Document

Name
,
..
Date
j^^ai^%^%^5^^ ^^
Class
A
ILESSONJ froCIICe A
teKi Factoring x2 + bx + c
Factor each trinomial.
1. x2 + 5x + 6
f^AY 4i-
)IY +
^x
t-
2. x2 + 5x + 4
)I
I\xy 4t-
UY +
J^A
-i-
3. x2 + 9x + 20
(x+
^I
)(x+ )
4.x 2 + 10X+ 21
5. x2 + 11x+30
6. x2 + 10x+ 16
7. x 2 - 8 x + 1 2
8. x 2 - 8 x + 1 5
9. x2 - 17x+ 16
(*- )(*- )
10. x2 - 12x +27
11.x2- 15x + 44
13. x2 + 6x - 40
12. x2 - 13x+ 40
15. x2 + 4x- 32
14. x2 + 2x - 3
(x+
16. x 2 + 1 0 x - 2 4
17. x 2 + 1 2 x - 2 8
20. x2 - 8x - 20
22. x2 - x - 12
25. Factor nz + Qn + 5.
Complete the tables to
show that the original
polynomial and the
factored form describe
the same sequence
of numbers for
n = 0, 1, 2, 3, and 4.
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
0
1
n2 + 6n + 5
0 2 + 6(0) + 5 = 5
24. x2 - x - 2
n
0
1
2
2
3
3
4
4
19
)(x- )
21.x2-2x-48
23. x2 - 2x - 3
n
)
18. x2 + 3x- 10
(x+
19. x2 - 2x - 15
)(x-
(n+
(0+
)(n + - )
)(0+ ) = 5
Holt Algebra 1
Date
Name
Class.
Practice B
Factoring x2 + bx + c
Factor each trinomial.
1. x2 + 7x + 10
2. x + 9x + 8
3. x2 + 13x+ 36
4. x + 9x + 14
5. x2 + 7x+ 12
6. x2 + 9x+ 18
7. x2 - 9x+ 18
8. x2 - 5x + 4
9. x - 9x + 20
10. x2 - 12x+ 20
11. x2 - 11x+ 18
12. x2 - 12x+ 32
13. x2 + 7x- 18
14. x2 + 10x- 24
15. x2 + 2x- 3
16. x2 + 2x- 15
17. x2 + 5x - 6
18. x2 + 5x- 24
19. x2 - 5x- 6
20. x2 - 2x - 35
21. x - 7 x - 3 0
22. x2 - x - 56
23. x2 - 2x - 8
24. x2 - x - 20
25. Factor n2 + 5n - 24.
Show that the original
polynomial and the
factored form describe
the same sequence
of numbers for
n = 0, 1, 2, 3, and 4.
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
n
+ 5n - 24
20
n
Holt Algebra 1
Date
Name
Class.
Practice C
Factoring x2 + bx+ c
Factor each trinomial.
1. x2 + 10x + 24
2. y2 + 12y + 20
3. a2 + 15a + 54
4. h2 + 18/7 + 45
5. x2 + 16*+48
6. c + 15c+ 50
7. x2 - 16x + 48
8. d2 - 19d+ 88
9. x2 - 20x + 36
10. m2 - 43m + 42
11. x2 - 16X+28
12. n2 - 12n + 35
13. f2 + 3f-28
14. b2 + 116- 42
15. x2 + 12x- 160
16. g2 + 2g-48
17. k2 + 16/( - 36
18. x2 + 2x - 63
19. p2 - 2p - 8
20. x2 - x - 72
21. q2 -3q~ 18
22. x2 - 4x - 32
23. t2 - 10?-39
24. w2 -20w- 125
25. Factor n2 + 8n - 48.
Show that the original
polynomial and the
factored form describe
the same sequence
of numbers for
n = 0, 1, 2, 3, and 4.
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
n
8n - 48
21
n
Holt Algebra 1
Review for Mastery
1. 5x(4x-3)
2. 11a(4a + 1
3. 12(2y-3x)
4. (x + 7)(5x 2)
5. (a + 4)(3a-2)
6. (4y+1) 2
11. (x-4)(x-11)
12. (x-8)(x-5)
13. 10; 4
17. 14; 2
14. 3; 1
16. 12; 2
18. 5; 2
19. (x + 3)(x-5)
20. (x + 2)(x-10)
21. (x + 6)(x-8)
22. (x + 3)(x-4)
23. (x+1)(x-3)
24. (x + 1 )(x - 2)
15. 8; 4
7. Sx2; 4; Sx2; 4; Sx2 + 4
8. 5a2; 6; 5a2; 6; 5a2 + 6
9. (Sx2 + 2)(7x + 4)
25. 1;5
10. (10x2 + 3)(4x-5)
n
n2 + 6n + 5
0
O2 + 6(0) + 5 = 5
1
12 + 6(1) + 5 = 1 2
2
22 + 6(2) + 5 = 21
7. (x+1)(x 2 + x+1)
3
32 + 6(3) + 5 - 3 2
8. (x - 2X3X2 + 4x + 5)
4
42 + 6(4) + 5 = 45
9. (x4 + 3)(x2 + 5x + 7)
n
(n+1)(n+5)
0
(0+1)(0 + 5) = 5
r
(1 + 1)(1 +5) = 12
2
(2 + 1)(2 + 5) = 21
3
(3+1)(3 + 5) = 32
4
(4 + 1)(4 + 5) = 45
Challenge
1. (x + 6)(x + 2)
2. ( X -6)(x-7)
3. (2x+7)(x+3)
4. (5x+2)(2x + 3)
5. (5x + 4)(x+3)
6. (2x-5)(2x-3)
10. (6X8 + 7x4 + SXx2 + 4
Problem Solving
1. 4xft; (x+1)ft
2. -3(x2 + 9x-275)
3. 4(3x + 7);31 feet
4. (5x + 4) m; (x2 - 2) m
5. C
7. C
6. G
8. F
Practice B
Reading Strategies
1. (x + 2)(x + 5)
2. (x+1)(x + 8)
1. 4x2(x + 3)
2. 6t(5? - 3)
3. (x + 4)(x + 9)
4. (x + 7)(x + 2)
3. p(9p+1)
4. 4(7r4 -5f2-2)
5. (x + 3)(x + 4)
6. (x + 6)(x + 3)
5. 15p5(2p3 + 3)
7. (x-6)(x-3)
8. (x - 4)(x - 1)
6. 2m2(3m6 - 8m - 3)
9. (x-5)(x-4)
10. (x-2)(x-10)
11. (x-9)(x-2)
12. (x-8)(x-4)
13. (x + 9)(x-2)
14. (x+12)(x-2)
15. (x + 3)(x-1)
16. (x+5)(x-3)
17. (x + 6)(x-1)
18. (x + 8)(x-3)
19. (x+1)(x-6)
20. (x+5)(x-7)
21. (x+3)(x-10)
22. (x+7)(x-8)
23.(x + 2)(x-4)
24. (x + 4)(x-5)
LESSON 8-3
Practice A
1. 3; 2
3. 5; 4
5. (x + 6)(x + 5)
7. 6; 2
9. 16; 1
2.
4.
6.
8.
4; 1
(x + 7)(x + 3)
(x + 8)(x + 2)
5; 3
10. (x-9)(x-3)
Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.
A14
Holt McDougal Algebra 1
25.
n
(n+12)(n-4)
0
(0 + 12)(0-4) = -48
1
(1 + 12)(1 -4) = -39
22 + 5(2)-24 = -10
2
(2+12)(2-4) = -28
3
32 + 5(3) - 24 = 0
3
(3 + 12)(3-4) = -15
4
42 + 5(4)-24 = 12
4
(4 + 12)(4-4) = 0
n
(n + 8)(n - 3)
0
(0 + 8)(0 - 3) = -24
1
(1 +8)(1 -3) = -18
Factors
2
(2 + 8)(2-3) = -10
[TJ and [Te]
3
(3 + 8)(3 - 3) = 0
2 and 8
4
(4 + 8)(4-3)=12
n
n2 + 5/7 - 24
0
O2 + 5(0) - 24 = -24
1
12 + 5(1)-24 = -18
2
Review for Mastery
1. 16; 10
Sum
|4j and
(x + 2)(x + 8)
Practice C
2. 20; -9
1. (x + 6)(x + 4)
2. (y + 2)(y+10)
3. (a + 9)(a + 6)
4. (/7 + 15)(/7 + 3)
5. (x+12)(x + 4)
6. (c + 5)(c+10)
EJJand |-20
7. (x-12)(x-4)
8. (d-11)(d-8)
Inland
9. (x-2)(x-18)
10. (m-1)(m-42)
11. (x-2)(x-14)
12. (n-7)(n-5)
13. (f+7)(f-4)
14. (6+14)(b-3)
15. (x + 20)(x-8)
16. (flf + 8)(g-6)
17. (/c+18)(/c-2)
18. (x+9)(x-7)
19. (p + 2)(p-4)
20. (x+8)(x-9)
21. (<7 + 3)(</-6)
22. (x + 4)(x-8)
23. (f+3)(f-13)
24. (w+5)(w-25)
and
(x-4)(x-5)
4. (x+10)(x + 5)
5. (x-9)(x-4)
6. -20; 1
n2 + 8n -48
0
O2 + 8(0) - 48 = -48
1
12 + 8(1)- 48 = -39
2
22 + 8(2)- 48 = -28
3
32 + 8(3)- 48 = -15
4
42 + 8(4) - 48 = 0
Sum
Factors
m
00
25. (n + 12)(n-4)
n
Sum
Factors
and
20
19
and
10
8
pf and | 5 |
n~
]
(x-4)(x+5)
7. -4; -3
Factors
Sum
[TJ and
|-21 and
\~~2
Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.
A15
Holt McDougal Algebra 1