + 8(1)- 48 = -39 2 22 + 8(2)- 48 = -28 3 32 + 8(3)- 48 = -15 4 42 + 8(4) - 48 = 0 Sum Factors m 00 25. (n + 12)(n-4) n Sum Factors and 20 19 and 10 8 pf and | 5 | n~ ] (x-4)(x+5) 7. -4; -3 Factors Sum [TJ and |-21 and \~~2 Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A15 Holt McDougal Algebra 1
© Copyright 2026 Paperzz