THE USE OF HEAT RATES IN PRODUCTION COST MODELING AND MARKET MODELING April 17, 1998 Joel B. Klein Electricity Analysis Office California Energy Commission [email protected] (916) 654-4822 DISCLAIMER “This report was prepared by California Energy Commission staff. Opinions, conclusions, and findings expressed in this report are those of the author. The report does not represent the official position of the California Energy Commission until adopted at a public meeting.” TABLE OF CONTENTS SECTIONS: I. OVERVIEW ...........................................................................................…............................ 4 II. INTRODUCTION .................................................................................................................. 5 III. TERMINOLOGY .................................................................................................................. 6 IV. HEAT RATES AS EQUATIONS ........................................................................................ 12 V. HEAT RATES IN PRODUCTION COST MODELING ................................................... 18 VI. HEAT RATES IN MARKET MODELING ....................................................................... 27 APPENDICES A. SUMMARY OF BLOCK HEAT RATE DATA B. DATA FOR HEAT RATE EQUATIONS C. INCREMENTAL HEAT RATE ERRORS D. AVERAGE TO INCREMENTAL HEAT RATE RATIOS E. A SIMPLISTIC MARKET MODEL F. FR 97 NATURAL GAS PRICE FORECAST HR-DESC.DOC; 4/17/98; PAGE 2 ACKNOWLEDGMENTS OF STAFF PARTICIPATION A special thank you to the Energy Commission staff for their contributions to this effort. Pat McAuliffe .......................................................................... Terry Ewing............................................................................. Pedro Ramos ........................................................................... Primary Consultant Technical Review Software Consultant HR-DESC.DOC; 4/17/98; PAGE 3 THE USE OF HEAT RATES IN PRODUCTION COST MODELING AND MARKET MODELING I. OVERVIEW This is a comprehensive description of heat rates as they have been applied to production cost modeling in the past and more importantly how they will apply to market modeling in the future. I define the basic terminology, describe how the data is obtained, and show how it is used in market modeling as opposed to production cost modeling. I also discuss the inherent difficulties and inaccuracies in the use of heat rate data. With the possible exceptions of Sections II and III, this is not intended for someone who is looking for a simplified definition. This report is for someone who requires a comprehensive understanding. Section II describes the scope of the report and gives an introductory definition of heat rates. Section III defines the basic terminology of heat rates and gives illustrative examples. It defines Input-Output Curves, Average Heat Rates, and Incremental Heat Rates – both Average Incremental and Instantaneous Incremental. It describes how heat rate data is measured and how block heat rate values are calculated from these measurements. Section IV describes heat rates as equations, as opposed to the block heat rates that are most typically used by engineers and utility analysts. Section V illustrates how heat rates are used in production cost modeling. It defines their use in commitment, dispatch and calculating production costs and marginal costs. It also quantifies the errors produced by using block heat rates of modeling instead of the equations that actually define these functions in a real utility. Section VI describes how the use of heat rates will change in the new market, and the modeling of that market. In each Section the concepts are illustrated using both fictitious, illustrative units and real units. Appendix A provides a summary of the block heat rate data for the slow-start thermal units for each of the three IOUs prior to divestiture: PG&E, SCE and SDG&E. This data is referenced in all sections of this report - and can prove generally useful to engineers and analysts who do work related to heat rates data. The block data is provided for Input-Output Curve values, Average Heat Rates and Incremental Heat Rates – both in table and graphical format. Appendix B provides the detailed calculations for Section IV which describes the development of the heat rate equations that correspond to the block data heat rates of Appendix A. Appendix C provides the details of the calculations for Section V that quantifies the errors caused by using block incremental heat rates in modeling, rather than the equations that more truly characterize the operation of a real utility system. Appendices D, E and F support the work of Section VI. Appendix D quantifies the differences between Incremental Heat Rates and Average Heat Rates, in order to characterize and quantify the differences between the marginal cost of the regulated and market clearing price of the deregulated markets. Appendix E is a simplistic market model, that is similar to Appendix D in its goal, except that it accomplishes the same thing in a more dynamic way that allows for a more descriptive and compete characterization of these differences. Appendix F is a summary of the Energy Commission’s 1997 Fuels Report (FR 97) gas prices that were used in Section VI that were used to convert the heat rates differences to dollar cost differences. HR-DESC.DOC; 4/17/98; PAGE 4 II. INTRODUCTION The fact that you have elected to read this paper suggests that you already have some understanding of heat rates. Most likely, this is an understanding of Average Heat Rates, whereby a heat rate of 10,000 Btu/kWh is representative of a generating unit requiring 10,000 Btu of fuel to generate one kilowatt-hour of electricity. It is probable also that you have an understanding that heat rates are a measure of efficiency whereby a unit that has an Average Heat Rate of 8,000 Btu/kWh is understood to be more efficient than the previously mentioned unit with an Average Heat Rate of 10,000 Btu/kWh -- and more desirable, all other things being equal. And, it is somewhat likely that you have some understanding of Incremental Heat Rates as being used in the dispatch process of production cost models: the Incremental Heat Rate times the fuel cost equals the cost of that next increment of power. It is much less likely that you have an understanding of the difference between Instantaneous Incremental Heat Rate and Average Incremental Heat Rates. This subtlety is not commonly understood but is essential to a comprehensive understanding of heat rates. It is also unlikely -- unless you are a production cost modeler -- that you have an understanding of the Input-Output Curve and how it relates to the Average and Incremental Heat Rates. This paper clarifies all these terms using simple illustrative examples. This paper describes how heat rates are used in production cost modeling. More significantly, it also describes the relevance of the use of heat rates in the new competitive market where a production cost model is no longer just a production cost model. It now becomes a production cost and market (bidding) model. The bulk of this paper is devoted to explaining and quantifying the differences in production cost and market modeling. An important part of this paper is the supporting analytical data which should prove valuable for future market studies. HR-DESC.DOC; 4/17/98; PAGE 5 III. TERMINOLOGY An understanding of heat rates starts with an fundamental understanding of the following terms. • • • Incremental Costs and Incremental Heat Rates Average Costs and Average Heat Rates Input-Output Curves These terms are most simply explained using an illustrative generator designated “Unit X.” This fictitious Unit has a maximum output of three-megawatts (3-MW) and a minimum output of one-megawatt (1MW). Unit X is a gas-fired thermal unit with three 1-MW blocks of generation. The heat rates and costs are shown in Table 1 on a block-by-block basis. The costs as shown in dollars per megawatt-hour ($/MWh) are based on an assumed natural gas cost of $2.50 per million Btu (MMBtu). To further simplify this explanation, Unit X is assumed to have no variable Operation and Maintenance (O&M) costs. TABLE 1: INCREMENTAL VERSUS AVERAGE COSTS FOR UNIT X INCREMENTAL COSTS BLOCK HEAT RATE COST* (MW) (Btu/kWh) ($/MWh) LEVEL (MW) AVERAGE COSTS HEAT RATE COST* (Btu/kWh) ($/MWh) 1 20,000 50 1 20,000 50 1 4,000 10 2 12,000 30 1 6,000 15 3 10,000 25 * Using a natural gas price of 2.50 $/MMBtu Incremental Costs and Heat Rates Incremental Heat Rates are a measure of the efficiency of a unit for each block (increment) of power that it generates. The Incremental heat rate of Unit X for Block 1 is 20,000 Btu/kWh; that is, Unit X requires 20,000 Btu of fuel to produce the first MW. Similarly, Unit X requires 4,000 Btu for the second MW and 6,000 Btu for the third MW. The Incremental Cost is, very simply, the cost of each block (increment) of generation. Incremental Costs are derived from Incremental Heat Rates: the Incremental Heat Rate times the fuel cost equals the Incremental Cost. For Unit X, each increment is one megawatt. The cost of the first MW generated (Block 1) is 50 $/MWh: 20,000 Btu/kWh x 2.50 $/MMBtu = 50 $/MWh. The cost of the second MW generated (Block 2) is 10 $/MWh. The cost of the third MW generated (Block 3) is 15 $/MWh. Average Costs and Heat Rates The “Average Cost” is subtler than Incremental Cost but is as simple as calculating the average cost of two oranges bought at different prices. If one orange costs $50 and the second costs $10, you easily realize that you paid an average of $30 per orange -- and probably also suspect that you’re paying too much for oranges. Both the Average Heat Rate and the Average Cost are calculated similarly. HR-DESC.DOC; 4/17/98; PAGE 6 For Block 1, the Average Heat Rate (and Average Cost) is the same as the Incremental Heat Rate (and Incremental Cost) as they are the same the increment. The Average Heat Rate at 2-MW (Level 2) is the average of Block 1 and Block 2 Heat Rates: (20,000+4,000)/2 = 12,000 Btu/kWh. The Average Heat Rate of generating 3-MW is the average of Blocks 1, 2 and 3: (20,000+4,000+ 6,000)/3 = 10,000 Btu/kWh. In this example, only simple averages are used since all block sizes are the same. For a unit with unequal block sizes a weighted average would be used. The cost of generating at 2-MW is exactly comparable: the average of cost of Block 1 and Block 2 is 30 $/MWh: (50 + 10)/2 = 30 $/MWh – remember the oranges. Similarly, the cost of generating at the level of 3-MW is 25 $/MWh: (50+10+15)/3 = 25 $/MWh. Input-Output Curve In the engineering world, the Input-Output Curve is the mechanism that defines the relationship between the Incremental and Average Heat Rates. It is also the data that is actually measured in the field. The Average and Incremental Heat Rates are not measured directly. The Input-Output Curve is measured and the Average and Incremental Heat Rates are constructed from it. Figure 1 illustrates the Input-Output Curve for Unit X. UNIT X INPUT-OUTPUT CURVE INPUT (1000 Btu/hr) 30,000 25,000 20,000 15,000 10,000 5,000 0 0 1 2 3 OUTPUT (MW) Figure 1 The Input-Output Curve is constructed by measuring the fuel (the input) required to maintain various levels of generation (the output). For Unit X, the engineers would start by measuring the fuel consumed to maintain an output of 1-MW, finding this to be 20,000 Btu/hr. They would then replicate this measurement for 2 and 3 MW, and find that Unit X was consuming 24,000 and 30,000 Btu/hr, respectively. Based on this information, the engineers would construct Figure 1 and could then calculate the Incremental and Average Heat Rates as follows. The calculation of Average Heat Rate from the Input-Output Curve it is the simplest to explain. The Average Heat Rate at a level of generation is equal to the corresponding input in fuel divided by the HR-DESC.DOC; 4/17/98; PAGE 7 power generated. For Unit X at 1-MW this is 20,000,000 Btu/hr divided by the output of 1 MW: 20,000,000 Btu/hr / 1 MW = 20,000 Btu/kWh. The Average Heat Rate at 2-MW is, again, the fuel consumed divided by the output power: 24,000,000 Btu/hr / 2 MW = 12,000 Btu/kWh. The Average Heat Rate at 3-MW is calculated in the same way: 30,000,000 Btu/hr / 3 MW = 10,000 Btu/kWh. At this point, the reader is better prepared to appreciate that the name “Average Heat Rate” comes from the measuring of the Input-Output curve. When the engineers measure a generating unit to construct the Input-Output curve, they note that there are deviations over time in the number of Btu to maintain the respective output power. They contend with this problem by averaging these different measurements to ascertain the average Input-Output Curve. Accordingly, they refer to the heat rate that is subsequently derived from this average value as the Average Heat Rate. The Incremental Heat Rate is similar but confined to the “increment” in question, only. The first thing that has to be understood is that our Block 1 Incremental Heat Rate is not truly an Incremental Heat Rate. It is an Average Heat Rate in “Incremental Heat Rate clothing.” This can be explained using Unit X. The “so-called” Incremental Heat Rate at Block 1 is shown as 20,000 Btu/kWh -- note that this is equal in value to the Average Incremental Heat Rate of 20,000 Btu/kWh. It is not just equal in value, it is the identical quantity. This format facilitates the calculations of heat rates – for example, Tables 1 and 2. And it is how the data is entered into models. This is all done for convenience but it can not be an Incremental Heat Rate. Incremental Heat Rates, by definition, are used for dispatch decisions. The 20,000 Btu/kWh Incremental Heat Rate it is never used in a dispatch decision and therefore can never be considered a true Incremental Heat Rate. This will become clearer in later discussions. The first real “increment” is between Blocks 1 and 2. This is shown as a Block 2 value, but represents the Average Incremental Heat Rate from Block 1 to Block 2. Looking at the Input-Output Curve of Unit X, we see that the input fuel requirement changes from 20,000 to 24,000 Btu/hr in moving from Block 1 to Block 2. The incremental change to achieve this additional MW of output is an increase of 4,000 Btu/hr: 24,000 - 20,000 = 4,000 Btu/hr. We define the Incremental Heat Rate as the incremental change in input divided by the incremental change in output: 4,000 Btu/hr / 1 MW = 4,000 Btu/kWh. The calculation for the Incremental Heat Rate for the increment from Block 2 to Block 3 is similar: (30,000 - 24,000) / 1 MW = 6,000 Btu/kWh. Table 2 summarizes all these results. Figure 2A, on the following page, shows the data of Table 2 combined with the corresponding figures. This is a format to which we will repeatedly return in subsequent sections and you need to be completely comfortable with it. Figure 2B shows the corresponding cost data for reference. TABLE 2: SUMMARY OF HEAT RATE DATA FOR UNIT X CAPACITY (MW) INPUT-OUTPUT CURVE (1000 Btu/hr) INCREMENTAL HEAT RATE (Btu/kWh) AVERAGE HEAT RATE (Btu/kWh) BLOCK 1 1 20,000 20,000 20,000 BLOCK 2 2 24,000 4,000 12,000 BLOCK 3 3 30,000 6,000 10,000 HR-DESC.DOC; 4/17/98; PAGE 8 FIGURE 2A: HEAT RATE PLOTS FOR UNIT X UNIT X AVERAGE HEAT RATE Input-Output Incremental Average Output Curve Heat Rate Heat Rate (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 BLOCK 2 BLOCK 3 1 2 3 20,000 24,000 30,000 20,000 4,000 6,000 20,000 12,000 10,000 HEATRATE (Btu/kWh) 20,000 15,000 10,000 5,000 0 0 1 2 3 OUTPUT (MW) 30,000 20,000 25,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) UNIT X INCREMENTAL HEAT RATE UNIT X INPUT-OUTPUT CURVE 20,000 15,000 10,000 5,000 15,000 10,000 5,000 0 0 0 1 2 3 0 1 2 3 OUTPUT (MW) OUTPUT (MW) FIGURE 2B: COST PLOTS FOR UNIT X UNIT X AVERAGE COST Output (MW) BLOCK 1 BLOCK 2 BLOCK 3 Input-Output Incremental Average Cost Cost Cost ($/hr) ($/MWh) ($/MWh) 1 2 3 50 60 75 50 10 15 50 30 25 COST ($/MWh) 50 40 30 20 10 0 0 1 2 3 OUTPUT (MW) UNIT X INPUT-OUTPUT COST 80 UNIT X INCREMENTAL COST 50 70 40 COST ($/MWh) COST ($/hr) 60 50 40 30 20 30 20 10 10 0 0 0 1 2 OUTPUT (MW) 3 0 1 2 3 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE 9 Thus far, the examples have been limited solely to the fictitious Unit X. It is now time to examine real units in order to get a feel for the real thing. I have selected as examples both the most efficient unit in the PG&E1 system, Moss Landing 7, and the least efficient unit in the PG&E system, Hunters Point 3. These units are shown below in the same format as Figure 2A. Figure 3 shows Moss Landing 7 with a full load Average Heat Rate of 8,917 Btu/kWh. Remembering that a 100 percent efficient generating unit would require 3,413 Btu/kWh, we can calculate the efficiency of Moss Landing 7 as 38.3 percent: 3,413 / 8,917 = 38.3%. FIGURE 3: MOSS LANDING 7 HEAT RATES SUMMARY OF HEAT RATE DATA UNIT: MOSS LANDING 7 Duke Energy Nov. 1997 Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK BLOCK BLOCK BLOCK BLOCK 1 7% 2 25% 3 50% 4 80% 5 100% 50 185 370 591 739 997,950 1,966,735 3,429,160 5,296,542 6,589,663 19,959 7,176 7,905 8,450 8,737 19,959 10,631 9,268 8,962 8,917 HEAT RATE (Btu/kWh) INCREMENTAL HEAT RATE 20,000 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 400 600 800 600 800 OUTPUT (MW) INPUT-OUTPUT CURVE AVERAGE HEAT RATE 20,000 HEAT RATE (Btu/kWh) 7,000,000 INPUT (1000 Btu/hr) 200 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 200 400 OUTPUT (MW) 600 800 0 200 400 OUTPUT (MW) Figure 4 shows Hunter Point 3 with a full load Average Heat Rate of 12,598 Btu/kWh, which corresponds to an efficiency of 27.1 percent: 3,413 / 12,598 = 27.1%. At full load, Hunters Point 3 will consume 41 percent more fuel to produce a gigawatt-hour (GWh) as Moss Landing 7: 12,598 / 8,917 = 1.41. 1 This unit was announced on November 7, 1998 as divested to Duke Energy, but for the organizational purposes of this report, it -- and all other IOU divested units -- will be referred to as belonging to the IOU. HR-DESC.DOC; 4/17/98; PAGE 10 Also, Hunters Point 3 will have a much more expensive incremental cost. Let’s compare the second block of each unit. The Hunters Point 3 Incremental Heat Rate for Block 2 is 9,883 Btu/kWh. The corresponding Incremental Heat Rate for Moss Landing 7 is 7,176 Btu/kWh. The relative cost for Hunters Point 3 is therefore 38 percent greater: 9,883 / 7,176 = 1.38. FIGURE 4: HUNTERS POINT 3 HEAT RATES SUMMARY HEAT RATE DATA INCREMENTAL HEAT RATE UNIT: HUNTERS POINT 3 Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK BLOCK BLOCK BLOCK BLOCK 1 9% 2 25% 3 50% 4 80% 5 100% 10 27 54 86 107 210,370 378,378 671,436 1,063,476 1,347,986 21,037 9,883 10,854 12,251 13,548 21,037 14,014 12,434 12,366 12,598 HEAT RATE (Btu/kWh) 25,000 20,000 15,000 10,000 5,000 0 0 INPUT-OUTPUT CURVE 40 60 80 OUTPUT (MW) 100 120 100 120 AVERAGE HEAT RATE 25,000 1,400,000 1,200,000 HEAT RATE (Btu/kWh) INPUT (1000 Btu/hr) 20 1,000,000 800,000 600,000 400,000 200,000 0 20,000 15,000 10,000 5,000 0 0 20 40 60 80 OUTPUT (MW) 100 120 0 20 40 60 80 OUTPUT (MW) Appendix A provides a complete set of these summary heat rate data sheets for all of the slow-start thermal units for the three IOUs. These can prove useful for future analytical efforts involving heat rates. HR-DESC.DOC; 4/17/98; PAGE 11 IV. HEAT RATES AS EQUATIONS The above heat rate definitions are described and illustrated in terms of blocks. Engineers make use of these blocks as “piece-wise linear representations” of the actual heat rate curves that truly characterize the units. In the case of Unit X, these “pieces” were 1-MW each. This was useful for our description and is indeed how the data is typically used by modelers and by engineers in general. This misrepresents the fact, however, that the heat rates are really continuous -- which is equivalent to saying that the blocks are infinitely small. It is these continuous equations that are used to dispatch units in a real system -- not the block data. Input-Output Curve The above Input-Output Curve for Unit X is more precisely described by the equation: y = 1000x2 + 1000x + 18000 Where: x = Output in MW y = Input in 1000 Btu/hr Setting x equal to the values of 1, 2 and 3 MW, results in y values of 20,000, 24,000 and 30,000 in 1000 Btu/hr. These points correspond exactly to the points in Table 2 and Figure 2, as would be expected. Incremental Heat Rate Curve The Incremental Heat Rate (IHR) Curve is by definition the amount of energy that must be consumed by the plant in order to achieve an incremental change in output -- in this case, an infinitesimal change in output. This is mathematically defined as the first derivative of the Input-Output Curve: IHR = dy/dx = 2000x + 1000 Setting x equal to 1, 2 and 3 MW, results in IHRs of 3,000, 5,000 and 7,000 Btu/kWh. These points are Instantaneous Incremental Heat Rates and do not correspond directly to any of the above Figures and Tables that were average values for each block (Average Incremental Heat Rates). For comparison, the Average Incremental Heat Rates can also be calculated using the Input-Output Curve. The calculation consists of dividing the incremental Input-Output value (Btu/hr) by the corresponding increment of output (MW). (y2 - y1)/ (x2-x1) = [(1000 x22 + 1000 x2 + 18000) - (1000 x12 + 1000 x1 + 18000)] / (x2-x1) = [1000(x22- x12) + 1000(x2-x1)]/ (x2-x1) = 1000[(x22- x12) + (x2 - x1)]/ (x2-x1) = 1000[(x22- x12)/(x2-x1) + (x2 - x1)/(x2-x1)] = 1000[(x2+x1)(x2-x1)/(x2-x1) + (x2 - x1)/(x2-x1)] = 1000(x2 + x1 + 1) Where: x1 = Minimum Output (MW) of Block x2 = Maximum Output (MW) of Block HR-DESC.DOC; 4/17/98; PAGE 12 If values are entered for x2 and x1 for Block 2 and 3, then the appropriate values of 4,000 and 6,000 Btu/kWh in Table 2 result. For Block 2: x1 = 1MW and x2 = 2 MW. IHRBlock 2 = 1000(x2 + x1 + 1) = 1000(2+1+1) = 4,000 Btu/kWh For Block 3: x1 = 2 MW and x2 = 3 MW. IHRBlock 2 = 1000(x2 + x1 + 1) = 1000(3+2+1) = 6,000 Btu/kWh Average Heat Rate Curve The Average Heat Rate (AHR) Curve, for Unit X, is defined as the Input-Output Curve divided by the output capacity at that point: AHR = y/x = (1000x2 + 1000x + 18000) / x = 1000x + 1000 + 18000/x Setting x equal to 1, 2 and then 3 MW, results in AHRs of 20,000, 12,000 and 10,000 Btu/kWh. These points correspond directly to the above Figures and Tables, as expected. Figure 5 illustrates these equations. This is done at 0.1 MW intervals for convenience, as we can not reasonably illustrate this for an infinite number of points -- or even 200 points (0.01 MW intervals). Though limited in this way, the representation is quite adequate to illustrate that these curves (equations) are much smoother and continuous than the block representation of Figure 2, and therefore more accurately reflect the real data. Note that the equation describing each curve is show on the respective graph. As before, I have included similar data for real units. Figure 6 shows this heat rate data for Moss Landing 7, the most efficient unit in the PG&E system. Figure 7 shows the same data for Hunters Point 3, the least efficient unit in the PG&E system. Note how differently these curves look from their block counter parts. Again, I have included the equation that was used to develop each graph. HR-DESC.DOC; 4/17/98; PAGE 13 FIGURE 5: UNIT X - AS EQUATIONS (ILLUSTRATED AT 0.1 MW INCREMENTS) INCREMENTAL HEAT RATE (Btu/kWh) AVERAGE HEAT RATE (Btu/kWh) BLOCK 1 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 20,000 20,310 20,640 20,990 21,360 21,750 22,160 22,590 23,040 23,510 24,000 24,510 25,040 25,590 26,160 26,750 27,360 27,990 28,640 29,310 30,000 3,000 3,200 3,400 3,600 3,800 4,000 4,200 4,400 4,600 4,800 5,000 5,200 5,400 5,600 5,800 6,000 6,200 6,400 6,600 6,800 7,000 20,000 18,464 17,200 16,146 15,257 14,500 13,850 13,288 12,800 12,374 12,000 11,671 11,382 11,126 10,900 10,700 10,523 10,367 10,229 10,107 10,000 BLOCK 2 BLOCK 3 UNIT X AVERAGE HEAT RATE 20,000 HEATRATE (Btu/kWh) (MW) INPUT-OUTPUT CURVE (1000 btu/hr) CAP 15,000 10,000 y/x = 1000x + 1000 + 18000/x 5,000 0 1.0 2.0 OUTPUT (MW) 2.5 3.0 UNIT X INCREMENTAL HEAT RATE UNIT X INPUT-OUTPUT CURVE 30,000 8,000 25,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 1.5 20,000 2 y = 1000x + 1000x + 18000 15,000 10,000 6,000 4,000 dy/dx = 2000x + 1000 2,000 0 1.0 1.5 2.0 OUTPUT (MW) 2.5 3.0 1.0 1.5 2.0 OUTPUT (MW) 2.5 3.0 HR-DESC.DOC; 4/17/98; PAGE 14 FIGURE 6: MOSS LANDING 7 - AS EQUATIONS CAP BLOCK 3 BLOCK 4 BLOCK 5 (Btu/kWh) (Btu/kWh) 7,000,000 50 65 80 95 110 125 140 155 170 185 200 215 230 245 260 275 290 305 320 335 350 370 385 400 415 430 445 460 475 490 505 520 535 550 565 580 591 606 621 636 651 666 681 696 711 726 739 997,950 1,100,631 1,205,167 1,310,893 1,417,782 1,525,808 1,634,944 1,745,164 1,856,442 1,968,751 2,082,065 2,196,358 2,311,603 2,427,775 2,544,846 2,662,791 2,781,583 2,901,195 3,021,603 3,142,778 3,264,695 3,428,360 3,551,905 3,676,105 3,800,932 3,926,361 4,052,365 4,178,918 4,305,993 4,433,565 4,561,606 4,690,091 4,818,992 4,948,285 5,077,942 5,207,937 5,303,467 5,433,986 5,564,771 5,695,797 5,827,035 5,958,461 6,090,048 6,221,770 6,353,600 6,485,511 6,599,881 6,847 6,929 7,009 7,087 7,164 7,239 7,312 7,384 7,453 7,521 7,587 7,652 7,714 7,775 7,834 7,892 7,947 8,001 8,053 8,103 8,152 8,214 8,258 8,301 8,342 8,381 8,419 8,455 8,489 8,521 8,551 8,580 8,607 8,632 8,655 8,677 8,692 8,710 8,727 8,742 8,756 8,767 8,777 8,785 8,792 8,796 8,799 19,959 16,933 15,065 13,799 12,889 12,206 11,678 11,259 10,920 10,631 10,410 10,216 10,050 9,909 9,788 9,683 9,592 9,512 9,443 9,381 9,328 9,268 9,226 9,190 9,159 9,131 9,106 9,085 9,065 9,048 9,033 9,019 9,007 8,997 8,988 8,979 8,962 8,967 8,961 8,956 8,951 8,947 8,943 8,939 8,936 8,933 8,971 6,000,000 INPUT (1000 Btu/hr) (1000 Btu/hr) 5,000,000 4,000,000 3,000,000 2,000,000 y = -0.0013x3 + 2.955x2 + 6561.2x + 662025 1,000,000 0 0 100 200 300 400 500 OUTPUT (MW) 600 700 800 700 800 INCREMENTAL HEAT RATE Moss Landing 7 9,000 HEAT RATE (Btu/kWh) BLOCK 2 (MW) INPUT-OUTPUT CURVE Moss Landing 7 8,500 8,000 7,500 7,000 2 dy/dx = -0.0039x +5.91x + 6561.2 6,500 6,000 0 100 200 300 400 500 OUTPUT (MW) 600 AVERAGE HEAT RATE Moss Landing 7 20,000 HEAT RATE (Btu/kWh) BLOCK 1 INPUT-OUTPUT INCREMENTAL AVERAGE CURVE HEAT RATES HEAT RATES 18,000 16,000 14,000 y/x = -0.0013x2 + 2.955x + 6561.2 +662025/x 12,000 10,000 8,000 0 100 200 300 400 500 OUTPUT (MW) 600 700 800 HR-DESC.DOC; 4/17/98; PAGE 15 FIGURE 7: HUNTERS POINT 3 - AS EQUATIONS INPUT-OUTPUT CURVE Hunters Point 3 INPUT-OUTPUT INCREMENTAL AVERAGE CAP CURVE HEAT RATES HEAT RATES BLOCK 3 BLOCK 4 BLOCK 5 (Btu/kWh) 10 12 14 16 18 20 22 24 26 27 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 107 210,405 229,503 248,774 268,218 287,836 307,629 327,598 347,742 368,064 378,292 409,241 430,098 451,134 472,351 493,748 515,328 537,090 559,035 581,164 603,477 625,976 648,660 671,531 694,589 717,836 741,271 764,895 788,709 812,714 836,911 861,300 885,881 910,656 935,625 960,789 986,149 1,011,704 1,037,457 1,063,408 1,089,556 1,115,904 1,142,452 1,169,200 1,196,149 1,223,300 1,250,653 1,278,210 1,305,970 1,347,994 9,506 9,592 9,679 9,766 9,853 9,940 10,028 10,117 10,205 10,250 10,384 10,473 10,563 10,654 10,744 10,835 10,927 11,018 11,110 11,203 11,296 11,389 11,482 11,576 11,670 11,765 11,860 11,955 12,050 12,146 12,242 12,339 12,436 12,533 12,631 12,729 12,827 12,926 13,025 13,124 13,224 13,324 13,424 13,525 13,626 13,727 13,829 13,931 14,085 20,037 19,125 17,770 16,764 15,991 15,381 14,891 14,489 14,156 14,014 13,641 13,441 13,269 13,121 12,993 12,883 12,788 12,705 12,634 12,572 12,520 12,474 12,434 12,403 12,376 12,355 12,337 12,324 12,314 12,308 12,304 12,304 12,306 12,311 12,318 12,327 12,338 12,351 12,366 12,381 12,399 12,418 12,438 12,460 12,483 12,507 12,531 12,557 12,598 1,400,000 INPUT (1000 Btu/hr) (Btu/kWh) 1,200,000 1,000,000 800,000 600,000 400,000 200,000 3 2 Y = 0.0144x + 21.077X + 9080x + 117483 0 0 20 40 60 80 100 120 OUTPUT (MW) INCREMENTAL HEATRATE Hunters Point 3 15000 14000 HEATRATE (Btu/kWh) BLOCK 2 (1000 Btu/hr) 13000 12000 11000 10000 dy/dx = 0.0432x2 + 42.154x + 9080 9000 8000 0 20 40 60 OUTPUT (MW) 80 100 120 AVERAGE HEATRATE Hunters Point 3 22,000 HEATRATE (Btu/kWh) BLOCK 1 (MW) 20,000 18,000 y/x = 0.0144x2 + 21.077x + 9080 + 117483/x 16,000 14,000 12,000 10,000 0 20 40 60 80 100 120 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE 16 Appendix B provides a precise description of how to construct the heat rate curves for the real-world units of the three IOUs, but the following is a brief overview of the process: Input-Output Curve The Input-Output Curve is defined by the third order equation: y= ax3 + bx2+ cx + d Where: x = Output in MW y = Input in Btu/hr a-d = The coefficients that define the equation Incremental Heat Rate Curve The Instantaneous Incremental Heat Rate (IHR) is defined as the first derivative of the Input-Output Curve: IHR = dy/dx = 3ax2 + 2bx + c As before, the Average Incremental Heat Rates can also be calculated for comparison, using the InputOutput Curve. The calculation consists of dividing the incremental Input-Output value (Btu/hr) by the corresponding increment of output (MW). (y2 - y1)/ (x2-x1) = [(ax23 + bx22 + cx2 + d) - (ax13 + bx12 + cx1 + d)] / (x2-x1) = [a(x23- x13) + b(x22- x12) + c(x2 - x1)]/ (x2 - x1) = a(x22 + x2 x1 + x12) + b(x2 + x1) + c Where: x1 = Minimum Output of Block x2 = Maximum Output of Block Average Heat Rate Curve The Average Heat Rate (AHR) is defined as the Input-Output Curve divided by the output (x). AHR = y/x = (ax3 + bx2 + cx + d) / x = ax2 + bx + c + d/x Table B-2 in Appendix B delineates the coefficients, a - d, for constructing each of the above heat rate curves for all of the three IOU slow-start units. HR-DESC.DOC; 4/17/98; PAGE 17 V. HEAT RATES IN PRODUCTION COST MODELING This section discusses heat rates as used in traditional production cost modeling. The next section will discuss the use of heat rates as related to market modeling. Most typically, heat rates are provided to the modelers as Average Heat Rates in block form and entered in that same format. For the Energy Commission, the block sizes are typically 25, 50, 80 and 100 percent of the maximum capacity, as well as the minimum capacity level. It some instances, however, the data is provided to the modeler or entered into the model in any of the following forms. • • • • Block Average Heat Rates Average Heat Rates as equations Block (Average) Incremental Heat Rates Input-Output Curves Most models can take Block Average Heat Rates or Block (Average) Incremental Heat Rates (e.g., UPLAN and Elfin). A few also have the option to make use of the Input-Output Curve (e.g., Elfin). Regardless of the form in which the model receives the heat rate data, it will create whatever additional heat rates it needs to complete its functions. The heat rate data as provided by the utility is a simplistic representation of the actual measured data. The original data is a collection of measurements, taken over a period of time. This data must be fit to heat rate equations, that can only approximate the original data points. In almost all cases the data is provided as block heat rates which are “piece-wise linear representations” of the heat rate equations. The data provided to the modelers is therefore a simplification of a curve that approximates the actual data. In addition, the data can be distorted due to inaccuracies in transcription or errors in the data manipulation. All data is suspect and should always be inspected for veracity. If the data looks somehow unlikely, try to obtain the data in a form as close to the original data as possible. Heat Rates are used in the production cost model for four purposes: • • • • Commitment Dispatch Marginal Cost Production Cost Regardless of the form in which the heat rate data is entered into the model, it is used to create the necessary Incremental Heat Rates. The Incremental Heat Rates are then used to determine dispatch (which block of which unit is used next) and marginal cost (the cost of the last unit that was used to meet load in that hour). Contrary to your intuition, Average Heat Rates as input to the model are not used to calculate production cost. Incremental Heat Rates are used to construct another set of Average Heat Rates, that are then used for calculating production costs. The Average Heat Rates as input to the model are in some models used for commitment (Elfin uses best Average Heat Rate). But other models do not even use them for this purpose. UPLAN, for example, has a separate entry for this purpose, designated “Long-Run Average Heat Rate” which is the modeler’s best estimate as to how the unit will perform over the period being modeled. HR-DESC.DOC; 4/17/98; PAGE 18 Input-Output Curves As described above, this curve most closely represents the original measured data. It is typically a slightly sloping upward curve, that looks almost like a straight line, and it can therefore be easily and accurately fit to an equation: typically a third-order equation. Figure 8 shows the Input-Output Curve for Unit X in equation form (from Figure 5) superimposed over the block form (from Figure 2). Due to the almost linear nature of this curve, the differences are quite small -- and even difficult to see in the graph. The Modeling representation is two straight lines. The Actual data is an equation. UNIT X INPUT-OUTPUT CURVE INPUT (1000 Btu/hr) 30,000 28,000 MODELING 26,000 24,000 ACTUAL 22,000 20,000 1 1.5 2 OUTPUT (MW) 2.5 3 Figure 8 If the Input-Output Curve is used directly in the model, it is entered as a third order equation, as described above. The model will then use this Curve (“Actual” in Figure 8) to create the necessary block Incremental Heat Rates (“Modeling” in Figure 8), which provide the very same results as if the Incremental Heat Rate blocks had been entered directly. Incremental Heat Rates In the model, the Incremental Heat Rates are used in block form, designated Average Incremental Heat Rates. The block form is used, rather than the continuous curves of the equations, to make the computational time reasonable. As the number of blocks is increased, the computational time increases. If continuous curves are used, the block size goes to zero, and the number of calculations tends towards infinity. Average Incremental Heat Rates are generally drawn as shown in Figure 2A, which is reiterated here as Figure 9. But this is not a correct representation of the Average Incremental Heat Rate. They should really be drawn as shown Figure 10. This confusion arises from the fact that modelers are accustomed to using and manipulating data as shown in Tables 1 and 2. The representation of Figure 9 seems like the likely representation of this data -- and it is convenient for most uses -- but it is not precise. Figure 10 in the more accurate representation of Average Incremental Heat Rate. HR-DESC.DOC; 4/17/98; PAGE 19 UNIT X INCREMENTAL HEAT RATE TYPICAL UNIT X INCREMENTAL HEAT RATE CORRECTED HEATRATE (Btu/kWh) HEATRATE (Btu/kWh) 20,000 15,000 10,000 5,000 15,000 10,000 5,000 0 0 1 Figure 9 20,000 1.5 2 OUTPUT (MW) 2.5 1 3 1.5 2 OUTPUT (MW) 2.5 3 Figure 10 As previously explained, the model does not use the 20,000 Btu/kWh as an Incremental Heat Rate, as it is not used in dispatch decisions. Unit X is committed at its minimum generation level (Block 1 level of 1MW) and only the values of 4,000 Btu/kWh (from 1 to 2 MW) and 6,000 Btu/kWh (from 2 to 3 MW) are used in the dispatch decisions. Although Figure 10 is an accurate representation of the Average Incremental Heat Rates as used in models, it is not the true representation of the Incremental Heat Rate used in the dispatch of the units in a real system, as explained in the previous section. The continuous Incremental Heat Rate equations are the true representation that is used in the dispatch of a real system. The block Incremental Heat Rates of Figure 10 used in modeling are known more precisely as Average Incremental Heat Rates, as they represent the average value over the block. The Incremental Heat Rates of the equations are used in the actual dispatch of real units are known as the Instantaneous Incremental Heat Rates. Figure 11 compares the “Modeling” representation (Average Incremental Heat Rate) to the “Actual” heat rates used in dispatch (Instantaneous Incremental Heat Rate). The inherent assumption in using the modeling heat rate data is that on average it will emulate the actual heat rate data. That is, over time, the modeling approximation will be sometimes low and sometimes high but will average out. Unfortunately, this is not strictly true for Incremental Heat Rates data. There are two areas of concern: (1) the dispatch decision (2) the calculation of marginal cost. If the blocks are small and are of comparable size, the dispatch error is probably reasonably small. Unfortunately, the block sizes are commonly different since the unit sizes are different. In PG&E, for example, unit sizes vary from 52 MW to 739 MW. A block size that is set at 25 percent, is 13 MW in one case and 185 MW in the second case. In the case of marginal cost, errors will commonly occur and will be most pronounced at the edges of the blocks. Figure 11 illustrates these errors for our Unit X, comparing the block representation to the continuous representation (which for computational convenience is sampled as 0.1 MW blocks). The applicable errors are 33 % at 1-MW, -20% at 2-MW and -14.3% at 3-MW. HR-DESC.DOC; 4/17/98; PAGE 20 FIGURE 11: UNIT X - COMPARING INCREMENTAL HEAT RATES BLOCK 1 BLOCK 2 BLOCK 3 INCREMENTAL HEAT RATES ACTUAL MODELING ERROR (MW) (Btu/kWh) (Btu/kWh) 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3,000 3,200 3,400 3,600 3,800 4,000 4,200 4,400 4,600 4,800 5,000 5,200 5,400 5,600 5,800 6,000 6,200 6,400 6,600 6,800 7,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 MODELING vs. ACTUAL INCREMENTAL HEAT RATES (%) 33.3% 25.0% 17.6% 11.1% 5.3% 0.0% -4.8% -9.1% -13.0% -16.7% -20.0% 15.4% 11.1% 7.1% 3.4% 0.0% -3.2% -6.3% -9.1% -11.8% -14.3% 10,000 9,000 ACTUAL HEAT RATE (Instantaneous incremental) 8,000 HEAT RATES (Btu/kWh) OUTPUT 7,000 6,000 5,000 4,000 3,000 MODELING HEAT RATE (Average Incremental) 2,000 1,000 0 1.0 1.5 2.0 2.5 3.0 OUPTPUT (MW) Figures 12 and 13 show this same data for our previously identified real illustrative units, Moss Landing 7 and Hunters Point 3. Figure 12 compares the Modeling data of Figure 3 to the Actual equations of Figure 6. Figure 13 compares the Modeling data of Figure 4 to the Actual equations of Figure 7. Table 3 summarizes these results for Unit X, Moss Landing 7 and Hunters Point 3 along with comparable data for the units in the IOU systems (pre-divestiture). The supporting data and calculations for the IOU system are shown in Appendix C. The Table shows both the most positive and most negative errors for each case. Ignoring the errors for Unit X, which are for illustrative purposes only, the largest errors are still significant. PG&E shows maximum errors of +6.0 and -8.6 percent. SCE shows a maximum errors of +3.4 and -5.4 percent. An examination of the data in Appendix C, however, shows that for the most part the errors are only a few percent. TABLE 3: SUMMARY OF INCREMENTAL HEAT RATE ERRORS PG&E SCE SDG&E Moss Landing 7 Hunters Point 3 UNIT X POSITIVE 6.0% 3.4% 0.9% 4.8% 5.8% 33.3% MAXIMUM ERRORS (%) NEGATIVE -8.6% -5.4% -5.4% -4.6% -5.9% -20.0% HR-DESC.DOC; 4/17/98; PAGE 21 FIGURE12: MOSS LANDING 7 - COMPARING INCREMENTAL HEAT RATES CAP ACTUAL HEAT RATE CURVE INSTANTANEOUS INCREMENTAL HEATRATE INCREMENTAL HEAT RATES ACTUAL MODELING ERROR (MW) (Btu/kWh) (Btu/kWh) (%) BLOCK 4 BLOCK 5 7,176 7,176 7,176 7,176 7,176 7,176 7,176 7,176 7,176 7,176 7,905 7,905 7,905 7,905 7,905 7,905 7,905 7,905 7,905 7,905 7,905 7,905 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,737 8,737 8,737 8,737 8,737 8,737 8,737 8,737 8,737 8,737 4.8% 3.6% 2.4% 1.2% 0.2% -0.9% -1.9% -2.8% -3.7% -4.6% 4.2% 3.3% 2.5% 1.7% 0.9% 0.2% -0.5% -1.2% -1.8% -2.4% -3.0% -3.8% 2.3% 1.8% 1.3% 0.8% 0.4% -0.1% -0.5% -0.8% -1.2% -1.5% -1.8% -2.1% -2.4% -2.6% -2.8% 0.3% 0.1% -0.1% -0.2% -0.3% -0.5% -0.6% -0.6% -0.7% -0.7% 8,500 8,000 7,500 2 dy/dx = -0.0039x +5.91x + 6561.2 7,000 6,500 6,000 0 100 200 300 400 500 OUTPUT (MW) 600 700 800 700 800 MODELING HEAT RATE BLOCKS AVERAGE INCREMENTAL HEATRATE 9,000 HEATRATE (Btu/kWh) BLOCK 3 6,847 6,929 7,009 7,087 7,164 7,239 7,312 7,384 7,453 7,521 7,587 7,652 7,714 7,775 7,834 7,892 7,947 8,001 8,053 8,103 8,152 8,214 8,258 8,301 8,342 8,381 8,419 8,455 8,489 8,521 8,551 8,580 8,607 8,632 8,655 8,677 8,692 8,710 8,727 8,742 8,756 8,767 8,777 8,785 8,792 8,796 8,799 8,500 8,000 7,500 7,000 6,500 6,000 0 100 200 300 400 500 OUTPUT (MW) 600 MODELING vs. ACTUAL Moss Landing 7 9,000 HEATRATE (Btu/kwh) BLOCK 2 50 65 80 95 110 125 140 155 170 185 200 215 230 245 260 275 290 305 320 335 350 370 385 400 415 430 445 460 475 490 505 520 535 550 565 580 591 606 621 636 651 666 681 696 711 726 739 HEATRATE (Btu/kWh) 9,000 BLOCK 1 ACTUAL HEAT RATE (Instantaneous Incremental) 8,500 8,000 7,500 MODELING HEAT RATE (Average Incremental) 7,000 6,500 6,000 0 100 200 300 400 500 OUTPUT (MW) 600 700 800 HR-DESC.DOC; 4/17/98; PAGE 22 FIGURE13: HUNTERS POINT 3 - COMPARING INCREMENTAL HEAT RATES BLOCK 3 BLOCK 4 BLOCK 5 (Btu/kWh) (Btu/kWh) (%) 15,000 10 12 14 16 18 20 22 24 26 27 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 107 9,506 9,592 9,679 9,766 9,853 9,940 10,028 10,117 10,205 10,250 10,384 10,473 10,563 10,654 10,744 10,835 10,927 11,018 11,110 11,203 11,296 11,389 11,482 11,576 11,670 11,765 11,860 11,955 12,050 12,146 12,242 12,339 12,436 12,533 12,631 12,729 12,827 12,926 13,025 13,124 13,224 13,324 13,424 13,525 13,626 13,727 13,829 13,931 14,034 14,085 9,883 9,883 9,883 9,883 9,883 9,883 9,883 9,883 9,883 9,883 10,854 10,854 10,854 10,854 10,854 10,854 10,854 10,854 10,854 10,854 10,854 10,854 10,854 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 13,584 13,584 13,584 13,584 13,584 13,584 13,584 13,584 13,584 13,584 13,584 4.0% 3.0% 2.1% 1.2% 0.3% -0.6% -1.4% -2.3% -3.2% -3.6% 4.5% 3.6% 2.8% 1.9% 1.0% 0.2% -0.7% -1.5% -2.3% -3.1% -3.9% -4.7% -5.5% 5.8% 5.0% 4.1% 3.3% 2.5% 1.7% 0.9% 0.1% -0.7% -1.5% -2.3% -3.0% -3.8% -4.5% -5.2% -5.9% 3.5% 2.7% 2.0% 1.2% 0.4% -0.3% -1.0% -1.8% -2.5% -3.2% -3.6% 14,000 HEATRATE(Btu/KWh) (MW) 13,000 12,000 11,000 10,000 2 dy/dx = 0.0432x +42.154x + 9080 9,000 0 20 40 60 OUTPUT (MW) 80 100 120 MODELING HEAT RATE BLOCKS AVERAGE INCREMENTAL HEAT RATE 14,000 13,500 HEATRATE (Btu/kWh) BLOCK 2 CAP 13,000 12,500 12,000 11,500 11,000 10,500 10,000 9,500 9,000 0 20 40 60 80 100 120 OUTPUT (MW) MODELING vs. ACTUAL HUNTERS POINT 3 15,000 ACTUAL HEAT RATE (Instantaneous Incremental) 14,000 HEATRATE (Btu/kWh) BLOCK 1 ACTUAL HEAT RATE CURVE INSTANTANEOUS INCREMENTAL HEAT RATE INCREMENTAL HEAT RATES ACTUAL MODELING ERROR 13,000 12,000 11,000 10,000 MODELING HEAT RATE (Average Incremental) 9,000 0 20 40 60 OUTPUT (MW) 80 100 120 HR-DESC.DOC; 4/17/98; PAGE 23 Average Heat Rate Figure 14 shows the typical representation of the block Average Heat Rate for Unit X, repeated from Figure 2A. As with the Input-Output and the Incremental Heat Rate Curves, this is not strictly correct. As previously explained, Figure 14 is really a piece-wise linear representation of the actual Average Heat Rate curve, which is shown in Figure 15. UNIT X AVERAGE HEAT RATE TYPICAL 20,000 HEATRATE (Btu/kWh) 20,000 HEATRATE (Btu/kWh) UNIT X AVERAGE HEAT RATE ACTUAL 15,000 10,000 5,000 0 15,000 10,000 5,000 0 1 2 3 1 OUTPUT (MW) Figure 14 2 OUTPUT (MW) 3 Figure 15 This error is of no particular importance, however. As explained above, the Average Heat Rate block data plays a very small role in modeling. Other than its possible use for commitment, it has no direct function. The Average Heat Rate data is entered into the model primarily to be used in the development of the Incremental Heat Rate block data -- and the model is only using the block point so that the linear nature of the data does not compromise the modeling. It is the Incremental Heat Rate block data that is used to calculate the Average Heat Rates and the corresponding production costs. This may seem somewhat “round-about” but this will become clearer as we continue. As demand increases, the model looks at the various blocks of power available to it and decides which block is the least expensive. In the case of Unit X, its offering would be 10 $/MWh (4,000 Btu/kWh) for Block 2 and 15 $/MWh (6,000 Btu/kWh) for Block 3. Unit X’s production cost turns out to be the very same as if it were based on its Average Heat Rate, 30 $/MWh at 2 MW and 25 $/MWh as 3 MW. Based on this description, it would appear that the model would actually be using the above Average Heat Rate Curve as previously defined. Actually, this is only a coincidence and only seems to work because I used cases where the output was precisely 1, 2 or 3 MW. Take the subtler case where the output is 1.5 MW. The model calculates the production cost using block Incremental Heat Rates as follows. It notes that the heat rate of block 1 as 20,000 Btu/kWh and calculates the corresponding cost of the one MWh as $50. It then notes that Unit X has provided 1/2 MW from Block 2 at 4,000 Btu/kWh and calculates the cost of that as one-half of a MWh as $5: 4,000 Btu/kWh x 2.5 $/MMBtu x 1/2 MWh = $5. The production cost for this hour is simply the sum of the two costs: $50 + $5 = $55. The average cost of generation is equal to the total production cost ($55) divided by the total generation (1.5 MWh): 36.67 $/MWh. HR-DESC.DOC; 4/17/98; PAGE 24 The Average Heat Rate can be calculated as 14,667 Btu/kWh: 36.67 $/MWh / 2.5 $/MMBtu = 14,667 Btu/kWh. The actual Average Heat Rate predicted by the Average Heat Rate equation is 14,500 Btu/kWh. We see that the error is 1.1 percent: 14,667/14,500 - 1 = 1.1%. Figure 16 compares the Average Heat Rate as would be calculated in the model against the actual data at 0.1 MW intervals. It is clear that even in this simplistic Unit X case, the effect of this error is small: of the order of 1 percent or less. FIGURE 16: UNIT X CALCULATED vs. ACTUAL AVERAGE HEAT RATES INCREMENTAL AVERAGE HEAT RATES OUTPUT HEAT RATE CALCULATED ACTUAL ERROR (MW) (Btu/kWh) (Btu/kWh) (Btu/kWh) (%) BLOCK 1 BLOCK 2 BLOCK 3 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 20,000 18,545 17,333 16,308 15,429 14,667 14,000 13,412 12,889 12,421 12,000 11,714 11,455 11,217 11,000 10,800 10,615 10,444 10,286 10,138 10,000 20,000 18,464 17,200 16,146 15,257 14,500 13,850 13,288 12,800 12,374 12,000 11,671 11,382 11,126 10,900 10,700 10,523 10,367 10,229 10,107 10,000 0.0% 0.4% 0.8% 1.0% 1.1% 1.1% 1.1% 0.9% 0.7% 0.4% 0.0% 0.4% 0.6% 0.8% 0.9% 0.9% 0.9% 0.8% 0.6% 0.3% 0.0% Figure 17 shows the comparable calculations for our two real units: Moss Landing 7 and Hunters Point 3. The error is even smaller: in all cases less than one percent. I have not provided the corresponding graphs as the lines would track so closely together that it would make this representation meaningless. I find the error to be surprisingly small given the apparent grossness of the block Incremental Heat Rate representation. It is clear that this is not something to bother ourselves about. But it is important to know this for a fact. HR-DESC.DOC; 4/17/98; PAGE 25 FIGURE 17: COMPARING INCREMENTAL HEAT RATES BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 MOSS LANDING 7 HUNTERS POINT 3 INCR. HR AVERAGE HEAT RATES CAP MODELING CALCULATED ACTUAL ERROR INCR. HR AVERAGE HEAT RATES CAP MODELING CALCULATED ACTUAL ERROR (MW) (Btu/kWh) (Btu/kWh) (Btu/kWh) (%) (MW) (Btu/kWh) (Btu/kWh) (Btu/kWh) (%) 50 65 80 95 110 125 140 155 170 185 200 215 230 245 260 275 290 305 320 335 350 365 370 380 395 410 425 440 455 470 485 500 515 530 545 560 575 590 591 605 620 635 650 665 680 695 710 725 739 7,176 7,176 7,176 7,176 7,176 7,176 7,176 7,176 7,176 7,176 7,905 7,905 7,905 7,905 7,905 7,905 7,905 7,905 7,905 7,905 7,905 7,905 7,905 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,450 8,737 8,737 8,737 8,737 8,737 8,737 8,737 8,737 8,737 8,737 19,959 17,009 15,165 13,904 12,986 12,289 11,741 11,300 10,936 10,631 10,426 10,251 10,098 9,963 9,845 9,739 9,644 9,558 9,481 9,410 9,346 9,268 9,214 9,246 9,216 9,188 9,162 9,138 9,115 9,094 9,074 9,055 9,038 9,021 9,005 8,990 8,976 8,963 8,962 8,957 8,952 8,946 8,942 8,937 8,933 8,928 8,924 8,920 8,917 19,959 16,933 15,065 13,799 12,889 12,206 11,678 11,259 10,920 10,642 10,410 10,216 10,050 9,909 9,788 9,683 9,592 9,512 9,443 9,381 9,328 9,266 9,239 9,239 9,202 9,169 9,140 9,114 9,092 9,071 9,054 9,038 9,024 9,011 9,000 8,991 8,982 8,974 8,974 8,967 8,961 8,956 8,951 8,947 8,943 8,940 8,936 8,933 8,931 0.0% 0.5% 0.7% 0.8% 0.8% 0.7% 0.5% 0.4% 0.1% -0.1% 0.2% 0.3% 0.5% 0.5% 0.6% 0.6% 0.5% 0.5% 0.4% 0.3% 0.2% 0.0% -0.3% 0.1% 0.2% 0.2% 0.2% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.1% 0.1% 0.0% -0.1% -0.1% -0.1% -0.1% -0.1% -0.1% -0.1% -0.1% -0.1% -0.1% -0.1% -0.1% -0.2% 10 12 14 16 18 20 22 24 26 27 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 107 9,883 9,883 9,883 9,883 9,883 9,883 9,883 9,883 9,883 9,883 10,854 10,854 10,854 10,854 10,854 10,854 10,854 10,854 10,854 10,854 10,854 10,854 10,854 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 12,251 13,584 13,584 13,584 13,584 13,584 13,584 13,584 13,584 13,584 13,584 21,037 19,178 17,850 16,854 16,080 15,460 14,953 14,531 14,173 14,014 13,698 13,520 13,364 13,224 13,099 12,987 12,886 12,793 12,709 12,632 12,560 12,495 12,434 12,428 12,421 12,416 12,410 12,405 12,401 12,396 12,392 12,388 12,385 12,381 12,378 12,375 12,372 12,369 12,366 12,394 12,420 12,445 12,470 12,493 12,515 12,536 12,557 12,577 12,605 21,037 19,125 17,770 16,764 15,991 15,381 14,891 14,489 14,156 14,011 13,641 13,441 13,269 13,121 12,993 12,883 12,788 12,705 12,634 12,572 12,520 12,474 12,436 12,403 12,376 12,355 12,337 12,324 12,314 12,308 12,304 12,304 12,306 12,311 12,318 12,327 12,338 12,351 12,365 12,381 12,399 12,418 12,438 12,460 12,483 12,507 12,531 12,557 12,598 0.0% 0.3% 0.5% 0.5% 0.6% 0.5% 0.4% 0.3% 0.1% 0.0% 0.4% 0.6% 0.7% 0.8% 0.8% 0.8% 0.8% 0.7% 0.6% 0.5% 0.3% 0.2% 0.0% 0.2% 0.4% 0.5% 0.6% 0.7% 0.7% 0.7% 0.7% 0.7% 0.6% 0.6% 0.5% 0.4% 0.3% 0.1% 0.0% 0.1% 0.2% 0.2% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.1% BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 HR-DESC.DOC; 4/17/98; PAGE 26 VI. HEAT RATES IN MARKET MODELING The previous section described the use of heat rates in production cost modeling. In this section, I describe their role in the competitive market -- which is a much more complex role. In the market model, it is the bids that determine the dispatch of the units -- not their costs of operation. Bidding data is entered into market models in one of two ways, and most models allow for both of these. One way requires that the bid is determined outside of the model and entered into the model as a unit cost ($/MWh), in which case heat rates play no direct role in setting the Market Clearing Price (MCP). It is not to be forgotten, however, that the heat rates in the model must continue to play the role of emulating operating costs -- operating costs by definition depend on heat rates. The other way of developing bids is to let the model estimate the bid -- generally as some function of operating costs. One method is to assume that the bid is based on variable costs -- the economists’ favorite. That is, the bid is based on the fuel cost associated with Average Heat Rate (plus O&M and start-up costs). Unfortunately, most models have not been able to make this transition, and model designers are allowing their models to dispatch as they always have, based on incremental cost (Incremental Heat Rate) -- also known as marginal or nodal cost. This proxy for the real mechanism inevitably leads to questionable results. The models then find some way to emulate the actual MCP by adding on some additional amount to the incremental cost so that the overall revenue will be adequate to ensure a viable market. The comprehensive solution to this problem requires that the model do both methods of dispatch. Members of the market will bid based on Average Cost because they must rely on the market for all of their revenue. If they bid their incremental cost and set the market clearing price (MCP), they would lose the difference between their Average and Incremental Costs -- otherwise known as no-load cost (described below). Participants who are not members can bid their Incremental Cost because their other costs (no-load costs) are captured through other sales. The Relationship Between Average and Incremental Heat Rates What now becomes apparent is that we have those who can bid based on Incremental Heat Rates competing against those who must by necessity bid based on Average Heat Rates -- a strange paradigm by anyone’s standards. In this same vein, we have an IOU who is used to dispatching based on Incremental Costs (Incremental Heat Rates) constructing bids based on Average Costs (Average Heat Rates). For markets that require one-part bidding, this is further complicated by the need for monotonically increasing bids: each subsequent capacity block is bid at a price higher than the last. The market members find themselves with the laborious task of trying to construct monotonically increasing bids from decreasing Average Costs (Average Heat Rates) -- a formidable task. It should now become clear why it is important to understand and quantify the differences between Average and Incremental Costs. I have attempted to quantify these differences as ratios of Average Heat Rate (AHR) to Incremental Heat Rate (IHR). Figure 18 shows the ratio of the AHR to the IHR for Moss Landing 7, the most efficient unit in the PG&E system (pre-divestiture). At maximum output, the difference between AHR and IHR is insignificant. But at minimum output, AHR/IHR is 2.9. The average over all generation levels is 1.26. HR-DESC.DOC; 4/17/98; PAGE 27 FIGURE 18 MOSS LANDING 7 RATIO OF AVERAGE TO INCREMENTAL HEAT RATES 3.0 2.9 2.5 AHR/IHR 2.0 1.5 1.02 1.0 0.5 0.0 0 100 200 300 400 500 600 700 800 OUTPUT (MW) Figure 19 shows the corresponding ratio for Hunters Point 2, the least efficient unit in the PG&E system. At full output AHR/IHR is 0.9. At minimum output it is 2.2. The average value is 1.16. FIGURE 19 HUNTERS POINT 3 RATIO OF AVERAGE TO INCREMENTAL HEAT RATES 2.5 2.2 AHR/IHR 2.0 1.5 1.0 0.9 0.5 0.0 0 20 40 60 80 100 120 OUTPUT (MW) Table 5 shows these same values for all of the subject IOU units. R(x1) is the value of AHR/IHR at minimum power output. R(x2) is the corresponding value at maximum power output. RAVE is the average value for the entire range of output. The supporting data and calculations are provided in Appendix D, but the procedure is briefly described below. HR-DESC.DOC; 4/17/98; PAGE 28 TABLE 5: AVERAGE TO INCREMENTAL HEAT RATE RATIOS (R) OUTPUT (MW) X1 X2 AVERAGE/INCREMENTAL R(X1) R(X2) Rave PG&E UNITS Contra Costa 6 Contra Costa 7 Humboldt 1&2 Hunters Point 2 Hunters Point 3 Hunters Point 4 Morro Bay 1&2 Morro Bay 3 Morro Bay 4 Moss Landing 6 Moss Landing 7 Pittsburg 1&2 Pittsburg 3&4 Pittsburg 5 Pittsburg 6 Pittsburg 7 Potrero 3 Averages 46 46 10 10 10 62 62 46 46 50 50 62 62 46 46 120 47 340 340 105 107 107 326 326 338 338 739 739 326 326 325 325 720 207 1.46 1.58 1.95 2.13 2.21 1.37 1.35 1.46 1.48 2.87 2.91 1.54 1.43 1.54 1.67 1.62 1.20 1.68 0.92 0.94 0.84 0.96 0.89 1.00 1.00 1.05 1.01 1.05 1.02 0.95 0.86 1.03 0.97 0.97 0.89 0.98 1.13 1.14 1.18 1.19 1.16 1.10 1.11 1.14 1.12 1.25 1.26 1.17 1.13 1.14 1.16 1.20 1.05 1.17 SCE UNITS Alamitos 1&2 Alamitos 3&4 Alamitos 5&6 Cool Water 1 Cool Water 2 Cool Water 3&4 El Segundo 1&2 El Segundo 3&4 Etiwanda 1&2 Etiwanda 3&4 Highgrove 1&2 Highgrove 3&4 Huntington Beach 1&2 Long Beach 8&9 Mandalay 1&2 Ormond Beach 1 Ormond Beach 2 Redondo Beach 5&6 Redondo Beach 7&8 San Bernardino 1&2 Averages 20 40 260 17 19 140 20 40 20 40 8 10 40 70 40 250 50 20 260 14 350 640 960 65 81 512 350 670 264 640 66 89 430 560 430 750 750 350 960 126 3.19 3.02 1.42 1.30 1.31 2.02 3.04 2.96 2.72 2.75 5.87 8.51 1.96 1.31 1.90 1.35 2.46 3.54 1.32 3.24 1.83 1.04 1.04 1.00 1.01 1.02 1.10 1.05 1.03 1.00 1.02 1.58 1.73 1.01 1.02 0.95 1.00 0.99 1.09 1.02 1.15 1.03 1.34 1.33 1.12 1.10 1.11 1.43 1.32 1.31 1.30 1.28 2.41 2.99 1.20 1.08 1.16 1.13 1.23 1.41 1.12 1.54 1.27 SDG&E UNITS Encina 1 Encina 2 Encina 3 Encina 4 Encina 5 South Bay 1 South Bay 2 South Bay 3 South Bay 4 Averages 20 20 20 20 20 30 30 30 45 107 104 110 300 330 143 150 175 150 1.47 1.34 1.32 1.87 2.07 1.43 1.33 1.40 1.30 1.47 0.91 0.94 0.98 0.97 0.95 0.93 0.99 0.96 1.01 0.96 1.10 1.08 1.09 1.13 1.15 1.10 1.10 1.10 1.12 1.12 HR-DESC.DOC; 4/17/98; PAGE 29 The minimum and maximum Ratios, R(x1) and R(x2), were calculated using the equations for the Average Heat Rate (AHR) and Incremental Heat Rate (IHR), for each unit, as follows: The Input-Output Curve is typically defined by the third order equation: y = ax3 + bx2+ cx + d Where: x = Output in MW y = Input in Btu/hr a-d = The coefficients that define the equation The Average Heat Rate (AHR) is defined as the Input-Output Curve (y) divided by the output (x): AHR = y/x = (ax3 + bx2 + cx + d) / x The Incremental Heat Rate (IHR) is defined as the first derivative of the Input-Output Curve: IHR = dy/dx = 3ax2 + 2bx + c The Ratio of Average Heat Rate to Incremental Heat Rate (R) is therefore: R = AHR/IHR = (y/x) / dy/dx = [(ax3+bx2+cx+d)/x] / (3ax2+2bx+c) The minimum output ratio, R(x1), and maximum output ratio, R(x2), are then developed by setting x equal to the minimum output (x1) and maximum output (x2) values, respectively. R(x1) = [(a x13+b x12+c x1+d)/ x1] / (3a x12+2b x1+c) R(x2) = [(a x23+b x22+c x2+d)/ x2] / (3a x22+2b x2+c) The average value, RAVE, is found by integrating R from the minimum output (x1) to the maximum output (x2), and then dividing this result by the difference between the minimum and maximum outputs (x2 - x1): RAVE = [ò ò R dx {from x1 to x2 } ] / (x2 - x1) = [ò ò AHR/IHR dx {from x1 to x2 } ] / (x2 - x1) Where: x1 = Minimum Operating Level(MW) x2 = Maximum Operating Level (MW) The integration of R, (ò ò R dx), is: ò R dx =[(x/3) +(d×Ln(x)/c) +(bG/18a) - (dG/2c) + (2cE/3F) - (bdE/cF) - (Eb2/9aF)] HR-DESC.DOC; 4/17/98; PAGE 30 Where: E = ATan((3ax+b)/F) F = (3ab-x2)1/2 G = Ln(3ax2+2bx+c) Ln = Natural Log ATan = Arc Tangent Substituting the coefficients of Table B-2 in Appendix B into the above equations gives the results shown in Table 5. Using the now familiar Moss Landing 7 unit to illustrate this gives: a = -0.0013 b = 2.955 c = 6561.2 d = 662025 • x1 = 50 MW x2 = 739 MW The AHR/IHR at minimum generation: R(x1) R(x1) = AHR/IHR = (ax3+bx2+cx+d)/x] / (3ax2+2bx+c): x1 = 50 MW R(50) = AHR/IHR = [(-0.0013×503+2.955×502+6561.2×50+662025)/50] / (3×-0.0013×502+2×2.955×50+662025) R(50) = AHR/IHR = 2.91 • The AHR/IHR at maximum generation: R(x2) R(x2)= AHR/IHR = (y/x)/y′= [(ax3+bx2+cx+d)/x] / (3ax2+2bx+c): x2 = 739 MW R(739) = AHR/IHR = [(-0.0013×7393+2.955×7392+6561.2×739+662025)/739] / (3× -0.0013×7392+2×2.955×739+662025) R(739) = AHR/IHR = 1.02 • The average AHR/IHR: RAVE RAVE = [ò ò R dx {from x1 to x2 } ] / (x2 - x1) ò R dx =[(x/3) +(d×Ln(x)/c) +(bG/18a) - (dG/2c) + (2cE/3F) - (bdE/cF) - (Eb2/9aF)] Where: E = ATan((3ax+b)/F) F = (3ab-x2)1/2 G = Ln(3ax2+2bx+c) R(739) = (739/3)+(662025ln(739)/6561.2)+(2.955G/18/-0.0013)-(662025G/2/6561.2) +(2×6561.2E/3F) -(2.955×662025E/6561.2F)-(2.9552E/9×-0.0013F) Where: E = ATan((3×-0.0013×739+2.955)/F) F = (3×-0.0013×2.955-7392)1/2 G = Ln(3×-0.0013×7392+2×2.955×739+6561.2) HR-DESC.DOC; 4/17/98; PAGE 31 R(50) = (50/3)+(662025ln(50)/6561.2)+(2.955G/18/-0.0013)-(662025G/2/6561.2) +(2×6561.2E/3F) -(2.955×662025E/6561.2F)-(2.9552E/9×-0.0013F) Where: E = ATan((3×-0.0013×50+2.955)/F) F = (3×-0.0013×2.955-502)1/2 G = Ln(3×-0.0013×502+2×2.955×50+6561.2) RAVE = [R(739) - R(50)] / (739 - 50) = 1.2596. At the bottom of each set of IOU values in Table 5 is an average value that is calculated as the weighted average using the relevant capacity for each R(x) value: Average R(x) = [å å R(x) ×x] / åx for all x in an IOU • • • System average R(x1) is weighted by x1. System average R(x2) is weighted by x2 . System average RAVE is weighted by x2 - x1. Table 5 can be better visualized in graphical form. Figures 20A, B and C present the data of Table 5 in graphical form, except this time system ratios of AHR/HR are arranged in terms of increasing values of R(x1). HR-DESC.DOC; 4/17/98; PAGE 32 FIGURE 20A AHR/IHR RATIOS PG&E UNITS 3.0 AHR/IHR 2.5 R(X1) Rave 2.0 1.5 1.0 0.5 R(X2) mos7 mos6 hnp3 hnp2 hmb1&2 pit6 pit7 con7 pit1&2 pit5 mor4 con6 mor3 pit3&4 hnp4 pot3 mor1&2 0.0 PLANT FIGURE 20B AHR/IHR RATIOS SCE UNITS 9.0 8.0 AHR/IHR 7.0 R(X1) 6.0 5.0 4.0 3.0 Rave 2.0 1.0 R(X2) hig3&4 hig1&2 red5&6 sbr1&2 ala1&2 els1&2 ala3&4 els3&4 eti3&4 eti1&2 orb2 cw34 hun1&2 man1&2 ala5&6 orb1 red7&8 lb8&9 cw02 cw01 0.0 PLANT FIGURE 20C AHR/IHR RATIOS SDG&E UNITS 2.5 R(X1) AHR/IHR 2.0 Rave 1.5 1.0 0.5 0.0 sba4 R(X2) enc3 sba2 enc2 sba3 sba1 enc1 enc4 enc5 PLANT Table 6 summarizes the ranges of the unit data found in the Table 5 (and Figures 20A, B & C). Table 7 summarizes the system average values for each IOU (pre-divestiture). HR-DESC.DOC; 4/17/98; PAGE 33 TABLE 6: UNIT RATIOS OF AHR/IHR RATIOS OF AHR/IHR UTILITY PG&E SCE SDG&E R(x1) R(x2) RAVE 1.20 - 2.91 1.30 - 8.51 1.30 - 2.07 0.84 - 1.05 0.95 - 1.73 0.91 - 1.01 1.05 - 1.26 1.08 - 2.99 1.08 - 1.15 It is apparent from Table 6 that the minimum output values, R(x1), vary dramatically and are typically large. But the maximum outputs, R(x2), vary slightly and are typically small in magnitude. The average values, RAVE, which would be the most representative of the operation of the units over time, do not vary as dramatically or are as large as the R(x1) values but are nonetheless significantly large in range and magnitude -- suggesting the potential for large differences between the incremental cost and the average cost. The system average ratios of Table 7 are probably more useful than the ranges of Table 6, in that it is a more average representation of the effect on market clearing price (MCP). Considering that the PG&E and SCE units will set the MCP much more often than SDG&E, it appears that on average the Average Heat Rate, RAVE, will tend to be in the range of 17 to 27 percent higher than the Incremental Heat Rate (IHR) -- during those hours that the IOU units set the MCP. TABLE 7: SYSTEM RATIOS OF AHR/IHR RATIOS OF AHR/IHR UTILITY PG&E SCE SDG&E R(x1) R(x2) RAVE 1.68 1.83 1.47 0.98 1.03 0.96 1.17 1.27 1.12 The 17 to 27 percent values are meaningful if one is willing to accept the simplifying assumption that over the long run all units will be used equally and each unit will experience all levels of generation an equal number of hours. This is of course simplistic, but useful for this simplistic characterization. In actual practice, the more efficient units will be used more than the less efficient units and all units will tend to generate more at their lower levels than their higher levels. In general, both of these realities will increase the ratio (R) of Average Heat Rate (AHR) to Incremental Heat Rate (IHR). This is very difficult to quantify, but nevertheless I attempt to so in the next section, A Simplistic Market Model. A Simplistic Market Model This section presents a Simplistic Market Model that is a more comprehensive emulation of the ratio (R) of Average Heat Rate (AHR) to Incremental Heat Rate (IHR). This model uses the above heat rate data but combines the data into an emulation of the competitive market, which allows us to look at the system R values throughout various levels of generation, rather than the system average (RAVE) values described above. The calculations and methodology are provided in Appendix E for those who would like to replicate this process in detail, but the following adequately describes the method and results. Traditional production cost modeling consists of commitment and dispatch. The commitment process consists of identifying the most economic set of plants necessary to meet the daily peak. The dispatch of HR-DESC.DOC; 4/17/98; PAGE 34 these plants is based on the incremental cost of each plant’s capacity blocks. The Incremental Cost is determined by the fuel cost (the IHR times dispatch gas price) plus variable O&M, on a $/MWh basis. The available capacity block with the least Incremental Cost at the moment of increased load is dispatched to meet that load. In the California market, the PX and the ISO disavow responsibility for commitment and assign that responsibility to the bidder. The PX and the ISO rely solely on dispatch. They dispatch the system based on the lowest bid offered, indifferent to the actual cost of dispatch. For the case of non-members, who have other means of capturing revenue and are just offering increments of surplus power to the market, their bids will probably continue to be based on their Incremental Costs. But for the members of the market (IOUs and those who will depend on the market for all their revenue), their bids must reflect all costs, not just Incremental Costs. Their variable O&M costs will not change, but their fuel related bid must now reflect their average cost (AHR times total gas price) as well as their start-up costs. The Simplistic Market Model ignores the effects of variable O&M and start-up costs -- as well as the effects of commitment. It concentrates solely on the differences in heat rates between the AHR, which is representative of MCP, and IHR, which is representative of traditional dispatch (that is, MC). Figures 21A, B & C compare AHR to IHR on a graphical basis. These heat rate curves are for the IOU slowstart gas-fired units (steam units and combined cycle units), ignoring the fast-start units (CTs), as CTs do not in general set the MCP.2 Units other than the IOU units are ignored under the simplifying assumption that the IOU units will set the market clearing price most of the time -- although this is only approximately true.3 The heat rate curves are shown separately for each IOU in order to make the presentation more legible. In actual practice, the three curves would be combined -- and would include all units and not just the slow-start gas-fired units. The process for deriving the AHR and IHR curves of the Figure 21 series is burdensome but conceptually quite simple. To facilitate this understanding, you should imagine that this data is simply the sorting of the block heat rate data provided in Appendix A. Then realize that this data can not be used directly as AHR and IHR are not directly comparable. Each Incremental Heat Rate (IHR) value is an average for its block. Each Average Heat Rate (AHR) value is the point values at the end of the block. To make these values comparable requires that AHR values also be characterized as an average for the same block. This is done using the equations of Appendix B. This new value is delineated as AHRAVE to differentiate it from the traditional AHR value. IHR is then recalculated using the corresponding equation, so that AHR and IHR will be completely comparable. As with all previous analyses, in cases where two units have the same size capacity blocks, they are combined into one equivalent unit in order to make the computation and representation simpler. 2 Although CTs can bid into the PX market and set the MCP, it is expected that in general CTs will bid into the non-spin market and will not set the MCP. 3 Various simulations suggest that the slow-start gas-fired IOU units will only set the market clearing price approximately 50 to 70 percent of the time, depending on the particular set of assumptions. HR-DESC.DOC; 4/17/98; PAGE 35 FIGURE 21A,B&C PG&E AHRave vs IHR 18,000 HEAT RATE (Btu/kWh) 16,000 AHR ave 14,000 12,000 10,000 8,000 6,000 IHR 4,000 2,000 0 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 OUTPUT (MW) SCE AHRave vs IHR 45,000 HEAT RATE (Btu/kWh) 40,000 35,000 AHR ave 30,000 25,000 20,000 15,000 10,000 5,000 IHR 0 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 OUTPUT (MW) SDG&E AHRave vs IHR 14,000 AHR ave HEAT RATE (Btu/kWh) 12,000 10,000 8,000 IHR 6,000 4,000 2,000 0 0 200 400 600 800 1,000 1,200 1,400 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE 36 The IHR curves of the Figure 21 series are constructed to emulate the dispatch of the regulated system. Each slow-start gas-fired unit is represented by four IHR blocks.4 These heat rate blocks are then sorted by increasing IHRs. The AHRAVE curves of Figure 21 are constructed to emulate the dispatch of the competitive market. These values are sorted similar to those of IHR except the AHRAVE blocks can not simply be ordered by increasing AHRAVE value, as was done with the IHR values. This would lead to the physical impossibility of less expensive upper blocks being dispatched before more expensive lower blocks. To represent this physical limitation, the units are first sorted based on their first block heat rates (Block 2). When the first unit with the lowest expensive first block AHRAVE is identified, it is logical that all of its upper blocks will then be dispatched before going on to the first block (Block 2) of any other unit; as at that point, no other unit’s first block can compete with this unit’s upper blocks. Thus, we see the saw-tooth nature of the AHRAVE curves in the Figure 21 series. The downward sloping arc of each “tooth” represents the AHRAVE curve of that unit, starting at the highest heat rate block (first block) and ending at the minimum point (last block). The two curves of Figure 21 series clearly illustrate the fact that the AHRAVE dispatch is inherently more costly than the IHR dispatch -- without even accounting for the difference between the dispatch price of gas and the total price of gas. We can also see from these same figures that the AHRAVE curve is not flat, as is the IHR curve. This suggests that the typical statements about there not being much variance in the MCP bids between units is perhaps too simplistic. At the same time, these AHRAVE curves can not be truly representative of the California market, as the market requires 1-Part monotonic bidding, such that each unit’s bid price series must increase with each block of power. That is, the AHRAVE must look similar to the IHR curve. The knowledge of this paradox allows us to understand the dilemma of the plant owner in bidding a unit’s costs into the market -- or the modeler in modeling the market. Each unit has declining (downward sloping) costs that must be converted to monotonically increasing (upward sloping) costs. These curves can be equal at one point, only. This means that if the plant owner wants to bid its unit’s costs in any one hour, the owner must know the exact generation level -- that one point where the curves are equal. Herein lies the difficulty for the plant owner -- and the modeler. If the exact capacity level (block heat rate) can be determined, the correct unit is dispatched. Otherwise, the incorrect unit is selected resulting in inefficient dispatch and the concomitant shift in revenues to an alternative bidder. We can not hope to emulate the actual dispatch of the system with this simplistic model. Nevertheless, we can develop a crude proxy for the system by rearranging the IHR and AHRAVE data into weighted averages. The Figure 22 series uses the same data of the Figure 21 series except that it is a running weighted average -- as each unit is added, a weighted system average is calculated based on the cumulative capacity (MW) of the blocks. This is done for both the IHR and the AHRAVE data. The respective curves are system values of IHR and the AHRAVE, and are designated SIHR and the SAHRAVE, respectively. 4 Appendix A provides five blocks of average heat rate data but the first block does not qualify as an incremental heat rate. It is an average heat rate. HR-DESC.DOC; 4/17/98; PAGE 37 FIGURE 22A,B&C PG&E SYSTEM AVERAGE HEAT RATES HEAT RATE (Btu/kWh) 12,000 11,000 10,000 SAHR ave 9,000 8,000 SIHR 7,000 6,000 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 OUTPUT (MW) SCE SYSTEM AVERAGE HEAT RATES HEAT RATE (Btu/kWh) 12,000 SAHR ave 11,000 10,000 9,000 8,000 SIHR 7,000 6,000 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 OUTPUT (MW) SDG&E SYSTEM AVERAGE HEAT RATES 12,000 HEAT RATE (Btu/kWh) SAHRave 11,000 10,000 9,000 SIHR 8,000 7,000 6,000 0 200 400 600 800 OUTPUT (MW) 1,000 1,200 1,400 HR-DESC.DOC; 4/17/98; PAGE 38 The weighted average data shown in the Figure 22 series can be considered as representative of an average value that could be expected over time at various levels of generation -- looking at individual IOUs, one at a time. These Figures show that the ratio of SAHRAVE to SIHR does increase at lower generation levels, but not as dramatically as we might have thought -- assuming that we’re looking at reasonably to be expected values of output. These results can be made to conform to our results in the previous section by taking the end point in each curve. Table 8 summarizes the heat rate data for the last point in each curve and calculates the SAHRAVE / SIHR values for each utility. These SAHRAVE / SIHR values are very close to the Table 7 values but do not match exactly. This is to be expected since mathematically they are not exactly equivalent. TABLE 8: SUMMARY OF SYSTEM HEAT RATES SIHR HEAT RATE (Btu/kWh) SAHRAVE HEAT RATE (Btu/kWh) SAHRAVE / SIHR PG&E SCE SDG&E 9,057 10,522 1.16 8,943 11,217 1.25 9,830 10,944 1.11 This same data also suggests that units will have a different competitive status under the restructured market than they do now. For example, under regulation and traditional dispatch (IHR), the SCE units would seem to have the most favorable position -- absent consideration of gas prices -- since SCE has the lowest SHIR (8,943 Btu/kWh). But based on the market dispatch (AHRAVE), PG&E would appear to have the most favorable position -- since PG&E has the lowest SAHRAVE (10,522 Btu/kWh). My heat rate analysis up to this point has ignored costs, which is clearly a short coming which will now be corrected. Table 9 presents estimated 1998 gas prices, which were taken from the Energy Commission’s 1997 Fuels Forecast (FR 97) approved on March 18, 1998. TABLE 9: SUMMARY OF 1998 GAS PRICES (FR 97) FORECAST YEAR = 1998 PG&E Cool Water SCE OTHER SDG&E DISPATCH ($/MMBtu) 2.31 2.24 2.43 2.34 TOTAL ($/MMBtu) 2.51 2.34 2.61 2.91 Figures 23A, B & C provide the comparable cost data for each IOU based on the above 1998 gas prices. Figure 24 combines the Figure 23 series into one graph, and for the first time we have a representation of the total system -- IOUs only. In Figure 24, SAHRAVE times the total price of gas can be considered a proxy for MCP and SHIR times the dispatch price of gas can be considered a proxy for MC. The distances between these two curves allow us to appreciate the difference between MCP and MC that is due to the combination of heat rate and gas price differences. HR-DESC.DOC; 4/17/98; PAGE 39 FIGURE 23A,B&C PG&E MCP & MC PROXIES 35 MCP = AHR @ TOTAL GAS PRICE COST ($/MWh) 30 25 20 15 MC = IHR @ DISPATCH GAS PRICE 10 5 0 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 OUTPUT (MW) SCE MCP & MC PROXIES 35 MCP = AHR @ TOTAL GAS PRICE COST ($/MWh) 30 25 20 MC = IHR @ DISPATCH GAS PRICE 15 10 5 0 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 OUTPUT (MW) SDG&E MCP & MC PROXIES 35 COST ($/MWh) 30 MCP = AHR @ TOTAL GAS PRICE 25 20 MC = IHR @ DISPATCH GAS PRICE 15 10 5 0 0 200 400 600 800 1,000 1,200 1,400 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE 40 FIGURE 24 COLLECTIVE IOUs MCP & MC PROXIES UNIT COST ($/MWh) 30 25 MCP = SAHRave @ TOTAL GAS PRICE 20 MC = SIHR @ DISPATCH GAS PRICE 15 10 5 0 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 OUTPUT (MW) Figure 25 is a curve that is the ratio of the two curves in Figure 24. It is the ratio of the MCP proxy to the MC proxy for selected points: at 1000 MW intervals. The curve shows values in the range of 1.26 to 1.45 depending on the output level. These are very significant differences to be sure, but perhaps not as large as we might have expected given that in any one hour the difference can be much higher than this – as high as 8.5:1 as we have already shown. FIGURE 25 COLLECTIVE IOUs AHR/IHR (MCP/MC) AHR/IHR 1.5 1.4 1.3 1.2 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 OUTPUT(MW) The Figure 25 curve implies that given an extended period of time where each unit is allowed to experience all of its various levels, the average will be as shown. Remembering our earlier conclusion that this is probably simplistic because units will tend to operate more at their lower levels, we have to conclude that the 1.26 to 1.45 range is probably low. At the same time, we must recognize that the lowest and highest portions of the curve will tend to be used the least. The least that we can say here is that this ratio will undoubtedly be 1.26 -- or higher. That is, the MCP should exceed traditional MC by something greater than 26 percent. Figure 26 is the same as Figure 25 except that the difference due to the gas price differential has been removed. This Figure represents the difference between Average and Incremental Heat Rates, only. The HR-DESC.DOC; 4/17/98; PAGE 41 range is now 1.17 to 1.36, as opposed to the 1.26 to 1.45 of Figure 25. The effect of using Average instead of Incremental Heat Rates is in the range is something greater than 17 percent. The effect of the gas prices is therefore about 9 percentage points. Compared to earlier Natural Gas Price Forecasts, this differential is small. For example, there were years in earlier forecasts where PG&E had dispatch gas prices that were 25 percent lower than the total gas price. At the same time, Energy Commission Staff expects that the 9 percentage points probably overstate the differential in the future as there are indications that the fixed cost component of contract gas prices will become smaller and smaller. It is also expected that utilities and others will probably bid their total price of gas in order to receive reasonable remuneration from the competitive market. Figure 26 is therefore probably the more accurate estimate. FIGURE 26 COLLECTIVE IOUs AHR/IHR (MCP/MC) HEAT RATES ONLY AHR/IHR 1.4 1.3 1.2 1.1 0 2,000 4,000 6,000 8,000 OUTPUT(MW) 10,000 12,000 14,000 It is important to keep in mind that these representations are exceedingly simplistic. First, they are based on IOU (pre-divestiture) slow-start gas-fired units, only. Second, the IHR and the AHRAVE values are based on a simplistic averaging system. Third, all system generation and transmission constraints are ignored. Finally, these calculations are for one year, only. There is no reason to believe that these representations are anything but illustrative. No-Load Heat Rates No-Load Heat Rates relate to the concept of No-Load Costs which were conceived at a time when the California competitive market was proposed to be based on three-part bidding. Although this concept is no longer relevant in the California market, it continues to be a subject of discussion. In addition, the NoLoad Cost concept may still prove viable in other competitive markets. For these reasons, it is included within this paper. The three components to 3-parts bidding are: • • • No-Load Bid Monotonic Energy Bid Start-Up Costs Only the first two items are germane to our present discussion -- the Start-Up costs will be ignored in this paper. As already explained, the market participants need to bid their Average Costs; but bidding HR-DESC.DOC; 4/17/98; PAGE 42 Average Costs, which are declining costs, does not allow for bidding monotonic bids. Before the decision was made to go to one-part bidding, the market designers decided to solve this problem using the NoLoad Cost component. When this No-Load Cost is subtracted from the Average Cost, Monotonic Energy Bids remain. The No-Load Heat Rate is defined as the extrapolation of the Input-Output Curve back to the vertical axis (Input). This can most easily be illustrated by returning to our Unit X. The Unit X Input-Output Curve is shown in Figure 27, using the equation developed for Figure 5: y = 1000x2 + 1000x + 18000, where x = Output in MW and y = Input in 1000 Btu/hr. Extrapolating back to the Input axis creates an intercept point of 18,000,000 Btu/hr which defines the No-Load quantity. Note that this same value can be obtained by setting x = 0 in the Input-Output equation. FIGURE 27 UNIT X INPUT-OUTPUT CURVE INPUT (1000 Btu/kWh) 30,000 28,000 26,000 24,000 22,000 20,000 No-Load = 18,000Btu/hr 18,000 16,000 0 1 2 3 OUTPUT (MW) Multiplying this 18,000,000 Btu/hr by our fuel cost of 2.5 $/MMBtu provides the hourly bid quantity of $45 per hour. This is by definition a fixed cost in each hour that is independent of the output. At the same time, its effect on the calculation of the Monotonic Energy Bid is not a constant amount. This is illustrated in Table 10. TABLE 10: CALCULATION OF MONOTONIC ENERGY BIDS FOR UNIT X UNIT X MONOTONIC ENERGY BID NO-LOAD BID TOTAL ENERGY BID BLOCK 1 (HEAT RATE) 5 $/MWh (2,000 Btu/kWh) 45 $/MWh (18,000 Btu/kWh) 50 $/MWh (20,000 Btu/kWh) BLOCK 2 (HEAT RATE) 7.5 $/MWh (3,000 Btu/kWh) 22.5 $/MWh (9,000 Btu/kWh) 30 $/MWh (12,000 Btu/kWh) BLOCK 3 (HEAT RATE) 10 $/MWh (4,000 Btu/kWh) 15 $/MWh (6,000 Btu/kWh) 25 $/MWh (10,000 Btu/kWh) The Monotonic Energy Bids are calculated as the difference between the Total Energy Bid and the NoLoad Bid. For Block 1, the total cost is 50 $/MWh (20,000 Btu/kWh) and the No-Load is 45 $/MWh (18,000 Btu/kWh). The monotonic bid is therefore 5 $/MWh (2,000 Btu/kWh): 50 $/MWh (20,000 Btu/kWh) - 45 $/MWh (18,000 Btu/kWh). For Block 2 the No-Load Cost has to be spread across twice as many MW so its cost (and heat rate) is divided by two and the Monotonic Energy Bid is 30 $/MWh HR-DESC.DOC; 4/17/98; PAGE 43 22.5 $/MWh = 7.5 $/MWh. Similarly for the Block 3 the No-Load Cost is spread across three times as many MW and is divided by 3 and the Monotonic Energy Bid is calculated as 10 $/MWh. This can be illustrated with graphs. Figure 28 shows the hourly costs for Unit X, which show No-Load as being constant at $45 per hour. It is the monotonic energy bid that varies from $5 at 1-MW to $10 at 3MW. FIGURE 28 HOURLY COSTS ($) UNIT X HOURLY COST COMPONENTS 80 70 60 50 40 30 MONOTONIC COSTS NO-LOAD 20 10 0 1 2 3 OUTPUT (MW) Figure 29 shows the costs per unit energy varying as illustrated in Table 10. It shows the No-Load Costs decreasing as they are spread over more MWh, and the monotonic costs increasing as required by 3-part bidding. The total of these two costs represent the Average Cost, corresponding to the Average Heat Rate. FIGURE 29 UNIT X COST PER MWh COST ($/MWh) 50 MONOTONIC COSTS 40 NO-LOAD 30 20 10 0 1 2 3 OUTPUT (MW) As with past efforts I provide a real unit to illustrate No-Load Costs for real units: Moss Landing 7. Figure 30 shows No-Load calculation using the Input-Output Curve. As before, the no-load value can be found as the d coefficient of the Input-Output Curve (Table B-2 in Appendix B.) HR-DESC.DOC; 4/17/98; PAGE 44 FIGURE 30 MOSS LANDING 7 INPUT-OUTPUT CURVE INPUT (1000 Btu/hr) 7,000,000 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 No-Load = 662,025,000 Btu/hr 0 0 100 200 300 400 500 600 700 800 OUTPUT (MW) Figure 31 shows the No-Load Costs for Moss Landing 7 on an hourly basis. Figure 32 shows these same costs on $/MWh basis. FIGURE 31 HOURLY COSTS ($) MOSS LANDING 7 HOURLY COSTS 9,000 8,000 7,000 6,000 5,000 4,000 3,000 2,000 1,000 0 MONOTONIC COSTS NO- L OAD COSTS 62 82 164 260 326 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE 45 FIGURE 32 MOSS LANDING 7 COSTS PER MWh 40 MONOTONIC COSTS ($/MWh) 35 COSTS NO- L OAD COSTS 30 25 20 15 10 5 0 62 82 164 260 326 OUTPUT (MW) I have calculated and summarized the No-Load Heat Rates for all the IOU units, using the “d” coefficient of the heat rate equations as the No-Load Heat Rate. The supporting data is provided in Appendix D. Using this data, I made what I consider to be an important correlation. Figures 33A, B and C show AHR/IHR ratios as a function of these No-Load Heat Rates. I expected to find a very high correlation between the AHR/IHR ratios and No-Load Heat Rates, since they both reflect the difference between AHR and IHR. But in fact, they do not seem to correlate at all. This correlation is bad enough that I have to wonder about the viability of the proposed concept for market bidding. In Figures 33 the situation becomes ludicrous in that there is a negative value for NoLoad Heat Rate. It is possible, however, that if the equations were completely reworked, going back to the original Input-Output field measurements, that much of the heat rate data would change and perhaps change the nature of the correlation so that the No-Load Heat Rates would make sense. HR-DESC.DOC; 4/17/98; PAGE 46 1,000,000 662,025 657,281 632,496 0.5 1,000,000 737,960 293,691 223,144 R(X1) 193,103 164,658 727,238 677,108 219,614 218,209 205,948 200,714 194,590 190,385 180,146 177,052 117,483 115,531 99,926 70,409 AHR/IHR 2.5 162,660 590,522 588,318 585,227 2.00 109,919 3.00 453,856 7.00 397,249 1.00 327,238 326,693 315,310 302,880 301,952 267,439 230,091 56,315 48,471 -694,407 ahr/ihr 8.00 107,907 102,533 100,850 91,919 66,695 AHR/IHR FIGURE 33A,B&C AHR/IHR vs NO-LOAD HEAT RATE PG&E 3.0 2.0 Rave 1.5 1.0 R(X2) 0.0 NO-LOAD HEAT RATE (Btu/kWh) AHR/IHR vs NO-LOAD HEAT RATE SCE 9.00 R(X1) 6.00 5.00 4.00 Rave 0.00 R(X1) NO-LOAD HEAT RATE (Btu/kWh) AHR/IHR vs NO-LOAD HEAT RATE SDG&E 2.5 2.0 1.5 1.0 0.5 0.0 NO-LOAD HEAT RATE Btu/kWh) HR-DESC.DOC; 4/17/98; PAGE 47 APPENDICES A - E FOR THE USE OF HEAT RATES IN PRODUCTION COST MODELING AND MARKET MODELING HR-DESC.DOC; 4/17/98; PAGE 48 APPENDIX A SUMMARY OF BLOCK HEAT RATE DATA This appendix provides a summary of all the known heat rate data for the slow-start thermal units owned by the IOUs -- prior to divestiture. For those units that have been divested, they are still grouped by the IOU that formerly owned them but the new owner is noted. Each summary includes the Input-Output Curve, the (Average) Incremental Heat Rates and the Average Heat Rates, as well as the corresponding plots of that data. The sources of this data is as follows: • PG&E: ER 96 CFM Filing dated April 1996 except for Moss Landing 6 & 7 which are taken from 1994 CPUC Rate Case • SCE: ER 94 CFM Filing dated June 1993 • SDG&E: April 28, 1997 FAX from Pat Harner of SDG&E During the review of this data I noticed a number of anomalies. In some cases I changed the data in order to make it appear more reasonable. In the remainder of the cases, I elected to use the data as it was provided by the IOU but noted my concerns. In attempting to use the ER 96 CFM heat rate data for PG&E, I noticed that there were four instances when some of a unit’s heat rate blocks were changed from the previously used data (1994 Rate Case) but not others -- which is physically impossible. Figures A-1 through A-4 summarize these instances. Morro Bay 4 shows a revised Block 2 heat rate but none of its other heat rate blocks were revised. Moss Landing 6 shows only Blocks 1 and 2 being revised from ER 94 numbers. Moss Landing 7 shows Blocks 1, 2 and 5 being revised but not Blocks 3 and 4. Pittsburg 7 showed only Block 5 being revised. For Morro Bay 4 and Pittsburg 7, I elected to use the ER 96 CFM data as is because the effects on the heat rate characteristics appeared to be insignificant. For Moss Landing 6 and 7, I reverted to the 1994 Rate Case data as the ER 96 data was producing serious anomalies in the Instantaneous Incremental Heat Rate curves; Figure A-5 illustrates this for Moss Landing 7 -- the curve should not be turning down on the end. This decision was based on a conversation with Mark Meldgin of PG&E and Jim Hoffsis of the Northern California Unit. FIGURE A-1 UNIT: MORRO BAY 4 - PG&E 1994 RATE CASE OUTPUT (%) (MW) BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 14% 25% 50% 80% 100% UNIT: MORRO BAY 4 - ER 96 CFM Input-Output Incremental Average Curve Heat Rate Heat Rate (1000 Btu/hr) (Btu/kWh) 46 590,364 85 930,495 169 1,672,931 270 2,591,190 338 3,224,520 12,834 8,721 8,839 9,092 9,314 OUTPUT (%) (MW) (Btu/kWh) 12,834 10,947 9,899 9,597 9,540 BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 14% 25% 50% 80% 100% Input-Output Incremental Average Curve Heat Rate Heat Rate (1000 Btu/hr) (Btu/kWh) 46 590,364 85 921,995 169 1,672,931 270 2,591,190 338 3,224,520 12,834 8,503 8,940 9,092 9,314 (Btu/kWh) 12,834 10,847 9,899 9,597 9,540 HR-DESC.DOC; 4/17/98; PAGE A-1 FIGURE A-2 UNIT: MOSS LANDING 6 - PG&E 1994 RATE CASE Duke Energy Nov. 1997 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 7% 25% 50% 80% 100% UNIT: MOSS LANDING 6 - ER 96 CFM Duke Energy Nov. 1997 (1000 Btu/hr) (Btu/kWh) 50 185 370 591 739 997,950 1,985,975 3,503,900 5,409,423 6,704,208 19,959 7,319 8,205 8,622 8,749 OUTPUT (%) (MW) (Btu/kWh) 19,959 10,735 9,470 9,153 9,072 BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 7% 25% 50% 80% 100% 50 185 370 591 739 Input-Output Incremental Average Curve Heat Rate Heat Rate (1000 Btu/hr) (Btu/kWh) 990,900 1,933,435 3,503,900 5,409,423 6,704,208 19,818 6,982 8,489 8,622 8,749 (Btu/kWh) 19,818 10,451 9,470 9,153 9,072 FIGURE A-3 UNIT: MOSS LANDING 7 - PG&E 1994 RATE CASE Duke Energy Nov. 1997 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 7% 25% 50% 80% 100% UNIT: MOSS LANDING 7 - ER 96 CFM Duke Energy Nov. 1997 (1000 Btu/hr) (Btu/kWh) 50 185 370 591 739 997,950 1,966,735 3,429,160 5,296,542 6,589,663 19,959 7,176 7,905 8,450 8,737 OUTPUT (%) (MW) (Btu/kWh) 19,959 10,631 9,268 8,962 8,917 BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 7% 25% 50% 80% 100% 50 185 370 591 739 Input-Output Incremental Average Curve Heat Rate Heat Rate (1000 Btu/hr) (Btu/kWh) 990,900 1,924,185 3,429,160 5,296,542 6,561,581 19,818 6,913 8,135 8,450 8,548 (Btu/kWh) 19,818 10,401 9,268 8,962 8,879 FIGURE A-4 UNIT: PITTSBURG 7 - PG&E 1994 RATE CASE Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 17% 25% 50% 80% 100% UNIT: PITTSBURG 7 - ER 96 CFM (1000 Btu/hr) (Btu/kWh) 120 180 360 576 720 1,686,000 2,194,020 3,725,640 5,615,424 6,981,840 14,050 8,467 8,509 8,749 9,489 OUTPUT (%) (MW) (Btu/kWh) 14,050 12,189 10,349 9,749 9,697 BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 17% 25% 50% 80% 100% 120 180 360 576 720 Input-Output Incremental Average Curve Heat Rate Heat Rate (1000 Btu/hr) (Btu/kWh) 1,686,000 2,194,020 3,725,640 5,615,424 6,993,360 14,050 8,467 8,509 8,749 9,569 (Btu/kWh) 14,050 12,189 10,349 9,749 9,713 FIGURE A-5 INCREMENTAL HEATRATE Moss Landing 7 HEATRATE (Btu/kWh) 9,000 8,500 8,000 7,500 dy/dx = -0.009x2 +9.586x + 6044.8 7,000 6,500 6,000 0 200 400 600 800 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-2 The SCE data was taken from ER 94 CFM filings, as SCE did not file CFM data for ER 96. The only exception is the data for Cool Water 3&4, which I considered to be questionable. Figure A-6 shows the heat rate summary data for this unit as provided for ER 94 CFM filing. Note the irregular shape of the heat rate data, particularly the highly unlikely shape of the Incremental Heat Rate data. I felt that something was probably wrong with this data and took the liberty to changing it. Looking at the Input-Output data, it appears that Block 3 is an erroneous point. I fixed this data by ignoring this unlikely value, fitting an equation to the remaining 4 points of the Input-Output Curve and reconstructing the heat rate values as shown in Figure A-7. FIGURE A-6 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 27% BLOCK 2 35% BLOCK 3 47% BLOCK 4 74% BLOCK 5 100% 140 180 240 380 512 1,983,800 2,264,400 2,980,560 3,716,400 4,776,960 14,170 7,015 11,936 5,256 8,035 14,170 12,580 12,419 9,780 9,330 HEATRATE (Btu/kWh) 16,000 UNIT: COOL WATER 3&4 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 200 300 400 500 600 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 16,000 HEATRATE (Btu/kWh) 5,000,000 INPUT (1000 Btu/hr) 100 4,000,000 3,000,000 2,000,000 1,000,000 0 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 200 400 OUTPUT (MW) 600 0 200 400 600 OUTPUT (MW) My decision on this is arguable as a combined cycle unit is a combination of a steam unit and a CT. One would expect therefore some irregularity in the heat rate curves. Nevertheless, I have elected to stay with my proposed revision until the Cool Water 3 and 4 heat rate data can be verified. The SDG&E data was taken from a 4/28/97 FAX from Pat Harner. SDG&E did not file ER 96 CFM heat rate data and there ER 94 data appeared to be unreasonable in some cases. HR-DESC.DOC; 4/17/98; PAGE A-3 FIGURE A-7 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 27% BLOCK 2 35% BLOCK 3 47% BLOCK 4 74% BLOCK 5 100% 140 180 240 380 512 1,983,721 2,264,236 2,688,080 3,714,898 4,773,296 (Btu/kWh) 14,169 7,013 7,064 7,334 8,018 (Btu/kWh) 14,169 12,579 11,200 9,776 9,323 HEATRATE (Btu/kWh) 16,000 UNIT: COOL WATER 3&4 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 200 300 400 500 600 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 16,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 0 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 200 400 OUTPUT (MW) 600 0 200 400 600 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-4 PG&E SUMMARY HEAT RATE DATA (SOURCE: ER 96 CFM FILING) HR-DESC.DOC; 4/17/98; PAGE A-5 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE UNIT: CONTRA COSTA 6 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 14% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 46 85 170 272 340 600,944 936,870 1,670,930 2,570,944 3,240,540 (Btu/kWh) (Btu/kWh) 13,064 8,613 8,636 8,824 9,847 13,064 11,022 9,829 9,452 9,531 HEATRATE (Btu/kWh) 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 200 300 400 300 400 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 14,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 0 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 200 300 OUTPUT (MW) 0 400 SUMMARY HEAT RATE DATA 100 200 OUTPUT (MW) INCREMENTAL HEATRATE UNIT: CONTRA COSTA 7 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 14% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 46 85 170 272 340 621,046 950,045 1,675,690 2,584,544 3,248,700 (Btu/kWh) (Btu/kWh) 13,501 8,436 8,537 8,910 9,767 13,501 11,177 9,857 9,502 9,555 HEATRATE (Btu/kWh) 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 200 300 400 300 400 OUTPUT (MW) INPUT-OUTPUT CURVE AVERAGE HEATRATE 14,000 HEATRATE (Btu/kWh) 3,500,000 INPUT (1000 Btu/hr) 100 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 0 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 200 OUTPUT (MW) 300 400 0 100 200 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-6 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 10% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 10 26 53 84 105 211,645 376,350 662,050 1,010,184 1,296,803 (Btu/kWh) (Btu/kWh) 21,165 10,294 10,581 11,230 13,649 21,165 14,475 12,492 12,026 12,351 HEATRATE (Btu/kWh) 25,000 UNIT: HUMBOLDT 1&2 20,000 15,000 10,000 5,000 0 0 40 60 80 100 120 100 120 100 120 100 120 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 25,000 HEATRATE (Btu/kWh) 1,400,000 INPUT (1000 Btu/hr) 20 1,200,000 1,000,000 800,000 600,000 400,000 200,000 20,000 15,000 10,000 5,000 0 0 0 20 40 60 80 OUTPUT (MW) 100 0 120 SUMMARY HEAT RATE DATA 20 40 60 80 OUTPUT (MW) INCREMENTAL HEATRATE UNIT: HUNTERS POINT 2 Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 9% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 10 27 54 86 107 215,510 391,824 688,122 1,067,862 1,334,504 21,551 10,371 10,974 11,867 12,697 21,551 14,512 12,743 12,417 12,472 HEATRATE (Btu/kWh) 25,000 20,000 15,000 10,000 5,000 0 0 40 60 80 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 25,000 HEATRATE (Btu/kWh) 1,400,000 INPUT (1000 Btu/hr) 20 1,200,000 1,000,000 800,000 600,000 400,000 200,000 0 20,000 15,000 10,000 5,000 0 0 20 40 60 80 OUTPUT (MW) 100 120 0 20 40 60 80 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-7 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE UNIT: HUNTERS POINT 3 Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 9% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 10 27 54 86 107 210,370 378,378 671,436 1,063,476 1,347,986 21,037 9,883 10,854 12,251 13,548 21,037 14,014 12,434 12,366 12,598 HEATRATE (Btu/kWh) 25,000 20,000 15,000 10,000 5,000 0 0 40 60 80 100 120 100 120 OUTPUT (MW) INPUT-OUTPUT CURVE AVERAGE HEATRATE 25,000 1,400,000 1,200,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 20 1,000,000 800,000 600,000 400,000 200,000 0 20,000 15,000 10,000 5,000 0 0 20 40 60 80 OUTPUT (MW) 100 0 120 SUMMARY HEAT RATE DATA 20 40 60 80 OUTPUT (MW) INCREMENTAL HEATRATE UNIT: HUNTERS POINT 4 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 19% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 62 82 164 260 326 748,092 926,108 1,667,060 2,567,240 3,208,166 (Btu/kWh) (Btu/kWh) 12,066 8,901 9,036 9,377 9,711 12,066 11,294 10,165 9,874 9,841 HEATRATE (Btu/kWh) 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 200 300 400 300 400 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 14,000 HEATRATE (Btu/kWh) 3,500,000 INPUT (1000 Btu/hr) 100 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 0 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 200 OUTPUT (MW) 300 400 0 100 200 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-8 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 19% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 62 82 164 260 326 786,408 974,201 1,748,568 2,676,700 3,341,500 (Btu/kWh) (Btu/kWh) 12,684 9,390 9,444 9,668 10,073 12,684 11,881 10,662 10,295 10,250 HEATRATE (Btu/kWh) 14,000 UNIT: MORRO BAY 1&2 12,000 10,000 8,000 6,000 4,000 2,000 0 0 200 300 400 300 400 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 14,000 HEATRATE (Btu/kWh) 3,500,000 INPUT (1000 Btu/hr) 100 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 100 200 OUTPUT (MW) 300 400 0 100 200 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-9 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE UNIT: MORRO BAY 3 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 14% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 46 85 169 270 338 606,924 960,670 1,721,096 2,640,060 3,261,700 (Btu/kWh) (Btu/kWh) 13,194 9,070 9,053 9,099 9,142 13,194 11,302 10,184 9,778 9,650 HEATRATE (Btu/kWh) 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 200 300 400 300 400 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 14,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 100 200 300 OUTPUT (MW) 0 400 SUMMARY HEAT RATE DATA 100 200 OUTPUT (MW) INCREMENTAL HEATRATE UNIT: MORRO BAY 4 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 14% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 46 85 169 270 338 590,364 921,995 1,672,931 2,591,190 3,224,520 (Btu/kWh) (Btu/kWh) 12,834 8,503 8,940 9,092 9,314 12,834 10,847 9,899 9,597 9,540 HEATRATE (Btu/kWh) 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 200 300 400 300 400 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 14,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 100 200 OUTPUT (MW) 300 400 0 100 200 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-10 SUMMARY HEAT RATE DATA UNIT: MOSS LANDING 6 Duke Energy Nov. 1997 Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 7% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 50 185 370 591 739 997,950 1,985,975 3,503,900 5,409,423 6,704,208 19,959 7,319 8,205 8,622 8,749 19,959 10,735 9,470 9,153 9,072 HEATRATE (Btu/kWh) INCREMENTAL HEATRATE 20,000 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 600 800 600 800 AVERAGE HEATRATE 20,000 7,000,000 HEATRATE (Btu/kWh) 18,000 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 200 400 600 800 0 200 OUTPUT (MW) Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) 50 185 370 591 739 997,950 1,966,735 3,429,160 5,296,542 6,589,663 19,959 7,176 7,905 8,450 8,737 19,959 10,631 9,268 8,962 8,917 HEATRATE (Btu/kWh) INCREMENTAL HEATRATE UNIT: MOSS LANDING 7 Duke Energy Nov. 1997 BLOCK 1 7% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 400 OUTPUT (MW) SUMMARY OF HEAT RATE DATA 20,000 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 200 400 600 800 600 800 OUTPUT (MW) INPUT-OUTPUT CURVE AVERAGE HEATRATE 20,000 7,000,000 18,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 400 OUTPUT (MW) INPUT-OUTPUT CURVE INPUT (1000 Btu/hr) 200 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 200 400 OUTPUT (MW) 600 800 0 200 400 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-11 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE UNIT: PITTSBURG 1&2 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 19% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 62 82 164 260 326 873,642 1,052,798 1,793,094 2,692,950 3,374,752 (Btu/kWh) (Btu/kWh) 14,091 8,958 9,028 9,374 10,330 14,091 12,839 10,934 10,358 10,352 HEATRATE (Btu/kWh) 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 200 300 400 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 16,000 3,500,000 14,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 100 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 100 200 OUTPUT (MW) 300 0 400 100 SUMMARY HEAT RATE DATA 200 OUTPUT (MW) 300 400 INCREMENTAL HEATRATE UNIT: PITTSBURG 3&4 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 19% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 62 82 164 260 326 836,256 1,017,005 1,757,998 2,670,200 3,411,264 (Btu/kWh) (Btu/kWh) 13,488 9,037 9,037 9,502 11,228 13,488 12,403 10,720 10,270 10,464 HEATRATE (Btu/kWh) 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 200 300 400 300 400 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 14,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 100 200 OUTPUT (MW) 300 400 0 100 200 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-12 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE 14,000 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 14% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 46 81 163 260 325 615,664 920,970 1,651,679 2,537,080 3,144,700 (Btu/kWh) (Btu/kWh) 13,384 8,723 8,911 9,128 9,348 13,384 11,370 10,133 9,758 9,676 12,000 HEATRATE (Btu/kWh) UNIT: PITTSBURG 5 10,000 8,000 6,000 4,000 2,000 0 0 100 300 400 300 400 AVERAGE HEATRATE INPUT-OUTPUT CURVE 14,000 3,500,000 12,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 200 OUTPUT (MW) 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 10,000 8,000 6,000 4,000 2,000 0 0 0 100 200 OUTPUT (MW) 300 400 0 100 SUMMARY HEAT RATE DATA 200 OUTPUT (MW) INCREMENTAL HEATRATE UNIT: PITTSBURG 6 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 14% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 46 81 163 260 325 660,284 960,174 1,683,464 2,583,620 3,232,125 (Btu/kWh) (Btu/kWh) 14,354 8,568 8,821 9,280 9,977 14,354 11,854 10,328 9,937 9,945 HEATRATE (Btu/kWh) 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 200 300 400 300 400 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 16,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 100 200 OUTPUT (MW) 300 400 0 100 200 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-13 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE 16,000 Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 17% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 120 180 360 576 720 1,686,000 2,194,020 3,725,640 5,615,424 6,993,360 14,050 8,467 8,509 8,749 9,569 14,050 12,189 10,349 9,749 9,713 12,000 10,000 8,000 6,000 4,000 2,000 0 0 INPUT-OUTPUT CURVE 7,000,000 400 OUTPUT (MW) 600 800 600 800 14,000 HEATRATE (Btu/kWh) 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 200 400 OUTPUT (MW) 600 800 0 200 SUMMARY HEAT RATE DATA Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 23% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 47 52 104 166 207 514,697 559,520 1,023,880 1,598,746 2,022,597 (Btu/kWh) (Btu/kWh) 10,951 8,965 8,930 9,272 10,338 10,951 10,760 9,845 9,631 9,771 HEATRATE (Btu/kWh) UNIT: POTRERO 3 10,000 8,000 6,000 4,000 2,000 0 0 INPUT-OUTPUT CURVE HEATRATE (Btu/kWh) 1,000,000 500,000 0 100 150 200 250 200 250 AVERAGE HEATRATE 12,000 1,500,000 50 OUTPUT (MW) 2,500,000 2,000,000 400 OUTPUT (MW) INCREMENTAL HEATRATE 12,000 INPUT (1000 Btu/hr) 200 AVERAGE HEATRATE 16,000 6,000,000 INPUT (1000 Btu/hr) HEATRATE (Btu/kWh) 14,000 UNIT: PITTSBURG 7 10,000 8,000 6,000 4,000 2,000 0 0 50 100 150 OUTPUT (MW) 200 250 0 50 100 150 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-14 SCE SUMMARY HEAT RATE DATA (SOURCE: ER 94 CFM FILING) HR-DESC.DOC; 4/17/98; PAGE A-15 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE UNIT: ALAMITOS 1&2 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 6% BLOCK 2 26% BLOCK 3 51% BLOCK 4 77% BLOCK 5 100% 20 90 180 270 350 577,980 1,216,755 2,057,760 2,927,610 3,732,050 (Btu/kWh) 28,899 9,125 9,345 9,665 10,056 (Btu/kWh) 28,899 13,520 11,432 10,843 10,663 HEATRATE (Btu/kWh) 30,000 25,000 20,000 15,000 10,000 5,000 0 0 100 300 400 300 400 AVERAGE HEATRATE INPUT-OUTPUT CURVE 30,000 HEATRATE (Btu/kWh) 4,000,000 INPUT (1000 Btu/hr) 200 OUTPUT (MW) 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 0 25,000 20,000 15,000 10,000 5,000 0 0 100 200 300 OUTPUT (MW) 0 400 100 SUMMARY HEAT RATE DATA 200 OUTPUT (MW) INCREMENTAL HEATRATE UNIT: ALAMITOS 3&4 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 6% BLOCK 2 25% BLOCK 3 50% BLOCK 4 75% BLOCK 5 100% 40 160 320 480 640 1,011,300 2,024,880 3,407,680 4,840,320 6,334,400 (Btu/kWh) (Btu/kWh) 25,283 8,447 8,643 8,954 9,338 25,283 12,656 10,649 10,084 9,898 HEATRATE (Btu/kWh) 30,000 25,000 20,000 15,000 10,000 5,000 0 0 400 600 800 600 800 OUTPUT (MW) INPUT-OUTPUT CURVE AVERAGE HEATRATE 30,000 HEATRATE (Btu/kWh) 7,000,000 INPUT (1000 Btu/hr) 200 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 0 25,000 20,000 15,000 10,000 5,000 0 0 200 400 OUTPUT (MW) 600 800 0 200 400 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-16 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE 12,000 UNIT: ALAMITOS 5&6 AES 1/1/98 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 27% BLOCK 2 44% BLOCK 3 63% BLOCK 4 81% BLOCK 5 100% 260 420 600 780 960 (Btu/kWh) (Btu/kWh) 11,713 8,203 8,514 9,113 9,223 11,713 10,376 9,818 9,655 9,574 3,045,380 4,357,920 5,890,500 7,530,900 9,191,040 HEATRATE (Btu/kWh) 10,000 8,000 6,000 4,000 2,000 0 0 200 400 600 OUTPUT (MW) 800 1000 800 1000 AVERAGE HEATRATE INPUT-OUTPUT CURVE 12,000 10,000,000 9,000,000 8,000,000 7,000,000 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 0 INPUT (1000 Btu/hr) HEATRATE (Btu/kWh) 10,000 8,000 6,000 4,000 2,000 0 0 200 400 600 OUTPUT (MW) 800 1000 0 200 SUMMARY HEAT RATE DATA 400 600 OUTPUT (MW) INCREMENTAL HEATRATE UNIT: COOL WATER 1 Houston Industries Inc. 1/1/98 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 26% BLOCK 2 46% BLOCK 3 66% BLOCK 4 86% BLOCK 5 100% 17 30 43 56 65 203,048 324,240 448,318 575,904 666,575 (Btu/kWh) (Btu/kWh) 11,944 9,322 9,544 9,814 10,075 11,944 10,808 10,426 10,284 10,255 HEATRATE (Btu/kWh) 12,000 10,000 8,000 6,000 4,000 2,000 0 0 20 40 OUTPUT (MW) 60 80 60 80 AVERAGE HEATRATE INPUT-OUTPUT CURVE 12,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 700,000 600,000 500,000 400,000 300,000 200,000 100,000 0 10,000 8,000 6,000 4,000 2,000 0 0 20 40 OUTPUT (MW) 60 80 0 20 40 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-17 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE UNIT: COOL WATER 2 Houston Industries Inc. 1/1/98 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 23% BLOCK 2 43% BLOCK 3 63% BLOCK 4 83% BLOCK 5 100% 19 35 51 67 81 (Btu/kWh) (Btu/kWh) 12,181 9,368 9,540 9,741 9,960 12,181 10,895 10,470 10,296 10,238 231,439 381,325 533,970 689,832 829,278 HEATRATE (Btu/kWh) 14,000 10,000 8,000 6,000 4,000 2,000 0 0 20 40 60 80 100 80 100 OUTPUT (MW) INPUT-OUTPUT CURVE AVERAGE HEATRATE 12,200 900,000 800,000 700,000 600,000 500,000 400,000 300,000 200,000 100,000 0 12,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 12,000 11,800 11,600 11,400 11,200 11,000 10,800 10,600 10,400 10,200 19 35 51 OUTPUT (MW) 67 0 81 SUMMARY HEAT RATE DATA 20 40 60 OUTPUT (MW) INCREMENTAL HEATRATE 16,000 UNIT: COOL WATER 3&4 Houston Industries Inc. 1/1/98 Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 27% BLOCK 2 35% BLOCK 3 47% BLOCK 4 74% BLOCK 5 100% Summer Rate 140 180 240 380 512 482 1,983,660 2,264,220 2,688,000 3,714,880 4,773,376 14,169 7,014 7,063 7,335 8,019 14,169 12,579 11,200 9,776 9,323 HEATRATE (Btu/kWh) 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 200 300 400 OUTPUT (MW) 500 600 AVERAGE HEATRATE 16,000 5,000,000 4,500,000 4,000,000 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 0 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) INPUT-OUTPUT CURVE 100 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 200 300 400 OUTPUT (MW) 500 600 0 100 200 300 400 OUTPUT (MW) 500 600 HR-DESC.DOC; 4/17/98; PAGE A-18 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE UNIT: EL SEGUNDO 1&2 NRG/ Destec Consortium Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 6% BLOCK 2 26% BLOCK 3 51% BLOCK 4 77% BLOCK 5 100% 20 90 180 270 350 556,760 1,202,400 2,048,040 2,914,785 3,706,850 (Btu/kWh) (Btu/kWh) 27,838 9,223 9,396 9,631 9,901 27,838 13,360 11,378 10,796 10,591 HEATRATE (Btu/kWh) 30,000 25,000 20,000 15,000 10,000 5,000 0 0 100 200 OUTPUT (MW) 300 400 300 400 AVERAGE HEATRATE INPUT-OUTPUT CURVE 30,000 HEATRATE (Btu/kWh) 4,000,000 INPUT (1000 Btu/hr) 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 25,000 20,000 15,000 10,000 5,000 500,000 0 0 0 100 200 OUTPUT (MW) 300 0 400 100 SUMMARY HEAT RATE DATA 200 OUTPUT (MW) INCREMENTAL HEATRATE UNIT: EL SEGUNDO 3&4 NRG/ Destec Consortium Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 6% BLOCK 2 24% BLOCK 3 48% BLOCK 4 72% BLOCK 5 100% 40 160 320 480 670 985,120 1,991,920 3,364,160 4,777,920 6,526,135 24,628 8,390 8,577 8,836 9,201 24,628 12,450 10,513 9,954 9,741 HEATRATE (Btu/kWh) 25,000 20,000 15,000 10,000 5,000 0 0 200 400 OUTPUT (MW) 600 800 600 800 AVERAGE HEATRATE INPUT-OUTPUT CURVE 25,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 7,000,000 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 0 20,000 15,000 10,000 5,000 0 0 200 400 OUTPUT (MW) 600 800 0 200 400 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-19 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE UNIT: ETIWANDA 1&2 Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 8% BLOCK 2 30% BLOCK 3 53% BLOCK 4 76% BLOCK 5 100% 20 80 140 200 264 496,960 1,052,680 1,630,580 2,236,700 2,923,008 24,848 9,262 9,632 10,102 10,724 24,848 13,159 11,647 11,184 11,072 HEATRATE (Btu/kWh) 25,000 20,000 15,000 10,000 5,000 0 0 50 150 200 250 300 250 300 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 25,000 HEATRATE (Btu/kWh) 3,000,000 INPUT (1000 Btu/hr) 100 2,500,000 2,000,000 1,500,000 1,000,000 500,000 20,000 15,000 10,000 5,000 0 0 0 50 100 150 200 OUTPUT (MW) 250 0 300 SUMMARY HEAT RATE DATA 50 100 150 200 OUTPUT (MW) INCREMENTAL HEATRATE UNIT: ETIWANDA 3&4 Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 6% BLOCK 2 25% BLOCK 3 50% BLOCK 4 75% BLOCK 5 100% 40 160 320 480 640 919,180 1,931,360 3,313,280 4,741,200 6,227,840 22,980 8,435 8,637 8,925 9,292 22,980 12,071 10,354 9,878 9,731 HEATRATE (Btu/kWh) 25,000 20,000 15,000 10,000 5,000 0 0 200 600 800 AVERAGE HEATRATE INPUT-OUTPUT CURVE 25,000 HEATRATE (Btu/kWh) 7,000,000 INPUT (1000 Btu/hr) 400 OUTPUT (MW) 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 0 20,000 15,000 10,000 5,000 0 0 200 400 OUTPUT (MW) 600 800 0 200 400 600 800 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-20 SUMMARY HEAT RATE DATA INCREMENTAL HEAT RATE UNIT: HIGHGROVE 1&2 Thermo Ecotek 1/1/98 HEATRATE (Btu/kWh) 50,000 45,000 40,000 35,000 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 12% BLOCK 2 27% BLOCK 3 58% BLOCK 4 85% BLOCK 5 100% 8 18 38 56 66 394,428 478,563 647,333 799,811 884,766 (Btu/kWh) (Btu/kWh) 49,304 8,414 8,439 8,471 8,496 49,304 26,587 17,035 14,282 13,406 30,000 25,000 20,000 15,000 10,000 5,000 0 0 20 INPUT-OUTPUT CURVE 60 80 60 80 AVERAGE HEAT RATE 800,000 700,000 45,000 INPUT (1000 Btu/hr) HEATRATE (Btu/kWh) 900,000 50,000 600,000 500,000 400,000 300,000 200,000 100,000 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5,000 0 0 0 20 40 OUTPUT (MW) 60 80 0 20 SUMMARY OF HEAT RATE DATA BLOCK 1 11% BLOCK 2 27% BLOCK 3 56% BLOCK 4 90% BLOCK 5 100% 10 24 50 80 89 666,030 776,602 987,124 1,237,224 1,313,607 (Btu/kWh) (Btu/kWh) 66,603 7,898 8,097 8,337 8,487 66,603 32,358 19,742 15,465 14,760 HEATRATE (Btu/kWh) 70,000 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) 40 OUTPUT (MW) INCREMENTAL HEAT RATE UNIT: HIGHROVE 3&4 Thermo Ecotek 1/1/98 60,000 50,000 40,000 30,000 20,000 10,000 0 0 20 40 60 80 100 80 100 OUTPUT (MW) AVERAGE HEAT RATE INPUT-OUTPUT CURVE 70,000 HEATRATE (Btu/kWh) 1,400,000 INPUT (1000 Btu/hr) 40 OUTPUT (MW) 1,200,000 1,000,000 800,000 600,000 400,000 200,000 0 60,000 50,000 40,000 30,000 20,000 10,000 0 0 20 40 60 OUTPUT (MW) 80 100 0 20 40 60 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-21 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE 18,000 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 9% BLOCK 2 33% BLOCK 3 56% BLOCK 4 79% BLOCK 5 100% 40 140 240 340 430 664,240 1,519,420 2,396,520 3,301,570 4,146,060 (Btu/kWh) (Btu/kWh) 16,606 8,552 8,771 9,051 9,383 16,606 10,853 9,986 9,711 9,642 HEATRATE (Btu/kWh) 16,000 UNIT: HUNTINGTON BEACH 1&2 AES Corp. 1/1/98 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 200 300 OUTPUT (MW) 400 500 AVERAGE HEATRATE INPUT-OUTPUT CURVE 18,000 4,500,000 4,000,000 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 0 16,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 100 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 200 300 OUTPUT (MW) 400 500 0 100 SUMMARY HEAT RATE DATA 200 300 OUTPUT (MW) 400 500 INCREMENTAL HEATRATE 14,000 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 13% BLOCK 2 32% BLOCK 3 54% BLOCK 4 73% BLOCK 5 100% 70 180 300 410 560 882,000 1,938,600 3,096,000 4,163,550 5,636,400 (Btu/kWh) (Btu/kWh) 12,600 9,605 9,645 9,705 9,819 12,600 10,770 10,320 10,155 10,065 HEATRATE (Btu/kWh) UNIT: LONG BEACH 8&9 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 200 300 400 500 600 500 600 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 14,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 0 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 200 300 400 OUTPUT (MW) 500 600 0 100 200 300 400 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-22 SUMMARY HEAT RATE DATA INCREMENTAL HEAT RATE 16,000 UNIT: MANDALAY 1&2 Houston Industries Inc. 1/1/98 Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 9% BLOCK 2 33% BLOCK 3 56% BLOCK 4 79% BLOCK 5 100% 40 140 240 340 430 629,380 1,491,280 2,379,000 3,300,380 4,166,055 15,735 8,619 8,877 9,214 9,619 15,735 10,652 9,913 9,707 9,689 HEATRATE (Btu/kWh) 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 200 300 OUTPUT (MW) 400 500 400 500 AVERAGE HEAT RATE INPUT-OUTPUT CURVE 16,000 4,500,000 14,000 HEATRATE (Btu/kWh) 4,000,000 INPUT (1000 Btu/hr) 100 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 12,000 10,000 8,000 6,000 4,000 2,000 500,000 0 0 0 100 200 300 OUTPUT (MW) 400 500 0 100 SUMMARY HEAT RATE DATA 200 300 OUTPUT (MW) INCREMENTAL HEAT RATE UNIT: ORMOND BEACH 1 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 33% BLOCK 2 49% BLOCK 3 67% BLOCK 4 83% BLOCK 5 100% 250 370 500 620 750 2,713,000 3,692,970 4,788,500 5,836,060 7,019,250 (Btu/kWh) (Btu/kWh) 10,852 8,166 8,427 8,730 9,101 10,852 9,981 9,577 9,413 9,359 HEATRATE (Btu/kWh) 12,000 8,000 6,000 4,000 2,000 0 0 200 400 600 800 600 800 OUTPUT (MW) AVERAGE HEAT RATE INPUT-OUTPUT CURVE 8,000,000 12,000 7,000,000 10,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 10,000 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 8,000 6,000 4,000 2,000 0 0 0 200 400 OUTPUT (MW) 600 800 0 200 400 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-23 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE 20,000 UNIT: ORMOND BEACH 2 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 7% BLOCK 2 30% BLOCK 3 53% BLOCK 4 77% BLOCK 5 100% 50 225 400 575 750 993,850 2,427,075 3,907,200 5,448,125 7,067,250 (Btu/kWh) (Btu/kWh) 19,877 8,190 8,458 8,805 9,252 19,877 10,787 9,768 9,475 9,423 HEATRATE (Btu/kWh) 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 400 600 800 600 800 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 20,000 8,000,000 18,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 200 7,000,000 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 200 400 OUTPUT (MW) 600 800 0 SUMMARY HEAT RATE DATA 200 400 OUTPUT (MW) INCREMENTAL HEATRATE Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 6% BLOCK 2 26% BLOCK 3 51% BLOCK 4 77% BLOCK 5 100% 20 90 180 270 350 632,340 1,261,755 2,083,770 2,922,750 3,685,325 (Btu/kWh) (Btu/kWh) 31,617 8,992 9,134 9,322 9,532 31,617 14,020 11,577 10,825 10,530 HEATRATE (Btu/kWh) 35,000 UNIT: REDONDO BEACH 5&6 AES Corp. 1/1/98 30,000 25,000 20,000 15,000 10,000 5,000 0 0 200 300 400 300 400 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 35,000 HEATRATE (Btu/kWh) 4,000,000 INPUT (1000 Btu/hr) 100 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 0 30,000 25,000 20,000 15,000 10,000 5,000 0 0 100 200 OUTPUT (MW) 300 400 0 100 200 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-24 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 27% BLOCK 2 38% BLOCK 3 69% BLOCK 4 83% BLOCK 5 100% 260 360 660 800 960 2,917,070 3,772,260 6,395,730 7,655,600 9,128,640 (Btu/kWh) 11,220 8,552 8,745 8,999 9,207 (Btu/kWh) 11,220 10,479 9,691 9,570 9,509 HEATRATE (Btu/kWh) 12,000 UNIT: REDONDO BEACH 7&8 AES Corp. 1/1/98 10,000 8,000 6,000 4,000 2,000 0 0 400 600 800 1000 800 1000 OUTPUT (MW) INPUT-OUTPUT CURVE AVERAGE HEATRATE 12,000 10,000,000 9,000,000 8,000,000 7,000,000 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 0 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 200 10,000 8,000 6,000 4,000 2,000 0 0 200 400 600 OUTPUT (MW) 800 0 1000 200 400 600 OUTPUT (MW) SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE UNIT: SAN BERNARDINO 1&2 Thermo Ecotek 1/1/98 Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 11% BLOCK 2 33% BLOCK 3 56% BLOCK 4 78% BLOCK 5 100% 14 42 70 98 126 384,727 627,249 881,895 1,143,611 1,414,854 27,481 8,662 9,095 9,347 9,687 27,481 14,935 12,599 11,670 11,229 HEATRATE (Btu/kWh) 30,000 25,000 20,000 15,000 10,000 5,000 0 0 100 150 OUTPUT (MW) INPUT-OUTPUT CURVE AVERAGE HEATRATE 30,000 1,600,000 1,400,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 50 1,200,000 1,000,000 800,000 600,000 400,000 200,000 25,000 20,000 15,000 10,000 5,000 0 0 0 50 100 OUTPUT (MW) 150 0 50 100 150 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-25 SDG&E SUMMARY HEAT RATE DATA (SOURCE: April 28, 1997 FAX) HR-DESC.DOC; 4/17/98; PAGE A-26 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE UNIT: ENCINA 1 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 19% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 20 27 54 86 107 266,060 327,367 577,533 903,080 1,142,760 (Btu/kWh) (Btu/kWh) 13,303 9,082 9,352 10,142 11,200 13,303 12,238 10,795 10,550 10,680 HEATRATE (Btu/kWh) 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 INPUT-OUTPUT CURVE 20 40 60 80 OUTPUT (MW) 100 120 AVERAGE HEATRATE 14,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 1,200,000 1,000,000 800,000 600,000 400,000 200,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 20 40 60 80 OUTPUT (MW) 100 0 120 20 SUMMARY HEAT RATE DATA 40 60 80 OUTPUT (MW) 100 120 100 120 100 120 INCREMENTAL HEATRATE UNIT: ENCINA 2 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 19% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 20 26 52 83 104 257,200 314,990 570,232 893,734 1,124,864 (Btu/kWh) (Btu/kWh) 12,860 9,632 9,817 10,369 11,112 12,860 12,115 10,966 10,742 10,816 HEATRATE (Btu/kWh) 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 20 40 60 80 OUTPUT (MW) INPUT-OUTPUT CURVE AVERAGE HEATRATE 14,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 1,200,000 1,000,000 800,000 600,000 400,000 200,000 0 12,000 10,000 8,000 6,000 4,000 2,000 0 0 20 40 60 80 OUTPUT (MW) 100 120 0 20 40 60 80 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-27 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE UNIT: ENCINA 3 Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 18% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 20 28 55 88 110 258,720 332,530 606,540 947,232 1,185,030 12,936 9,841 9,964 10,324 10,809 12,936 12,092 11,028 10,764 10,773 HEATRATE (Btu/kWh) 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 20 60 80 100 120 100 120 OUTPUT (MW) AVERAGE HEATRATE INPUT-OUTPUT CURVE 14,000 HEATRATE (Btu/kWh) 1,200,000 INPUT (1000 Btu/hr) 40 1,000,000 800,000 600,000 400,000 200,000 12,000 10,000 0 8,000 6,000 4,000 2,000 0 0 20 40 60 80 OUTPUT (MW) 100 0 120 20 SUMMARY HEAT RATE DATA 40 60 80 OUTPUT (MW) INCREMENTAL HEATRATE UNIT: ENCINA 4 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 7% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 20 75 150 240 300 353,480 874,500 1,596,300 2,495,520 3,124,500 (Btu/kWh) (Btu/kWh) 17,674 9,473 9,624 9,991 10,483 17,674 11,660 10,642 10,398 10,415 HEATRATE (Btu/kWh) 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 150 200 250 300 250 300 OUTPUT (MW) INPUT-OUTPUT CURVE AVERAGE HEATRATE 18,000 HEATRATE (Btu/kWh) 3,500,000 INPUT (1000 Btu/hr) 50 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 0 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 50 100 150 200 OUTPUT (MW) 250 300 0 50 100 150 200 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-28 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE 20,000 18,000 HEATRATE (Btu/kWh) 16,000 UNIT: ENCINA 5 14,000 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 6% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 20 83 165 264 330 372,640 941,967 1,695,870 2,652,144 3,330,030 (Btu/kWh) (Btu/kWh) 18,632 9,037 9,194 9,659 10,271 18,632 11,349 10,278 10,046 10,091 12,000 10,000 8,000 6,000 4,000 2,000 0 0 INPUT-OUTPUT CURVE 200 OUTPUT (MW) 300 400 300 400 AVERAGE HEATRATE 20,000 3,500,000 18,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 100 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 100 200 OUTPUT (MW) 300 400 0 100 200 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-29 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE 14,000 10,000 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 21% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 30 36 72 114 143 HEATRATE (Btu/kWh) 12,000 UNIT: SOUTH BAY 1 369,180 418,954 736,236 1,145,830 1,444,872 (Btu/kWh) (Btu/kWh) 12,306 8,656 8,875 9,548 10,456 12,306 11,719 10,297 10,016 10,104 8,000 6,000 4,000 2,000 0 0 50 150 AVERAGE HEATRATE INPUT-OUTPUT CURVE 14,000 1,600,000 1,400,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 100 OUTPUT (MW) 1,200,000 1,000,000 800,000 600,000 400,000 200,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 0 50 100 OUTPUT (MW) 150 0 50 SUMMARY HEAT RATE DATA 100 OUTPUT (MW) 150 INCREMENTAL HEATRATE UNIT: SOUTH BAY 2 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) BLOCK 1 20% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 30 38 75 120 150 353,970 426,322 758,025 1,175,520 1,465,200 (Btu/kWh) (Btu/kWh) 11,799 9,044 8,965 9,278 9,656 11,799 11,219 10,107 9,796 9,768 HEATRATE (Btu/kWh) 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 150 OUTPUT (MW) INPUT-OUTPUT CURVE AVERAGE HEATRATE 12,000 1,600,000 1,400,000 1,200,000 1,000,000 800,000 600,000 400,000 200,000 0 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 50 10,000 8,000 6,000 4,000 2,000 0 0 50 100 OUTPUT (MW) 150 0 50 100 150 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-30 SUMMARY HEAT RATE DATA INCREMENTAL HEATRATE 14,000 10,000 Input-Output Incremental Average OUTPUT Curve Heat Rate Heat Rate (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 17% BLOCK 2 25% BLOCK 3 50% BLOCK 4 80% BLOCK 5 100% 30 44 88 140 175 HEATRATE (Btu/kWh) 12,000 UNIT: SOUTH BAY 3 374,430 497,350 895,038 1,394,400 1,747,200 12,481 8,940 9,090 9,512 10,080 12,481 11,368 10,229 9,960 9,984 8,000 6,000 4,000 2,000 0 0 50 150 200 AVERAGE HEATRATE 1,800,000 14,000 1,600,000 12,000 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) INPUT-OUTPUT CURVE 100 OUTPUT (MW) 1,400,000 1,200,000 10,000 1,000,000 800,000 600,000 400,000 200,000 0 8,000 6,000 4,000 2,000 0 0 50 100 OUTPUT (MW) 150 0 200 50 SUMMARY HEAT RATE DATA 100 OUTPUT (MW) 150 200 INCREMENTAL HEATRATE UNIT: SOUTH BAY 4 Input-Output Incremental Average Curve Heat Rate Heat Rate OUTPUT (%) (MW) (1000 Btu/hr) (Btu/kWh) (Btu/kWh) BLOCK 1 30% 45 618,615 13,747 13,747 BLOCK 2 50% 75 937,500 10,630 12,500 BLOCK 3 80% 120 1,430,520 10,956 11,921 BLOCK 4 100% 150 1,773,300 11,426 11,822 Note: Only 4 blocks because minimum block > 25% block. HEATRATE (Btu/kWh) 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 0 100 150 OUTPUT (MW) INPUT-OUTPUT CURVE AVERAGE HEATRATE 14,000 1,800,000 1,600,000 1,400,000 1,200,000 1,000,000 800,000 600,000 400,000 200,000 0 HEATRATE (Btu/kWh) INPUT (1000 Btu/hr) 50 12,000 10,000 8,000 6,000 4,000 2,000 0 0 50 100 OUTPUT (MW) 150 0 50 100 150 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE A-31 APPENDIX B DATA FOR HEAT RATE EQUATIONS This Appendix describes my method for developing the heat rate equations, as well as providing the parameters that define these equations. The heat rate curves are: • • • Input-Output Curve Incremental Heat Rate Curve Average Heat Rate Curve Input-Output Curve The Input-Output Curve is typically defined by the third order equation: y = ax3 + bx2+ cx + d Where: x = Output in MW y = Input in Btu/hr a-d = coefficients that define the equation Incremental Heat Rate Curve The Incremental Heat Rate (IHR) is defined as the first derivative of the Input-Output Curve: IHR = dy/dx = 3ax2 + 2bx + c Average Heat Rate Curve The Average Heat Rate (AHR) is defined as the Input-Output Curve divided by the output (x). AHR = y/x = (ax3 + bx2 + cx + d) / x The complete step-by-step process of constructing these heat rate curves is as follows. Enter the block heat rate data of Appendix A into an Excel spreadsheet, as is shown in Table B-1 for the illustrative case of Moss Landing 7. “I/O Curve” is the input-output block data. “IHR” is the Incremental Heat Rate block data. “AHR” is the Average Heat Rate block data. Actually, only the I/O curve data is necessary for this process -- the rest of the data is provided herein for completeness. HR-DESC.DOC; 4/17/98; PAGE B-1 TABLE B-1: ELFIN HEAT RATE DATA FOR MOSS LANDING 7. OUTPUT I/O IHR AHR CURVE (%) (MW) (Btu/hr) (Btu/kWh) (Btu/kWh) 1 6.8% 50 997,950 19,959 19,959 2 25.0% 185 1,966,735 7,176 10,631 3 50.1% 370 3,429,160 7,905 9,268 4 80.0% 591 5,296,542 8,450 8,962 5 100.0% 739 6,589,663 8,737 8,917 Using the I/O Curve (Btu/hr) and Output (MW) data of Table B-1, prepare an Excel graph as shown in Figure B-1. MOSS LANDING 7 I/O CURVE INPUT (1000Btu/hr) 7,000,000 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 0 0 200 400 600 800 OUTPUT(MW) Figure B-1 Next, use the Excel feature of “insert trendline” to identify a third order equation to fit the data points -and select the option that prints the equation on the graph, as shown in Figure B-2. HR-DESC.DOC; 4/17/98; PAGE B-2 MOSS LANDING 7 I/O CURVE INPUT (1000Btu/hr) y = -0.0013x3 + 2.955x2 + 6561.2x + 662025 7,000,000 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 0 0 200 400 600 800 OUTPUT(MW) Figure B-2 Copy the coefficients, a - d, into the above equations. These equations along with the values of X1 and X2 define the curves. For Moss Landing 7: a = -0.0013 b = 2.955 c = 6561.2 d = 662,025 x1 = 50 MW x2 = 739 MW Using these coefficients, the Input-Output (I/O), Incremental Heat Rate (IHR) and Average Heat Rate (AHR) Curves can be developed, as follows: I/O = y= ax3 + bx2+ cx + d = -0.0013x3 + 2.955x2 + 6561.2x + 662025 IHR = dy/dx = 3ax2 + 2bx + c = -0.0039x3 + 5.91x2 + 6561.2 AHR = y/x = (ax3 + bx2 + cx + d) / x = (-0.0013x3 + 2.955x2 + 6561.2x + 662025) /x Table B-2 summarizes the coefficients (a - d) and the minimum (x1) and maximum (x2) output values for each of the IOU units. Note that these curves can never fit the I/O data of Appendix A exactly, so that the I/O equation points – as well as the other heat rate equation points – will never match the original data exactly. But they will be close enough for all practical purposes. HR-DESC.DOC; 4/17/98; PAGE B-3 TABLE B-2: SUMMARY HEAT RATE DATA a COEFICIENTS b c PG&E UNITS Contra Costa 6 Contra Costa 7 Humboldt 1&2 Hunters Point 2 Hunters Point 3 Hunters Point 4 Morro Bay 1&2 Morro Bay 3 Morro Bay 4 Moss Landing 6 Moss Landing 7 Pittsburg 1&2 Pittsburg 3&4 Pittsburg 5 Pittsburg 6 Pittsburg 7 Potrero 3 0.0148 -6.0775 0.0099 -2.9176 0.2946 -30.3370 0.0116 12.9790 0.0144 21.0770 0.0010 1.3752 0.0049 -1.1685 0.0006 -0.1178 0.0004 1.0588 -0.0021 3.6945 -0.0013 2.9550 0.0148 -5.3036 0.0300 -12.1140 -0.0001 1.3632 0.0056 -0.0515 0.0023 -1.8450 0.0468 -11.9850 SCE UNITS Alamitos 1&2 Alamitos 3&4 Alamitos 5&6 Cool Water 1 Cool Water 2 Cool Water 3&4 El Segundo 1&2 El Segundo 3&4 Etiwanda 1&2 Etiwanda 3&4 Highgrove 1&2 Highgrove 3&4 Huntington 1&2 Long Beach 8&9 Mandaly 1&2 Ormond Beach 1 Ormond Beach 2 Redondo 5&6 Redondo 7&8 San Bernardino 1&2 0.0018 0.0005 -0.0006 0.0293 0.0203 0.0035 0.0010 0.0004 0.0053 0.0005 0.0004 -0.0086 0.0011 0.0004 0.0022 0.0006 0.0005 0.0007 0.0002 -0.0099 0.0806 0.0597 0.0349 0.0048 0.0049 0.0386 0.0147 0.0162 0.0182 SDG&E UNITS Encina 1 Encina 2 Encina 3 Encina 4 Encina 5 South Bay 1 South Bay 2 South Bay 3 South Bay 4 d OUTPUT (MW) MIN MAX 9356.2 8746.7 11330.0 9870.6 9080.0 8659.0 9498.3 9063.6 8559.2 6598.2 6561.2 9610.6 10551.0 8752.4 8550.1 8951.1 9908.0 180,146 223,144 99,926 115,531 117,483 205,948 200,714 190,385 194,590 657,281 662,025 293,691 219,614 218,209 266,012 632,496 70,409 46 46 10 10 10 62 62 46 46 50 50 62 62 46 46 120 47 340 340 105 107 107 326 326 338 338 739 739 326 326 325 325 720 207 0.8174 0.4401 2.2408 6.1850 3.2256 -1.4482 0.7726 0.4377 1.7528 0.4642 0.8061 5.6470 0.6180 -0.0512 0.8052 0.3588 0.4250 0.6815 0.2479 7.9479 9018.2 8338.1 6843.4 8979.5 9148.4 7206.1 9129.0 8294.0 9044.1 8328.1 8392.3 7715.1 8411.7 9600.9 8238.8 7773.3 8043.1 8910.0 8345.6 8260.7 397,249 677,108 1,000,000 48,471 56,315 993,648 373,847 652,689 315,310 585,227 327,238 588,318 326,693 210,025 301,952 737,960 590,522 453,856 727,238 267,439 20 40 260 17 19 140 20 40 20 40 8 10 40 70 40 250 50 20 260 14 350 640 960 65 81 512 360 670 264 640 66 89 430 560 430 750 750 350 960 126 -0.0003 0.0023 0.0034 0.0010 0.0010 0.0094 -0.0041 0.0004 -0.0052 8949.0 9535.0 9780.0 9437.0 8975.0 8528.0 8850.0 8873.0 10430.0 86,430 66,030 62,840 164,700 193,100 112,300 88,070 107,800 147,600 20 20 20 20 20 30 30 30 45 107 104 110 300 330 143 150 175 150 HR-DESC.DOC; 4/17/98; PAGE B-4 APPENDIX C INCREMENTAL HEAT RATE ERRORS This Appendix shows the method used to quantify the magnitude of the errors caused by using the Average Incremental Heat Rate block data of modeling in place of the Incremental Heat Rate data used in the actual dispatch of the generation system. I evaluated only the block data end points assuming that the maximum errors would occur at these points. The Actual heat rates (Instantaneous Incremental Heat Rates) were developed using the heat rate curve data from Appendix B. It might appear that the Block heat rates (Average Incremental Heat Rates) could be taken directly from Appendix A. But since equations had to be developed for the Instantaneous Heat Rate values, I used those same equations to develop the Block heat rates in order to make the two quantities more comparable. The differences are small but it does make the data appear more reasonable. INSTANTANEOUS INCREMENTAL HEAT RATES - ACTUAL DATA The Instantaneous Incremental Heat Rates are developed from the basic Input-Output Curve, which is typically defined by the third order equation: y = ax3 + bx2+ cx + d Where: x = Output in MW y = Input in Btu/hr a-d = The coefficients that define the equation The Instantaneous Incremental Heat Rate (IIHR) is defined as the first derivative of the Input-Output Curve: IIHR = dy/dx = 3ax2 + 2bx + c AVERAGE INCREMENTAL HEAT RATE - BLOCK DATA The Average Incremental Heat Rates (AIHR) can also be calculated using the Input-Output Curve. The calculation consists of dividing the incremental Input-Output value (Btu/hr) by the corresponding increment of output (MW). AIHR = (y2 - y1)/ (x2-x1) = [(ax23 + bx22 + cx2 + d) - (ax13 + bx12 + cx1 + d)] / (x2-x1) = [a(x23- x13) + b(x22- x12) + c(x2 - x1)]/ (x2 - x1) = a(x22 + x2 x1 + x12) + b(x2 + x1) + c HR-DESC.DOC; 4/17/98; PAGE C-1 Where: x1 = Minimum Output of Block x2 = Maximum Output of Block ILLUSTRATIVE EXAMPLE The complete step-by-step process of constructing this heat rate data is done using the first block of Moss Landing 7. The coefficients (a-d) and the x1 and x2 values for Moss Landing 7 are taken from Table B-2 in Appendix B: a = -0.0013 b = 2.955 c = 6561.2 d = 662025 x1 = 50 MW x2 =185 MW Instantaneous Incremental Heat Rates IIHR = 3a x12 + 2bx1 + c IIHR(50) = 3(-0.0013)502 + 2(2.955)50 + 6561.2 = 6847.95 = 6847 IIHR(185) = 3(-0.0013)1852 + 2(2.955)185 + 6561.2 = 6847.95 = 7521 Average Incremental Heat Rates AIHR = a(x22 + x2 x1 + x12) + b(x2 + x1) + c = -0.0013(1852 + 185x50 + 502) + 2.955(185 + 50) + 6561.2 = 7195.86 =7196 Errors Error = (AIHR - IIHR) / IIHR Error (50) = (7196 - 6847) / 6847 = 5.1% Error (185) = (7196 - 7521) / 7521 = -4.3% Using AIHR for estimating IIHR causes results in a values that is 5.1 percent too high at 50 MW and 4.3 percent too low at 185 MW. The corresponding errors between IIHR and AIHR are calculated for the 50 and 185 MW points. Table C-1 shows the results of similar calculations for PG&E. Tables C-2 and C-3 show the resulting values for SCE and SDG&E, respectively. The columns delineated as “ACTUAL” are the Instantaneous Heat Rate (IIHR) values, and the columns delineated as “BLOCKS” are the Average Incremental Heat Rate (AIHR) values. The “ERROR” column is calculated as the percent difference between these two values relative to the “ACTUAL” value. Table C-4 summarizes the percent errors of Tables C-1 through C-3 and sorts them from high to low. This is the data that provides the maximum error numbers in Table 3 of the main report. The errors range from 6.9 to -8.6 percent but most are a few percent or less. HR-DESC.DOC; 4/17/98; PAGE C-2 TABLE C-1: INCREMENTAL HEAT RATE ERRORS PG&E UNITS PLT Name Blk # con6 con6 con6 con6 con6 1 2 3 4 5 INCREMENTAL HEAT RATES CAPACITY COEFICIENTS ACTUAL BLOCKS ERROR (%) (MW) (Btu/kWh) (Btu/kWh) (%) a = 0.0148 14% 46 b = -6.0775 8,891 8,756 -1.5% 25% 85 c = 9356.2 8,644 8,756 1.3% 50% 170 d = 180146 8,573 8,555 -0.2% 80% 272 X1 = 46 9,335 8,877 -4.9% 100% 340 X2 = 340 10,356 9,811 -5.3% mos6 mos6 mos6 mos6 mos6 1 2 3 4 5 INCREMENTAL HEAT RATES CAPACITY COEFICIENTS ACTUAL BLOCKS ERROR (%) (MW) (Btu/kWh) (Btu/kWh) (%) a = -0.0021 7% 50 b = 3.6945 6,952 7,370 6.0% 25% 185 c = 6598.2 7,750 7,370 -4.9% 50% 370 d = 657281 8,470 8,146 -3.8% 80% 591 X1 = 50 8,765 8,668 -1.1% 100% 739 X2 = 739 8,618 8,714 1.1% con7 con7 con7 con7 con7 1 2 3 4 5 14% 25% 50% 80% 100% 46 85 170 272 340 a= b= c= d= X1 = X2 = 0.0099 -2.9176 8746.7 223144 46 340 8,541 8,465 8,613 9,357 10,196 8,496 8,496 8,503 8,933 9,754 -0.5% 0.4% -1.3% -4.5% -4.3% mos7 mos7 mos7 mos7 mos7 1 2 3 4 5 7% 25% 50% 80% 100% a= 50 b = 185 c = 370 d = 591 X1 = 739 X2 = -0.0013 2.955 6561.2 662025 50 739 6,847 7,521 8,214 8,692 8,799 7,196 7,196 7,890 8,485 8,760 5.1% -4.3% -3.9% -2.4% -0.4% hmb1&2 hmb1&2 hmb1&2 hmb1&2 hmb1&2 1 2 3 4 5 10% 25% 50% 80% 100% 10 26 53 84 105 a= b= c= d= X1 = X2 = 0.2946 -30.337 11330 99926 10 105 10,812 10,350 10,597 12,469 14,703 10,543 10,543 10,366 11,392 13,521 -2.5% 1.9% -2.2% -8.6% -8.0% pit1&2 pit1&2 pit1&2 pit1&2 pit1&2 1 2 3 4 5 19% 25% 50% 80% 100% a= 62 b = 82 c = 164 d = 260 X1 = 326 X2 = 0.0148 -5.3036 9610.6 293691 62 326 9,124 9,039 9,065 9,854 10,871 9,079 9,079 9,003 9,391 10,331 -0.5% 0.4% -0.7% -4.7% -5.0% hnp2 hnp2 hnp2 hnp2 hnp2 1 2 3 4 5 9% 25% 50% 80% 100% 10 27 54 86 107 a= b= c= d= X1 = X2 = 0.0116 12.979 9870.6 115531 10 107 10,134 10,597 11,374 12,360 13,047 10,364 10,364 10,981 11,861 12,701 2.3% -2.2% -3.5% -4.0% -2.6% pit3&4 pit3&4 pit3&4 pit3&4 pit3&4 1 2 3 4 5 19% 25% 50% 80% 100% a= 62 b = 82 c = 164 d = 260 X1 = 326 X2 = 0.03 -12.114 10551 219614 62 326 9,395 9,169 8,998 10,336 12,218 9,276 9,276 8,983 9,529 11,211 -1.3% 1.2% -0.2% -7.8% -8.2% hnp3 hnp3 hnp3 hnp3 hnp3 1 2 3 4 5 9% 25% 50% 80% 100% 10 27 54 86 107 a= b= c= d= X1 = X2 = 0.0144 21.077 9080 117483 10 107 9,506 10,250 11,482 13,025 14,085 9,876 9,876 10,861 12,246 13,552 3.9% -3.6% -5.4% -6.0% -3.8% pit5 pit5 pit5 pit5 pit5 1 2 3 4 5 14% 25% 50% 80% 100% a= 46 b = 81 c = 163 d = 260 X1 = 325 X2 = -0.0001 1.3632 8572.4 218209 46 325 8,697 8,791 9,009 9,261 9,427 8,744 8,744 8,900 9,135 9,344 0.5% -0.5% -1.2% -1.4% -0.9% hnp4 hnp4 hnp4 hnp4 hnp4 1 2 3 4 5 19% 25% 50% 80% 100% 62 82 164 260 326 a= b= c= d= X1 = X2 = 0.001 1.3752 8659 205948 62 326 8,841 8,905 9,191 9,577 9,874 8,873 8,873 9,044 9,379 9,724 0.4% -0.4% -1.6% -2.1% -1.5% pit6 pit6 pit6 pit6 pit6 1 2 3 4 5 14% 25% 50% 80% 100% a= 46 b = 81 c = 163 d = 260 X1 = 325 X2 = 0.0056 -0.0515 8550.1 266012 46 325 8,581 8,652 8,980 9,659 10,291 8,613 8,613 8,797 9,293 9,963 -0.1% -1.0% -1.8% -3.9% -3.1% mor1&2 mor1&2 mor1&2 mor1&2 mor1&2 1 2 3 4 5 19% 25% 50% 80% 100% 62 82 164 260 326 a= b= c= d= X1 = X2 = 0.0049 -1.1685 9498.3 200714 62 326 9,410 9,406 9,510 9,884 10,299 9,407 9,407 9,441 9,675 10,081 0.0% 0.0% -0.7% -2.1% -2.1% pit7 pit7 pit7 pit7 pit7 1 2 3 4 5 17% 25% 50% 80% 100% a= 120 b = 180 c = 360 d = 576 X1 = 720 X2 = 0.0023 -1.845 8951.1 632496 120 720 8,608 8,510 8,517 9,115 9,871 8,555 8,555 8,476 8,762 9,469 -0.6% 0.5% -0.5% -3.9% -4.1% mor3 mor3 mor3 mor3 mor3 1 2 3 4 5 14% 25% 50% 80% 100% 46 85 169 270 338 a= b= c= d= X1 = X2 = 0.0006 -0.1178 9063.6 190385 46 338 9,057 9,057 9,075 9,131 9,190 9,056 9,056 9,064 9,100 9,159 0.0% 0.0% -0.1% -0.3% -0.3% pot3 pot3 pot3 pot3 pot3 1 2 3 4 5 23% 25% 50% 80% 100% a= 47 b = 52 c = 104 d = 166 X1 = 207 X2 = 0.0468 -11.985 9908 70409 47 207 9,092 9,041 8,934 9,798 10,962 9,066 9,066 8,924 9,276 10,341 -0.3% 0.3% -0.1% -5.3% -5.7% mor4 mor4 mor4 mor4 mor4 1 2 3 4 5 14% 25% 50% 80% 100% 46 85 169 270 338 a= b= c= d= X1 = X2 = 0.0004 1.0588 8559.2 194590 46 338 8,659 8,748 8,951 9,218 9,412 8,703 8,703 8,848 9,083 9,314 0.5% -0.5% -1.2% -1.5% -1.0% PLT Blk Name # HR-DESC.DOC; 4/17/98; PAGE C-3 TABLE C-2: INCREMENTAL HEAT RATE ERRORS SCE UNITS PLT Name Blk # ala1&2 ala1&2 ala1&2 ala1&2 ala1&2 1 2 3 4 5 ala3&4 ala3&4 ala3&4 ala3&4 ala3&4 1 2 3 4 5 ala5&6 ala5&6 ala5&6 ala5&6 ala5&6 1 2 3 4 5 cw01 cw01 cw01 cw01 cw01 1 2 3 4 5 cw02 cw02 cw02 cw02 cw02 1 2 3 4 5 cw34 cw34 cw34 cw34 cw34 1 2 3 4 5 els1&2 els1&2 els1&2 els1&2 els1&2 1 2 3 4 5 els3&4 els3&4 els3&4 els3&4 els3&4 1 2 3 4 5 eti1&2 eti1&2 eti1&2 eti1&2 eti1&2 1 2 3 4 5 eti3&4 eti3&4 eti3&4 eti3&4 eti3&4 1 2 3 4 5 INCREMENTAL HEAT RATES CAPACITY COEFICIENTS ACTUAL BLOCKS ERROR (%) (MW) (Btu/kWh) (Btu/kWh) (%) a = 0.0018 6% 20 b = 0.8174 9,053 9,127 0.8% 26% 90 c = 9018.2 9,209 9,127 -0.9% 51% 180 d = 397249 9,487 9,341 -1.5% 77% 270 X1 = 20 9,853 9,663 -1.9% 100% 350 X2 = 350 10,252 10,047 -2.0% a = 0.0005 6% 40 b = 0.4401 8,376 8,443 0.8% 25% 160 c = 8338.1 8,517 8,443 -0.9% 50% 320 d = 677108 8,773 8,639 -1.5% 75% 480 X1 = 40 9,106 8,933 -1.9% 100% 640 X2 = 640 9,516 9,305 -2.2% a = -0.0006 27% 260 b = 2.2408 7,887 8,155 3.4% 44% 420 c = 6843.4 8,408 8,155 -3.0% 63% 600 d = 1.00E+06 8,884 8,656 -2.6% 81% 780 X1 = 260 9,244 9,074 -1.8% 100% 960 X2 = 960 9,487 9,375 -1.2% a = 0.0293 26% 17 b = 6.185 9,215 9,320 1.1% 46% 30 c = 8979.5 9,430 9,320 -1.2% 66% 43 d = 48471 9,674 9,549 -1.3% 86% 56 X1 = 17 9,948 9,808 -1.4% 100% 65 X2 = 65 10,155 10,050 -1.0% a = 0.0203 23% 19 b = 3.2256 9,293 9,368 0.8% 43% 35 c = 9148.4 9,449 9,368 -0.9% 63% 51 d = 56315 9,636 9,540 -1.0% 83% 67 X1 = 19 9,854 9,742 -1.1% 100% 81 X2 = 81 10,071 9,960 -1.1% a = 0.0035 27% 140 b = -1.4482 7,006 7,013 0.1% 35% 180 c = 7206.1 7,025 7,013 -0.2% 47% 240 d = 993648 7,116 7,064 -0.7% 74% 380 X1 = 140 7,622 7,334 -3.8% 100% 512 X2 = 512 8,476 8,018 -5.4% a = 0.0010 6% 20 b = 0.7726 9,161 9,224 0.7% 26% 90 c = 9129.0 9,292 9,224 -0.7% 51% 180 d = 373847 9,504 9,394 -1.2% 77% 270 X1 = 20 9,765 9,631 -1.4% 100% 350 X2 = 360 10,037 9,898 -1.4% a= 0.0004 6% 40 b = 0.4377 8,331 8,395 0.8% 24% 160 c = 8294.0 8,465 8,395 -0.8% 48% 320 d = 652689 8,697 8,576 -1.4% 72% 480 X1 = 40 8,991 8,839 -1.7% 100% 670 X2 = 670 9,419 9,198 -2.4% a = 0.0053 8% 20 b = 1.7528 9,121 9,264 1.6% 30% 80 c = 9044.1 9,426 9,264 -1.7% 53% 140 d = 315310 9,847 9,627 -2.2% 76% 200 X1 = 20 10,381 10,104 -2.7% 100% 264 X2 = 264 11,078 10,719 -3.2% a = 0.0005 6% 40 b = 0.4642 8,368 8,438 0.8% 25% 160 c = 8328.1 8,515 8,438 -0.9% 50% 320 d = 585227 8,779 8,641 -1.6% 75% 480 X1 = 40 9,119 8,943 -1.9% 100% 640 X2 = 640 9,537 9,322 -2.3% PLT Name Blk # hig1&2 hig1&2 hig1&2 hig1&2 hig1&2 1 2 3 4 5 hig3&4 hig3&4 hig3&4 hig3&4 hig3&4 1 2 3 4 5 hun1&2 hun1&2 hun1&2 hun1&2 hun1&2 1 2 3 4 5 lbc8&9 lbc8&9 lbc8&9 lbc8&9 lbc8&9 1 2 3 4 5 man1&2 man1&2 man1&2 man1&2 man1&2 1 2 3 4 5 orb1 orb1 orb1 orb1 orb1 1 2 3 4 5 orb2 orb2 orb2 orb2 orb2 1 2 3 4 5 red5&6 red5&6 red5&6 red5&6 red5&6 1 2 3 4 5 red7&8 red7&8 red7&8 red7&8 red7&8 1 2 3 4 5 sbr1&2 sbr1&2 sbr1&2 sbr1&2 sbr1&2 1 2 3 4 5 INCREMENTAL HEAT RATES CAPACITYCOEFICIENTS ACTUAL BLOCKS ERROR (%) (MW) (Btu/kWh) (Btu/kWh) (%) a = 0.0004 12% 8 b = 0.8061 8,405 8,413 0.1% 27% 18 c = 8392.3 8,422 8,413 -0.1% 58% 38 d = 327238 8,455 8,438 -0.2% 85% 56 X1 = 8 8,486 8,471 -0.2% 100% 66 X2 = 66 8,504 8,495 -0.1% a = -0.0086 11% 10 b = 5.647 7,825 7,899 0.9% 27% 24 c = 7715.1 7,971 7,899 -0.9% 56% 50 d = 588318 8,215 8,096 -1.4% 90% 80 X1 = 10 8,454 8,338 -1.4% 100% 89 X2 = 89 8,516 8,485 -0.4% a= 0.0011 9% 40 b = 0.618 8,466 8,552 1.0% 33% 140 c = 8411.7 8,649 8,552 -1.1% 56% 240 d = 326693 8,898 8,768 -1.5% 79% 340 X1 = 40 9,213 9,050 -1.8% 100% 430 X2 = 430 9,553 9,379 -1.8% a= 0.0004 11% 70 b = -0.0512 9,600 9,608 0.1% 33% 180 c = 9600.9 9,621 9,608 -0.1% 56% 300 d = 210025 9,678 9,647 -0.3% 78% 410 X1 = 70 9,761 9,717 -0.4% 100% 560 X2 = 560 9,920 9,836 -0.8% a = 0.0022 9% 40 b = 0.8052 8,314 8,443 1.6% 33% 140 c = 8238.8 8,594 8,443 -1.8% 56% 245 d = 301952 9,030 8,799 -2.5% 79% 340 X1 = 40 9,549 9,279 -2.8% 100% 430 X2 = 430 10,152 9,842 -3.1% a = 0.0006 33% 250 b = 0.3588 8,065 8,171 1.3% 49% 370 c = 7773.3 8,285 8,171 -1.4% 67% 500 d = 737960 8,582 8,429 -1.8% 83% 620 X1 = 250 8,910 8,742 -1.9% 100% 750 X2 = 750 9,324 9,112 -2.3% a = 0.0005 7% 50 b = 0.4250 8,089 8,192 1.3% 30% 225 c = 8043.1 8,310 8,192 -1.4% 53% 400 d = 590522 8,623 8,459 -1.9% 77% 575 X1 = 50 9,028 8,818 -2.3% 100% 750 X2 = 750 9,524 9,268 -2.7% a = 0.0007 6% 20 b = 0.6815 8,938 8,992 0.6% 26% 90 c = 8910 9,050 8,992 -0.6% 51% 180 d = 453856 9,223 9,134 -1.0% 77% 270 X1 = 20 9,431 9,324 -1.1% 100% 350 X2 = 350 9,644 9,535 -1.1% a = 0.0002 27% 260 b = 0.2479 8,515 8,557 0.5% 38% 360 c = 8345.6 8,602 8,557 -0.5% 69% 660 d = 727238 8,934 8,759 -2.0% 83% 800 X1 = 260 9,126 9,028 -1.1% 100% 960 X2 = 960 9,375 9,248 -1.4% a = -0.0099 11% 14 b = 7.9479 8,477 8,681 2.4% 33% 42 c = 8260.7 8,876 8,681 -2.2% 56% 70 d = 267439 9,228 9,056 -1.9% 78% 98 X1 = 14 9,533 9,384 -1.6% 100% 126 X2 = 126 9,792 9,667 -1.3% HR-DESC.DOC; 4/17/98; PAGE C-4 TABLE C-3: INCREMENTAL HEAT RATE ERRORS SDG&E UNITS PLT Name Blk # CAPACITY (%) (MW) COEFICIENTS INCREMENTAL HEAT RATES ACTUAL BLOCKS ERROR (Btu/kWh) (Btu/kWh) (%) enc1 enc1 enc1 enc1 enc1 1 18.7% 2 25.0% 3 50.0% 4 80.0% 5 100.0% 20 27 54 86 107 a= b= c= d= X1 = X2 = 0.0806 -0.0003 8949.0 86,430 20 107 9,046 9,122 9,641 10,722 11,719 9,082 9,082 9,353 10,140 11,202 0.40% -0.44% -2.99% -5.42% -4.41% enc2 enc2 enc2 enc2 enc2 1 19.2% 2 25.0% 3 50.0% 4 80.0% 5 100.0% 20 26 52 83 104 a= b= c= d= X1 = X2 = 0.0597 0.0023 9535.0 66,030 20 104 9,607 9,656 10,020 10,775 11,473 9,630 9,630 9,818 10,368 11,111 0.25% -0.27% -2.01% -3.78% -3.15% enc3 enc3 enc3 enc3 enc3 1 18.2% 2 25.0% 3 50.0% 4 80.0% 5 100.0% 20 28 55 88 110 a= b= c= d= X1 = X2 = 0.0349 0.0034 9780.0 62,840 20 110 9,822 9,859 10,097 10,590 11,046 9,840 9,840 9,965 10,325 10,810 0.18% -0.20% -1.31% -2.51% -2.14% enc4 enc4 enc4 enc4 enc4 1 6.7% 2 25.0% 3 50.0% 4 80.0% 5 100.0% 20 75 150 240 300 a= b= c= d= X1 = X2 = 0.0048 0.0010 9437.0 164,700 20 300 9,443 9,518 9,759 10,261 10,724 9,473 9,473 9,625 9,991 10,484 0.32% -0.47% -1.37% -2.63% -2.24% enc5 enc5 enc5 enc5 enc5 1 6.1% 2 25.0% 3 50.0% 4 80.0% 5 100.0% 20 83 165 264 330 a= b= c= d= X1 = X2 = 0.0049 0.0010 8975.0 193,100 20 330 8,981 9,075 9,373 9,994 10,567 9,018 9,018 9,207 9,660 10,270 0.42% -0.62% -1.77% -3.34% -2.81% sba1 sba1 sba1 sba1 sba1 1 21.0% 2 25.0% 3 50.0% 4 80.0% 5 100.0% 30 36 72 114 143 a= b= c= d= X1 = X2 = 0.0386 0.0094 8528.0 112,300 30 143 8,633 8,677 9,121 10,046 10,899 8,654 8,654 8,874 9,548 10,456 0.25% -0.26% -2.71% -4.95% -4.06% sba2 sba2 sba2 sba2 sba2 1 20.0% 2 25.0% 3 50.0% 4 80.0% 5 100.0% 30 38 75 120 150 a= b= c= d= X1 = X2 = 0.0147 -0.0041 8850.0 88,070 30 150 8,890 8,912 9,098 9,485 9,843 8,900 8,900 8,995 9,277 9,658 0.12% -0.13% -1.14% -2.20% -1.88% sba3 sba3 sba3 sba3 sba3 1 17.1% 2 25.0% 3 50.3% 4 80.1% 5 100.0% 30 44 88 140 175 a= b= c= d= X1 = X2 = 0.0162 0.0004 8873.0 107,800 30 175 8,917 8,966 9,244 9,823 10,357 8,940 8,940 9,089 9,511 10,080 0.26% -0.29% -1.67% -3.17% -2.67% sba4 sba4 sba4 sba4 1 30.0% 2 50.0% 3 80.0% 5 100.0% 45 75 120 150 10,540 10,736 11,214 11,656 10,630 10,630 10,957 11,427 10,838 0.85% -0.99% -2.30% -1.96% a= b= c= d= X1 = X2 = 0.0182 -0.0052 10430.0 147,600 45 150 HR-DESC.DOC; 4/17/98; PAGE C-5 TABLE C-4: SUMMARY OF INCREMENTAL HEAT RATE ERRORS ----- CONTINUED ----PG&E UNITS UNIT ERROR SCE UNITS UNIT ERROR SDG&E UNITS PG&E UNITS UNIT ERROR UNIT ERROR SCE UNITS UNIT ERROR mos6 mos7 hnp3 hnp2 hmb1&2 con6 pit3&4 mos6 pit5 pit7 mor4 pit1&2 con7 hnp4 pot3 mor1&2 mor3 mor3 mor1&2 pot3 mor3 pit6 pit3&4 con6 pot3 mor3 mor3 hnp4 mos7 pit7 pit1&2 mor4 con7 pit5 pit7 pit1&2 mor1&2 pit5 pit6 mor4 mos6 mor4 pit5 pit3&4 con7 pit5 mor4 con6 hnp4 hnp4 ala5&6 sbr1&2 eti1&2 man1&2 orb1 orb2 cw01 hun1&2 hig3&4 eti3&4 ala1&2 cw02 ala3&4 els3&4 els1&2 red5&6 red7&8 hig1&2 cw34 lbc8&9 hig1&2 hig1&2 lbc8&9 cw34 hig1&2 hig1&2 lbc8&9 hig3&4 lbc8&9 red7&8 red5&6 cw34 els1&2 els3&4 lbc8&9 cw02 ala3&4 ala1&2 hig3&4 eti3&4 red5&6 cw02 cw01 red7&8 cw02 hun1&2 red5&6 red5&6 cw02 els1&2 sba4 enc5 enc1 enc4 sba3 sba1 enc2 enc3 sba2 sba2 enc3 sba1 enc2 sba3 enc1 enc4 enc5 sba4 sba2 enc3 enc4 sba3 enc5 sba2 sba4 enc2 enc3 sba2 enc4 sba4 enc3 enc4 sba3 sba1 enc5 enc1 enc2 sba3 enc5 enc2 sba1 enc1 sba1 enc1 cw01 ala5&6 sbr1&2 cw01 red7&8 hig3&4 els1&2 orb1 els1&2 els3&4 cw01 orb2 hig3&4 hun1&2 ala3&4 ala1&2 sbr1&2 eti3&4 els3&4 eti1&2 man1&2 hun1&2 orb1 hun1&2 ala5&6 sbr1&2 orb1 ala3&4 orb2 ala1&2 eti3&4 red7&8 ala1&2 sbr1&2 ala3&4 eti1&2 eti3&4 orb1 orb2 els3&4 man1&2 ala5&6 eti1&2 orb2 man1&2 ala5&6 man1&2 eti1&2 cw34 cw34 6.0% 5.1% 3.9% 2.3% 1.9% 1.3% 1.2% 1.1% 0.5% 0.5% 0.5% 0.4% 0.4% 0.4% 0.3% 0.0% 0.0% 0.0% 0.0% -0.1% -0.1% -0.1% -0.2% -0.2% -0.3% -0.3% -0.3% -0.4% -0.4% -0.5% -0.5% -0.5% -0.5% -0.5% -0.6% -0.7% -0.7% -0.9% -1.0% -1.0% -1.1% -1.2% -1.2% -1.3% -1.3% -1.4% -1.5% -1.5% -1.5% -1.6% 3.4% 2.4% 1.6% 1.6% 1.3% 1.3% 1.1% 1.0% 0.9% 0.8% 0.8% 0.8% 0.8% 0.8% 0.7% 0.6% 0.5% 0.1% 0.1% 0.1% -0.1% -0.1% -0.1% -0.2% -0.2% -0.2% -0.3% -0.4% -0.4% -0.5% -0.6% -0.7% -0.7% -0.8% -0.8% -0.9% -0.9% -0.9% -0.9% -0.9% -1.0% -1.0% -1.0% -1.1% -1.1% -1.1% -1.1% -1.1% -1.1% -1.2% 0.9% 0.4% 0.4% 0.3% 0.3% 0.2% 0.2% 0.2% 0.1% -0.1% -0.2% -0.3% -0.3% -0.3% -0.4% -0.5% -0.6% -1.0% -1.1% -1.3% -1.4% -1.7% -1.8% -1.9% -2.0% -2.0% -2.1% -2.2% -2.2% -2.3% -2.5% -2.6% -2.7% -2.7% -2.8% -3.0% -3.2% -3.2% -3.3% -3.8% -4.1% -4.4% -5.0% -5.4% pit6 hnp4 mor1&2 mor1&2 hmb1&2 hnp2 mos7 hmb1&2 hnp2 pit6 hnp2 hnp3 hnp3 mos6 pit7 pit6 mos7 hnp2 pit7 mos7 con7 con7 pit1&2 mos6 con6 pit1&2 con6 pot3 hnp3 pot3 hnp3 pit3&4 hmb1&2 pit3&4 hmb1&2 -1.8% -2.1% -2.1% -2.1% -2.2% -2.2% -2.4% -2.5% -2.6% -3.1% -3.5% -3.6% -3.8% -3.8% -3.9% -3.9% -3.9% -4.0% -4.1% -4.3% -4.3% -4.5% -4.7% -4.9% -4.9% -5.0% -5.3% -5.3% -5.4% -5.7% -6.0% -7.8% -8.0% -8.2% -8.6% -1.2% -1.2% -1.3% -1.3% -1.4% -1.4% -1.4% -1.4% -1.4% -1.4% -1.4% -1.4% -1.4% -1.5% -1.5% -1.5% -1.6% -1.6% -1.7% -1.7% -1.8% -1.8% -1.8% -1.8% -1.8% -1.9% -1.9% -1.9% -1.9% -1.9% -1.9% -2.0% -2.0% -2.2% -2.2% -2.2% -2.3% -2.3% -2.3% -2.4% -2.5% -2.6% -2.7% -2.7% -2.8% -3.0% -3.1% -3.2% -3.8% -5.4% HR-DESC.DOC; 4/17/98; PAGE C-6 APPENDIX D AVERAGE TO INCREMENTAL HEAT RATE RATIOS This Appendix provides the detailed description for the calculation of Average Heat Rate (AHR) to Incremental Heat Rate (IHR) presented in Section VI of the main body of this report. These Ratios, R(x), are calculated using the equations described in Appendix B and are done for three cases: • • • The AHR/IHR at minimum generation: R(x1) The AHR/IHR at maximum generation: R(x2) The average AHR/IHR: RAVE The minimum generation ratio, R(x1), and maximum generation ratio, R(x2), are calculated using the equations for the Average Heat Rate (AHR) and Incremental Heat Rate (IHR) curves for each unit, as follows. The Input-Output Curve is defined by the third order equation: y = ax3 + bx2+ cx + d Where: x = Output in MW y = Input in Btu/hr a-d = The coefficients that define the equation The Average Heat Rate (AHR) is defined as the Input-Output Curve (y) divided by the output (x): AHR = y/x = (ax3 + bx2 + cx + d) / x The Incremental Heat Rate (IHR) is defined as the first derivative of the Input-Output Curve: IHR = dy/dx = 3ax22 + 2bx + c The Ratio (R) of Average Heat Rate (AHR) to Incremental Heat Rate (IHR) is therefore: R = AHR/IHR = (y/x) / dy/dx = [(ax3+bx2+cx+d)/x] / (3ax2+2bx+c) The minimum and maximum generation values of the R are then developed by setting x equal to the minimum (x1) and maximum (x2) output capacities of the units. HR-DESC.DOC; 4/17/98; PAGE D-1 The average value, RAVE, is found by integrating R from the minimum capacity (x1) to the maximum capacity (x2), and then dividing this result by the difference between the minimum and maximum outputs (x2 - x1): RAVE = [ò ò R dx {from x1 to x2 } ] / (x2 - x1) = [ò ò AHR/IHR dx {from x1 to x2 } ] / (x2 - x1) Where: x1 = Minimum Operating Level(MW) x2 = Maximum Operating Level (MW) The integration of R, (ò ò R dx), is: ò R dx =[(x/3) +(d×Ln(x)/c) +(bG/18a) - (dG/2c) + (2cE/3F) - (bdE/cF) - (Eb2/9aF)] Where: E = ATan((3ax+b)/F) F = (3ab-x2)1/2 G = Ln(3ax2+2bx+c) Ln = Natural Log ATan = Arc Tangent Moss Landing 7, once again, provides the necessary step-by-step illustration. The above equations can be evaluated using the values in Table B-2, of Appendix B: the coefficients (a-d) and the x1 and x2 values. a = -0.0013 b = 2.955 c = 6561.2 d = 662025 x1 = 50 MW x2 = 739 MW The R(x) values are now calculated as follows: • The AHR/IHR at minimum generation: R(x1) R(x1) = AHR/IHR = (ax3+bx2+cx+d)/x] / (3ax2+2bx+c): for x1 = 50 MW R(50) = AHR/IHR = (-0.0013*503+2.955*502+6561.2*50+662025)/50] / (3* -0.0013*502+2*2.955*50+662025) = 2.91 • The AHR/IHR at maximum generation: R(x2) R(x2)= AHR/IHR = (y/x)/y′= [(ax3+bx2+cx+d)/x] / (3ax2+2bx+c): x2 = 739 MW R(739) = AHR/IHR = (-0.0013*7393+2.955*7392+6561.2*739+662025)/739] / (3* -0.0013*7392+2*2.955*739+662025) = 1.02 HR-DESC.DOC; 4/17/98; PAGE D-2 • The average AHR/IHR: RAVE RAVE = [ò ò R dx {from x1 to x2 } ] / (x2 - x1) The integration of R, (ò ò R dx), is: ò R dx =[(x/3) +(d×Ln(x)/c) +(bG/18a) - (dG/2c) + (2cE/3F) - (bdE/cF) - (Eb2/9aF)] Where: E = ATan((3ax+b)/F) F = (3ab-x2)1/2 G = Ln(3ax2+2bx+c) Ln = Natural Log ATan = Arc Tangent R(739) = (739/3)+(662025ln(739)/6561.2)+(2.955G/18/-0.0013)-(662025G/2/6561.2) +(2×6561.2E/3F) -(2.955×662025E/6561.2F)-(2.9552E/9×-0.0013F) Where: E = ATan((3×-0.0013×739+2.955)/F) F = (3×-0.0013×2.955-7392)1/2 G = Ln(3×-0.0013×7392+2×2.955×739+6561.2) R(50) = (50/3)+(662025ln(50)/6561.2)+(2.955G/18/-0.0013)-(662025G/2/6561.2) +(2×6561.2E/3F) -(2.955×662025E/6561.2F)-(2.9552E/9×-0.0013F) Where: E = ATan((3×-0.0013×50+2.955)/F) F = (3×-0.0013×2.955-502)1/2 G = Ln(3×-0.0013×502+2×2.955×50+6561.2) RAVE = [R(739) - R(50)] / (739 - 50) = 1.26 This is prohibitive to do as a hand calculation and an attempt to use an Excel spreadsheet failed due to imaginary numbers being part of the solution. This required that Math Lab be used directly. Table D-2 shows the results of calculating the R(x) values for the IOU units. Table D-2CALCS shows the calculation of the system average values for each of the R(x) values: • • • System average R(x1) is weighted by x1. System average R(x2) is weighted by x2 . System average RAVE is weighted by x1 - x2. Table D-3 is the same as Table D-2 except that the data has been sorted by R(x1).The Figure D-1 series shows this same data graphically. HR-DESC.DOC; 4/17/98; PAGE D-3 TABLE D-2: SUMMARY OF R(X) VALUES OUTPUT (MW) X1 X2 AVERAGE/INCREMENTAL R(X1) R(X2) Rave PG&E UNITS Contra Costa 6 Contra Costa 7 Humboldt 1&2 Hunters Point 2 Hunters Point 3 Hunters Point 4 Morro Bay 1&2 Morro Bay 3 Morro Bay 4 Moss Landing 6 Moss Landing 7 Pittsburg 1&2 Pittsburg 3&4 Pittsburg 5 Pittsburg 6 Pittsburg 7 Potrero 3 Averages 46 46 10 10 10 62 62 46 46 50 50 62 62 46 46 120 47 340 340 105 107 107 326 326 338 338 739 739 326 326 325 325 720 207 1.46 1.58 1.95 2.13 2.21 1.37 1.35 1.46 1.48 2.87 2.91 1.54 1.43 1.54 1.67 1.62 1.20 1.68 0.92 0.94 0.84 0.96 0.89 1.00 1.00 1.05 1.01 1.05 1.02 0.95 0.86 1.03 0.97 0.97 0.89 0.98 1.13 1.14 1.18 1.19 1.16 1.10 1.11 1.14 1.12 1.25 1.26 1.17 1.13 1.14 1.16 1.20 1.05 1.17 SCE UNITS Alamitos 1&2 Alamitos 3&4 Alamitos 5&6 Cool Water 1 Cool Water 2 Cool Water 3&4 El Segundo 1&2 El Segundo 3&4 Etiwanda 1&2 Etiwanda 3&4 Highgrove 1&2 Highgrove 3&4 Huntington Beach 1&2 Long Beach 8&9 Mandalay 1&2 Ormond Beach 1 Ormond Beach 2 Redondo Beach 5&6 Redondo Beach 7&8 San Bernardino 1&2 Averages 20 40 260 17 19 140 20 40 20 40 8 10 40 70 40 250 50 20 260 14 350 640 960 65 81 512 350 670 264 640 66 89 430 560 430 750 750 350 960 126 3.19 3.02 1.42 1.30 1.31 2.02 3.04 2.96 2.72 2.75 5.87 8.51 1.96 1.31 1.90 1.35 2.46 3.54 1.32 3.24 1.83 1.04 1.04 1.00 1.01 1.02 1.10 1.05 1.03 1.00 1.02 1.58 1.73 1.01 1.02 0.95 1.00 0.99 1.09 1.02 1.15 1.03 1.34 1.33 1.12 1.10 1.11 1.43 1.32 1.31 1.30 1.28 2.41 2.99 1.20 1.08 1.16 1.13 1.23 1.41 1.12 1.54 1.27 SDG&E UNITS Encina 1 Encina 2 Encina 3 Encina 4 Encina 5 South Bay 1 South Bay 2 South Bay 3 South Bay 4 Averages 20 20 20 20 20 30 30 30 45 107 104 110 300 330 143 150 175 150 1.47 1.34 1.32 1.87 2.07 1.43 1.33 1.40 1.30 1.47 0.91 0.94 0.98 0.97 0.95 0.93 0.99 0.96 1.01 0.96 1.10 1.08 1.09 1.13 1.15 1.10 1.10 1.10 1.12 1.12 HR-DESC.DOC; 4/17/98; PAGE D-4 TABLE D-2CALCS: CALCULATIONS OF R(X) VALUES X1 PG&E UNITS Contra Costa 6 Contra Costa 7 Humboldt 1&2 Hunters Point 2 Hunters Point 3 Hunters Point 4 Morro Bay 1&2 Morro Bay 3 Morro Bay 4 Moss Landing 6 Moss Landing 7 Pittsburg 1&2 Pittsburg 3&4 Pittsburg 5 Pittsburg 6 Pittsburg 7 Potrero 3 Totals/Averages SCE UNITS Alamitos 1&2 Alamitos 3&4 Alamitos 5&6 Cool Water 1 Cool Water 2 Cool Water 3&4 El Segundo 1&2 El Segundo 3&4 Etiwanda 1&2 Etiwanda 3&4 Highgrove 1&2 Highgrove 3&4 Huntington Beach 1&2 Long Beach 8&9 Mandalay 1&2 Ormond Beach 1 Ormond Beach 2 Redondo Beach 5&6 Redondo Beach 7&8 San Bernardino 1&2 Totals/Averages SDG&E UNITS Encina 1 Encina 2 Encina 3 Encina 4 Encina 5 South Bay 1 South Bay 2 South Bay 3 South Bay 4 Totals/Averages OUTPUT (MW) X2 X2-X1 46 46 10 10 10 62 62 46 46 50 50 62 62 46 46 120 47 821 AVERAGE/INCREMENTAL R(X1) R(X2) Rave X1*R(X1) WEIGHTED X2*R(X2) (X2-X1)*Rave 340 340 105 107 107 326 326 338 338 739 739 326 326 325 325 720 207 6,034 294 294 95 97 97 264 264 292 292 689 689 264 264 279 279 600 160 5,213 1.46 1.58 1.95 2.13 2.21 1.37 1.35 1.46 1.48 2.87 2.91 1.54 1.43 1.54 1.67 1.62 1.20 1.68 0.92 0.94 0.84 0.96 0.89 1.00 1.00 1.05 1.01 1.05 1.02 0.95 0.86 1.03 0.97 0.97 0.89 0.98 1.13 1.14 1.18 1.19 1.16 1.10 1.11 1.14 1.12 1.25 1.26 1.17 1.13 1.14 1.16 1.20 1.05 1.17 67.38 72.62 19.47 21.27 22.13 84.64 83.56 67.04 68.20 143.29 145.66 95.65 88.81 70.76 76.89 194.87 56.59 1,378.84 312.90 318.64 88.15 102.29 95.70 325.04 324.58 355.14 342.54 777.84 750.09 310.53 279.21 333.60 314.02 701.06 184.54 5,915.85 331.05 335.53 112.12 115.01 112.14 291.36 293.52 332.86 327.98 863.32 867.86 310.16 297.84 318.42 323.98 719.37 168.72 6,121.23 20 350 40 640 260 960 17 65 19 81 140 512 20 350 40 670 20 264 40 640 8 66 10 89 40 430 70 560 40 430 250 750 50 750 20 350 260 960 14 126 1,378 9,043 330 600 700 48 62 372 330 630 244 600 58 79 390 490 390 500 700 330 700 112 7,665 3.19 3.02 1.42 1.30 1.31 2.02 3.04 2.96 2.72 2.75 5.87 8.51 1.96 1.31 1.90 1.35 2.46 3.54 1.32 3.24 1.83 1.04 1.04 1.00 1.01 1.02 1.10 1.05 1.03 1.00 1.02 1.58 1.73 1.01 1.02 0.95 1.00 0.99 1.09 1.02 1.15 1.03 1.34 1.33 1.12 1.10 1.11 1.43 1.32 1.31 1.30 1.28 2.41 2.99 1.20 1.08 1.16 1.13 1.23 1.41 1.12 1.54 1.27 63.84 120.75 370.26 22.03 24.90 283.13 60.78 118.27 54.49 109.84 46.93 85.11 78.45 91.88 76.13 336.39 122.85 70.75 342.61 45.37 2,524.77 363.93 664.66 959.64 65.62 82.35 563.18 369.00 693.30 263.83 653.94 104.04 154.26 433.93 568.63 410.62 753.21 742.61 382.18 975.45 144.47 9,348.82 441.73 798.01 782.81 53.02 68.80 531.03 436.30 824.97 316.85 767.97 139.63 236.14 466.24 531.22 451.86 566.67 861.31 466.05 783.35 172.40 9,696.34 87 84 90 280 310 113 120 145 105 1.47 1.47 1.34 1.32 1.87 2.07 1.43 1.33 1.40 1.30 1.47 0.91 0.94 0.98 0.97 0.95 0.93 0.99 0.96 1.01 0.96 1.10 1.08 1.09 1.13 1.15 1.10 1.10 1.10 1.12 1.12 97.52 98.04 107.28 291.36 315.13 132.57 148.86 168.69 152.15 95.76 90.64 97.66 317.74 356.79 124.51 132.03 159.63 117.77 20 20 20 20 20 30 30 30 45 107 104 110 300 330 143 150 175 150 29.41 26.77 26.34 37.43 41.49 42.77 39.82 41.99 58.69 HR-DESC.DOC; 4/17/98; PAGE D-5 TABLE D-3: SORTED BY R(X1) VALUES OUTPUT (MW) X1 X2 PG&E UNITS Potrero 3 Morro Bay 1&2 Hunters Point 4 Pittsburg 3&4 Morro Bay 3 Contra Costa 6 Morro Bay 4 Pittsburg 5 Pittsburg 1&2 Contra Costa 7 Pittsburg 7 Pittsburg 6 Humboldt 1&2 Hunters Point 2 Hunters Point 3 Moss Landing 6 Moss Landing 7 Averages AVERAGE/INCREMENTAL R(X1) R(X2) Rave ABREV, pot3 mor1&2 hnp4 pit3&4 mor3 con6 mor4 pit5 pit1&2 con7 pit7 pit6 hmb1&2 hnp2 hnp3 mos6 mos7 47 62 62 62 46 46 46 46 62 46 120 46 10 10 10 50 50 207 326 326 326 338 340 338 325 326 340 720 325 105 107 107 739 739 1.20 1.35 1.37 1.43 1.46 1.46 1.48 1.54 1.54 1.58 1.62 1.67 1.95 2.13 2.21 2.87 2.91 1.68 0.89 1.00 1.00 0.86 1.05 0.92 1.01 1.03 0.95 0.94 0.97 0.97 0.84 0.96 0.89 1.05 1.02 0.98 1.05 1.11 1.10 1.13 1.14 1.13 1.12 1.14 1.17 1.14 1.20 1.16 1.18 1.19 1.16 1.25 1.26 1.17 SCE UNITS Cool Water 1 Cool Water 2 Long Beach 8&9 Redondo Beach 7&8 Ormond Beach 1 Alamitos 5&6 Mandalay 1&2 Huntington Beach 1&2 Cool Water 3&4 Ormond Beach 2 Etiwanda 1&2 Etiwanda 3&4 El Segundo 3&4 Alamitos 3&4 El Segundo 1&2 Alamitos 1&2 San Bernardino 1&2 Redondo Beach 5&6 Highgrove 1&2 Highgrove 3&4 Averages cw01 cw02 lb8&9 red7&8 orb1 ala5&6 man1&2 hun1&2 cw34 orb2 eti1&2 eti3&4 els3&4 ala3&4 els1&2 ala1&2 sbr1&2 red5&6 hig1&2 hig3&4 17 19 70 260 250 260 40 40 140 50 20 40 40 40 20 20 14 20 8 10 65 81 560 960 750 960 430 430 512 750 264 640 670 640 350 350 126 350 66 89 1.30 1.31 1.31 1.32 1.35 1.42 1.90 1.96 2.02 2.46 2.72 2.75 2.96 3.02 3.04 3.19 3.24 3.54 5.87 8.51 1.83 1.01 1.02 1.02 1.02 1.00 1.00 0.95 1.01 1.10 0.99 1.00 1.02 1.03 1.04 1.05 1.04 1.15 1.09 1.58 1.73 1.03 1.10 1.11 1.08 1.12 1.13 1.12 1.16 1.20 1.43 1.23 1.30 1.28 1.31 1.33 1.32 1.34 1.54 1.41 2.41 2.99 1.27 SDG&E UNITS South Bay 4 Encina 3 South Bay 2 Encina 2 South Bay 3 South Bay 1 Encina 1 Encina 4 Encina 5 Averages sba4 enc3 sba2 enc2 sba3 sba1 enc1 enc4 enc5 45 20 30 20 30 30 20 20 20 150 110 150 104 175 143 107 300 330 1.30 1.32 1.33 1.34 1.40 1.43 1.47 1.87 2.07 1.47 1.01 0.98 0.99 0.94 0.96 0.93 0.91 0.97 0.95 0.96 1.12 1.09 1.10 1.08 1.10 1.10 1.10 1.13 1.15 1.12 HR-DESC.DOC; 4/17/98; PAGE D-6 FIGURE D-1A,B&C (TABLE D-3) AHR/IHR RATIOS PG&E UNITS 3.0 AHR/IHR 2.5 R(X1) Rave 2.0 1.5 1.0 0.5 R(X2) mos7 mos6 hnp3 hnp2 hmb1&2 pit6 pit7 con7 pit1&2 pit5 mor4 con6 mor3 pit3&4 hnp4 pot3 mor1&2 0.0 PLANT AHR/IHR RATIOS SCE UNITS 9.0 8.0 AHR/IHR 7.0 R(X1) 6.0 5.0 4.0 3.0 Rave 2.0 1.0 R(X2) hig3&4 hig1&2 red5&6 sbr1&2 ala1&2 els1&2 ala3&4 els3&4 eti3&4 eti1&2 orb2 cw34 hun1&2 man1&2 ala5&6 orb1 red7&8 lb8&9 cw02 cw01 0.0 PLANT AHR/IHR RATIOS SDG&E UNITS 2.5 R(X1) AHR/IHR 2.0 Rave 1.5 1.0 R(X2) 0.5 0.0 sba4 enc3 sba2 enc2 sba3 sba1 enc1 enc4 enc5 PLANT Since AHR/IHR is simply a function of AHR and IHR, it is of interest to see what their relative roles are in this regard. Looking at R(x1), for example, we see some very large values, which obviously must be driven by large AHR, small IHR or both. Figures D-2A, B and C show the R values as a function of HR-DESC.DOC; 4/17/98; PAGE D-7 AHR(x1). Although not entirely consistent, the AHR appears to be a significant driver in setting the high values of R(x1) -- but not particularly for RAVE or R(x2), with the possible exception of SCE. The data for Figures D-2 is tabulated in Table D-4. FIGURE D-2A,B&C (TABLE D-4) AHR/IHR vs MINIMUM BLOCK AHR PG&E 3.0 R(X1) AHR/IHR 2.5 Rave 2.0 1.5 1.0 R(X2) 0.5 21,551 21,165 21,037 19,959 19,959 14,354 14,091 14,050 13,501 13,488 13,384 13,194 13,064 12,834 12,684 12,066 10,951 0.0 MIN BLOCK AHR (Btu/kWh) AHR/IHR vs MINIMUM BLOCK AHR SCE 9.0 8.0 R(X1) AHR/IHR 7.0 6.0 5.0 Rave 4.0 3.0 2.0 1.0 R(X2) 66,603 49,304 31,617 28,899 27,838 27,481 25,283 24,848 24,628 22,980 19,877 16,606 15,735 14,169 12,600 12,181 11,944 11,713 11,220 10,852 0.0 MIN BLOCK AHR (Btu/kWh) AHR/IHR vs MINIMUM BLOCK AHR SDG&E 2.50 R(X1) AHR/IHR 2.00 Rave 1.50 1.00 0.50 0.00 11,799 R(X2) 12,306 12,481 12,860 12,936 13,303 13,747 17,674 18,632 MIN BLOCK AHR (Btu/kWh) HR-DESC.DOC; 4/17/98; PAGE D-8 TABLE D-4: SORTED BY AHR(X1) OUTPUT (MW) X1 X2 AHR X1 ABREV, pot3 hnp4 mor1&2 mor4 con6 mor3 pit5 pit3&4 con7 pit7 pit1&2 pit6 mos6 mos7 hnp3 hmb1&2 hnp2 47 62 62 46 46 46 46 62 46 120 62 46 50 50 10 10 10 207 326 326 338 340 338 325 326 340 720 326 325 739 739 107 105 107 10,951 12,066 12,684 12,834 13,064 13,194 13,384 13,488 13,501 14,050 14,091 14,354 19,959 19,959 21,037 21,165 21,551 1.20 1.37 1.35 1.48 1.46 1.46 1.54 1.43 1.58 1.62 1.54 1.67 2.87 2.91 2.21 1.95 2.13 1.68 0.89 1.00 1.00 1.01 0.92 1.05 1.03 0.86 0.94 0.97 0.95 0.97 1.05 1.02 0.89 0.84 0.96 0.98 1.05 1.10 1.11 1.12 1.13 1.14 1.14 1.13 1.14 1.20 1.17 1.16 1.25 1.26 1.16 1.18 1.19 1.17 SCE UNITS Ormond Beach 1 Redondo Beach 5&6 Alamitos 5&6 Cool Water 1 Cool Water 2 Long Beach 8&9 Cool Water 3&4 Mandalay 1&2 Huntington Beach 1&2 Ormond Beach 2 Etiwanda 3&4 El Segundo 3&4 Etiwanda 1&2 Alamitos 3&4 San Bernardino 1&2 El Segundo 1&2 Alamitos 1&2 Redondo Beach 7&8 Highgrove 1&2 Highgrove 3&4 Averages orb1 red5&6 ala5&6 cw01 cw02 lb8&9 cw34 man1&2 hun1&2 orb2 eti3&4 els3&4 eti1&2 ala3&4 sbr1&2 els1&2 ala1&2 red7&8 hig1&2 hig3&4 250 20 260 17 19 70 140 40 40 50 40 40 20 40 14 20 20 260 8 10 750 350 960 65 81 560 512 430 430 750 640 670 264 640 126 350 350 960 66 89 10,852 11,220 11,713 11,944 12,181 12,600 14,169 15,735 16,606 19,877 22,980 24,628 24,848 25,283 27,481 27,838 28,899 31,617 49,304 66,603 1.35 3.54 1.42 1.30 1.31 1.31 2.02 1.90 1.96 2.46 2.75 2.96 2.72 3.02 3.24 3.04 3.19 1.32 5.87 8.51 1.83 1.00 1.09 1.00 1.01 1.02 1.02 1.10 0.95 1.01 0.99 1.02 1.03 1.00 1.04 1.15 1.05 1.04 1.02 1.58 1.73 1.03 1.13 1.41 1.12 1.10 1.11 1.08 1.43 1.16 1.20 1.23 1.28 1.31 1.30 1.33 1.54 1.32 1.34 1.12 2.41 2.99 1.27 SDG&E UNITS South Bay 2 South Bay 1 South Bay 3 Encina 2 Encina 3 Encina 1 South Bay 4 Encina 4 Encina 5 Averages sba2 sba1 sba3 enc2 enc3 enc1 sba4 enc4 enc5 30 30 30 20 20 20 45 20 20 150 143 175 104 110 107 150 300 330 1.33 1.43 1.40 1.34 1.32 1.47 1.30 1.87 2.07 1.47 0.99 0.93 0.96 0.94 0.98 0.91 1.01 0.97 0.95 0.96 1.10 1.10 1.10 1.08 1.09 1.10 1.12 1.13 1.15 1.12 PG&E UNITS Potrero 3 Hunters Point 4 Morro Bay 1&2 Morro Bay 4 Contra Costa 6 Morro Bay 3 Pittsburg 5 Pittsburg 3&4 Contra Costa 7 Pittsburg 7 Pittsburg 1&2 Pittsburg 6 Moss Landing 6 Moss Landing 7 Hunters Point 3 Humboldt 1&2 Hunters Point 2 Averages 11,799 12,306 12,481 12,860 12,936 13,303 13,747 17,674 18,632 AVERAGE/INCREMENTAL R(X1) R(X2) Rave HR-DESC.DOC; 4/17/98; PAGE D-9 Figures D-3A, B and C are similar to Figures D-2A, B, and C except that we are looking at the correlation with IHR, rather than the AHR. In this case the results are much more ambiguous. A low or a high IHR seems to go with a high AHR/IHR ratio equally well. It appears that only AHR shows any correlation. The tabulated numbers for Figures D-3A, B and C are provided in Table D-5. FIGURE D-3A,B&C (TABLE D-5) AHR/IHR vs IHR PG&E 3.0 R(X1) AHR/IHR 2.5 2.0 Rave 1.5 1.0 R(X2) 0.5 10,371 10,294 9,883 9,390 9,070 9,037 8,965 8,958 8,901 8,777 8,723 8,721 8,613 8,467 8,436 7,319 7,176 0.0 BLOCK 2 IHR (Btu/kWh) AHR/IHR vs IHR SCE 9.0 AHR/IHR 8.0 R(X1) 7.0 6.0 5.0 Rave 4.0 3.0 2.0 1.0 R(X2) 9,605 9,368 9,322 9,262 9,223 9,125 8,992 8,662 8,619 8,552 8,552 8,447 8,435 8,414 8,390 8,203 8,190 8,166 7,898 7,014 0.0 BLOCK 2 IHR (Btu/kWh) AHR/IHR vs IHR SDG&E 2.5 R(X1) AHR/IHR 2.0 Rave 1.5 1.0 R(X2) 0.5 0.0 8,656 8,940 9,037 9,044 9,082 9,473 BLOCK 2 IHR (Btu/kWh) 9,632 9,841 10,630 HR-DESC.DOC; 4/17/98; PAGE D-10 TABLE D-5: SORTED BY IHR(X1) OUTPUT (MW) X1 X2 PG&E UNITS Moss Landing 7 Moss Landing 6 Contra Costa 7 Pittsburg 7 Contra Costa 6 Morro Bay 4 Pittsburg 5 Pittsburg 6 Hunters Point 4 Pittsburg 1&2 Potrero 3 Pittsburg 3&4 Morro Bay 3 Morro Bay 1&2 Hunters Point 3 Humboldt 1&2 Hunters Point 2 Averages ABREV, mos7 mos6 con7 pit7 con6 mor4 pit5 pit6 hnp4 pit1&2 pot3 pit3&4 mor3 mor1&2 hnp3 hmb1&2 hnp2 IHR X1 AVERAGE/INCREMENTAL R(X1) R(X2) Rave 50 50 46 120 46 46 46 46 62 62 47 62 46 62 10 10 10 739 739 340 720 340 338 325 325 326 326 207 326 338 326 107 105 107 7,176 7,319 8,436 8,467 8,613 8,721 8,723 8,777 8,901 8,958 8,965 9,037 9,070 9,390 9,883 10,294 10,371 2.91 2.87 1.58 1.63 1.46 1.48 1.54 1.44 1.37 1.54 1.20 1.43 1.46 1.35 2.21 1.95 2.13 1.67 1.02 1.05 0.94 0.98 0.92 1.01 1.03 0.98 1.00 0.95 0.89 0.86 1.05 1.00 0.89 0.84 0.96 0.98 1.26 1.25 1.14 1.20 1.13 1.12 1.14 1.12 1.10 1.17 1.05 1.13 1.14 1.11 1.16 1.18 1.19 1.17 SCE UNITS Cool Water 3&4 cw34 Highgrove 3&4 hig3&4 Ormond Beach 1 orb1 Ormond Beach 2 orb2 Alamitos 5&6 ala5&6 El Segundo 3&4 els3&4 Highgrove 1&2 hig1&2 Etiwanda 3&4 eti3&4 Alamitos 3&4 ala3&4 Huntington Beach 1&2hun1&2 Redondo Beach 7&8 red7&8 Mandalay 1&2 man1&2 San Bernardino 1&2 sbr1&2 Redondo Beach 5&6 red5&6 Alamitos 1&2 ala1&2 El Segundo 1&2 els1&2 Etiwanda 1&2 eti1&2 Cool Water 1 cw01 Cool Water 2 cw02 Long Beach 8&9 lb8&9 Averages 140 10 250 50 260 40 8 40 40 40 260 40 14 20 20 20 20 17 19 70 512 89 750 750 960 670 66 640 640 430 960 430 126 350 350 350 264 65 81 560 7,014 7,898 8,166 8,190 8,203 8,390 8,414 8,435 8,447 8,552 8,552 8,619 8,662 8,992 9,125 9,223 9,262 9,322 9,368 9,605 2.02 8.51 1.35 2.46 1.42 2.96 5.87 2.75 3.02 1.96 1.32 1.90 3.24 3.54 3.19 3.04 2.72 1.30 1.31 1.31 1.83 1.10 1.73 1.00 0.99 1.00 1.03 1.58 1.02 1.04 1.01 1.02 0.95 1.15 1.09 1.04 1.05 1.00 1.01 1.02 1.02 1.03 1.43 2.99 1.13 1.23 1.12 1.31 2.41 1.28 1.33 1.20 1.12 1.16 1.54 1.41 1.34 1.32 1.30 1.10 1.11 1.08 1.27 SDG&E UNITS South Bay 1 South Bay 3 Encina 5 South Bay 2 Encina 1 Encina 4 Encina 2 Encina 3 South Bay 4 Averages 30 30 20 30 20 20 20 20 45 143 175 330 150 107 300 104 110 150 8,656 8,940 9,037 9,044 9,082 9,473 9,632 9,841 10,630 1.43 1.40 2.07 1.33 1.47 1.87 1.34 1.32 1.30 1.47 0.93 0.96 0.95 0.99 0.91 0.97 0.94 0.98 1.01 0.96 1.10 1.10 1.15 1.10 1.10 1.13 1.08 1.09 1.12 1.12 sba1 sba3 enc5 sba2 enc1 enc4 enc2 enc3 sba4 G100 HR-DESC.DOC; 4/17/98; PAGE D-11 APPENDIX E A SIMPLISTIC MARKET MODEL This Appendix describes the development of the Simplistic Market Model described in Section VI, of the main body of this report. This model is a very simplified characterization of the market that does not pretend to have the accuracy of a model such as UPLAN but is, at the same time, more useful in visualizing the competitive market as it compares to the existing regulated market. It does this by making a pseudo comparison of the Marginal Cost (MC) of the regulated market to the Market Clearing Price (MCP) of the competitive market. It does this using the heat rate and fuel cost data of the IOU slowstart gas-fired units for the three IOUs: PG&E, SCE and SDG&E -- all at pre-divestiture ownership. Block Incremental Heat Rates (IHR) are used for characterizing the MC, and block Average Heat Rates (AHR) are used for characterizing MCP. This would be simply a matter of comparing the IHR and AHR block values from Appendix A except for the fact that they are no directly comparable to one another, as will be explained below. It therefore becomes necessary to characterize the IHR and AHR values in equation form, as described in Appendix B. The block IHR values would be the same as the block values of Appendix A except for the fact that equations cannot fit the data points of the block data exactly. The AHR values must be converted to AHR average block values (AHRAVE), as will be explained below. From this data, system IHRs (SIHR) and system AHRAVE (SAHRAVE) are developed. Finally, using the FR 97 Gas Price Forecast described in Appendix F, the corresponding costs are developed which can stand as proxies for MC and MCP. BLOCK INCREMENTAL HEAT RATES The equations developed in Appendix B are used to develop the block Incremental Heat Rates (IHRs). These IHRs would be the same as those in Appendix A except for the fact that the equations of Appendix B can never fit the block data of Appendix A exactly. The block IHR values are reconstructed in the format of Appendix A. Moss Landing 7 is used to illustrate this process. The relevant heat rate data from Appendix A is summarized in Table E-1. It is necessary to understand that the block 1 IHR is not really a IHR as it represents the heat rate for the minimum block, which can not be used in a dispatch decision. Therefore, only blocks 2-5 are applicable. TABLE E-1: MOSS LANDING 7 DATA FROM APPENDIX A BLOCK CAPACITY AHR I/O IHR # Curve (%) (MW) (Btu/kWh) (1000 Btu/hr) (Btu/kWh) 1 6.8% 50 19,959 997,950 19,959 2 25.0% 185 10,631 1,966,735 7,176 3 50.1% 370 9,268 3,429,160 7,905 4 80.0% 591 8,962 5,296,542 8,450 5 100.0% 739 8,917 6,589,663 8,737 HR-DESC.DOC; 4/17/98; PAGE E-1 The necessary IHR block data for each unit is constructed from the respective Input-Output Curve (Btu/hr) of Appendix B which is a third order equation: y=ax3+bx2+cx+d Where: y = Input fuel (Btu/hr) x = Output generation (MW) a - d = The coefficients defined by Table B-2 in Appendix B. The block Average Incremental Heat Rates can then be calculated from the Input-Output curve: (y2 - y1)/ (x2-x1) = [(ax23 + bx22 + cx2 + d) - (ax13 + bx12 + cx1 + d)] / (x2-x1) = [a(x23- x13) + b(x22- x12) + c(x2 - x1)]/ (x2 - x1) = a(x22 + x2 x1 + x12) + b(x2 + x1) + c Where: x1 = Minimum Output of the Block x2 = Maximum Output of the Block For Block 1 of Moss Landing 7, the following coefficients and output values are applicable: a = -0.0013 b = 2.955 c = 6561.2 d = 662,025 x1 = 50 MW x2 = 185 MW The corresponding Block 1 Average Incremental Heat Rate is: (y2 - y1)/ (x2-x1) = a(x22 + x2 x1 + x12) + b(x2 + x1) + c = -0.0013(1852+185*50+502) + 2.955(185+50) + 6561.2 = 7,196 Btu/kWh The remaining IHR values can be constructed similarly and are summarized in Table E-2. The rest of the values can then be constructed from the IHR values, as was done in Table E-1. But only the IHR values are of interest here since the necessary AHRAVE values must be calculated as is explained below. TABLE E-2: MOSS LANDING 7 DATA BASED ON EQUATION. BLOCK CAPACITY AHR I/O IHR # Curve (%) (MW) (Btu/kWh) (1000 Btu/hr) (Btu/kWh) 1 6.8% 50 19,946 997,310 19,946 2 25.0% 185 10,642 1,968,751 7,196 3 50.1% 370 9,266 3,428,360 7,890 4 80.0% 591 8,974 5,303,467 8,485 5 100.0% 739 8,931 6,599,881 8,760 The IHR values for the other units are calculated similarly and are summarized in Table E-3. HR-DESC.DOC; 4/17/98; PAGE E-2 TABLE E-3: BLOCK INCREMENTAL HEAT RATES (IHRs) BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 INC INC INC INC IHR IHR IHR IHR MW Btu/kWh MW Btu/kWh MW Btu/kWh MW Btu/kWh PG&E UNITS Contra Costa 6 Contra Costa 7 Humboldt 1&2 Hunters Point 2 Hunters Point 3 Hunters Point 4 Morro Bay 1&2 Morro Bay 3 Morro Bay 4 Moss Landing 6 Moss Landing 7 Pittsburg 1&2 Pittsburg 3&4 Pittsburg 5 Pittsburg 6 Pittsburg 7 Potrero 3 39 39 16 17 17 20 20 39 39 135 135 20 20 35 35 60 5 8,756 8,496 10,543 10,364 9,876 8,873 9,407 9,056 8,703 7,370 7,196 9,079 9,276 8,744 8,613 8,555 9,066 85 85 27 27 27 82 82 84 84 185 185 82 82 82 82 180 52 8,555 8,503 10,366 10,981 10,861 9,044 9,441 9,064 8,848 8,146 7,890 9,003 8,983 8,900 8,797 8,476 8,924 102 102 31 32 32 96 96 101 101 221 221 96 96 97 97 216 62 8,877 8,933 11,392 11,861 12,246 9,379 9,675 9,100 9,083 8,668 8,485 9,391 9,529 9,135 9,293 8,762 9,276 68 68 21 21 21 66 66 68 68 148 148 66 66 65 65 144 41 9,811 9,754 13,521 12,701 13,552 9,724 10,081 9,159 9,314 8,714 8,760 10,331 11,211 9,344 9,963 9,469 10,341 SCE UNITS Alamitos 1&2 Alamitos 3&4 Alamitos 5&6 Cool Water 1 Cool Water 2 Cool Water 3&4 El Segundo 1&2 El Segundo 3&4 Etiwanda 1&2 Etiwanda 3&4 Highgrove 1&2 Highgrove 3&4 Huntington 1&2 Long Beach 8&9 Mandaly 1&2 Ormond Beach 1 Ormond Beach 2 Redondo 5&6 Redondo 7&8 San Bernardino 1&2 70 120 160 13 16 40 70 120 60 120 10 14 100 110 100 120 175 70 100 28 9,127 8,443 8,155 9,320 9,368 7,013 9,224 8,395 9,264 8,438 8,413 7,899 8,552 9,608 8,443 8,171 8,192 8,992 8,557 8,681 90 160 180 13 16 60 90 160 60 160 20 26 100 120 105 130 175 90 300 28 9,341 8,639 8,656 9,549 9,540 7,064 9,394 8,576 9,627 8,641 8,438 8,096 8,768 9,647 8,799 8,429 8,459 9,134 8,759 9,056 90 160 180 13 16 140 90 160 60 160 18 30 100 110 95 120 175 90 140 28 9,663 8,933 9,074 9,808 9,742 7,334 9,631 8,839 10,104 8,943 8,471 8,338 9,050 9,717 9,279 8,742 8,818 9,324 9,028 9,384 80 160 180 9 14 132 80 190 64 160 10 9 90 150 90 130 175 80 160 28 10,047 9,305 9,375 10,050 9,960 8,018 9,898 9,198 10,719 9,322 8,495 8,485 9,379 9,836 9,842 9,112 9,268 9,535 9,248 9,667 7 6 8 55 63 6 8 14 - 9,082 9,630 9,840 9,473 9,019 8,654 8,900 8,940 - 27 26 28 75 82 36 38 44 30 9,353 9,818 9,965 9,625 9,208 8,874 8,995 9,089 10,630 32 31 33 90 99 43 45 53 45 10,140 10,368 10,325 9,991 9,660 9,548 9,277 9,511 10,957 21 21 22 60 66 29 30 35 30 11,202 11,111 10,810 10,484 10,270 10,456 9,658 10,080 11,427 SDG&E UNITS Encina 1 Encina 2 Encina 3 Encina 4 Encina 5 South Bay 1 South Bay 2 South Bay 3 South Bay 4 HR-DESC.DOC; 4/17/98; PAGE E-3 BLOCK AVERAGE HEAT RATES At first blush, it might appear that the AHR is calculated similarly but this is not possible because the AHR and IHR data in Table E-2 are not directly comparable. The Moss Landing 7 IHR of 7,196 Btu/kWh for block 2, for example, is an average for the Block 2, for the range from 50 MW to 185 MW. But the corresponding AHR of 10,642 Btu/kWh is the heat rate at the point of 185 MW. In order to make these values comparable, an average AHR value for the range of 50 MW to 185 MW has to be calculated. This value is designated as AHRAVE herein, and calculated using calculus. The AHR curve is integrated over each of its blocks and that value is divided by the number of megawatts associated with the respective block. The process is as follows. The Input-Output Curve (Btu/hr) is as before represented by the third order equation: y = ax3+bx2+cx+d Where: y = Input fuel (Btu/hr) x = Output generation (MW) a - d = The coefficients defined by Table B-2 in Appendix B. And the Average Heat Rate curve (AHR) is by definition equal to the Input-Output curve (y) divided by the respective capacity, x: AHR = y/x = (ax3+bx2+cx+d)/x The average AHR, AHRAVE, is the integral of AHR from x1 to x2 divided by the quantity x2 - x1: AHRAVE = [ò ò AHR dx {from X1 to X2 } ] / (x2 - x1) Where: x1 = Minimum operating level of the block (MW) x2 = Maximum operating level of the block (MW) The integration of AHR, (ò ò AHR dx), is as follows: ò AHR dx = ò [(ax [ 3+bx2+cx+d)/x]dx = a/3 ·x3+ b/2 ·x2 + c ·x + d · Ln(x) Where: Ln(x) = Natural Log of x Or in spreadsheet language: ò AHR AH dx = ò [(a*X^3+b*X^2+c*X+d)/X]dx [ = a/3*X^3+b/2*X^2+c*X+d*ln(X) The coefficients, a - d, along with the values of x1 and x2 for each block is copied onto a spreadsheet. The formula for òAHR dx is entered onto the Excel spreadsheet in two places: once for calculating the value of òAHR dx for x1 and once for x2. For the first block (from 50 MW to 185 MW) this would be: HR-DESC.DOC; 4/17/98; PAGE E-4 a = -0.0013 b = 2.955 c = 6561.2 d = 662,025 x1 = 50 MW x2 = 185 MW ò AHR(x1) dx = 1/3*a*x1^3+1/2*b*x1^2+c*x1+d*ln(x1) ò AHR(x2) dx = 1/3*a*x2^3+1/2*b*x2^2+c*x2+d*ln(x2) Finally, the two values of ò AHR dx are subtracted from one another and the resulting value is divided by the difference of the x2 - x1 values: AHRAVE = [ò ò AHR(x2) dx - ò AHR(x1) dx ] / (x2 - x1) Excel then makes the following calculations: ò AHR(x2) dx = a/3*x2^3+b/2*x2^2+c*x2+d*ln(x2) = -0.0013/3×1853 + 2.955/2×1852 + 6561.2×185 + 662025×Ln(185) = 4,717,651.8 ò AHR(x1) dx = a/3*x1^3+b/2*x1^2+c*x1+d*ln(x1) = -0.0013/3×503 + 2.955/2×502 + 6561.2 × 50 + 662025×Ln(50) = 2,921,556.6 AHRAVE = (4,717,651.8 - 2,921,556.6) / (185 - 50) = 1,796,095.2 / 135 = 13,304 Btu/kWh Table E-4 provides the resulting block AHRAVE values for each block of each slow-start IOU unit. HR-DESC.DOC; 4/17/98; PAGE E-5 TABLE E-4: BLOCK AVERAGES OF AVERAGE HEAT RATES (AHRAVE) BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 INC INC INC INC AHR AHR AHR AHR MW Btu/kWh MW Btu/kWh MW Btu/kWh MW Btu/kWh PG&E UNITS Contra Costa 6 Contra Costa 7 Humboldt 1&2 Hunters Point 2 Hunters Point 3 Hunters Point 4 Morro Bay 1&2 Morro Bay 3 Morro Bay 4 Moss Landing 6 Moss Landing 7 Pittsburg 1&2 Pittsburg 3&4 Pittsburg 5 Pittsburg 6 Pittsburg 7 Potrero 3 39 39 16 17 17 20 20 39 39 135 135 20 20 35 35 60 5 11,860 12,112 16,853 16,865 16,339 11,642 12,246 12,056 11,694 13,370 13,304 13,412 12,905 12,186 12,870 13,001 10,853 85 85 27 27 27 82 82 84 84 185 185 82 82 82 82 180 52 10,300 10,361 13,245 13,382 12,974 10,585 11,128 10,616 10,292 9,918 9,758 11,673 11,388 10,598 10,899 11,062 10,207 102 102 31 32 32 96 96 101 101 221 221 96 96 97 97 216 62 9,579 9,622 12,142 12,517 12,336 9,985 10,438 9,950 9,714 9,273 9,079 10,573 10,408 9,907 10,075 9,977 9,689 68 68 21 21 21 66 66 68 68 148 148 66 66 65 65 144 41 9,479 9,517 12,167 12,433 12,471 9,854 10,266 9,712 9,561 9,115 8,949 10,339 10,341 9,712 9,929 9,705 9,686 SCE UNITS Alamitos 1&2 Alamitos 3&4 Alamitos 5&6 Cool Water 1 Cool Water 2 Cool Water 3&4 El Segundo 1&2 El Segundo 3&4 Etiwanda 1&2 Etiwanda 3&4 Highgrove 1&2 Highgrove 3&4 Huntington 1&2 Long Beach 8&9 Mandaly 1&2 Ormond Beach 1 Ormond Beach 2 Redondo 5&6 Redondo 7&8 San Bernardino 1&2 70 120 160 13 16 40 70 120 60 120 10 14 100 110 100 120 175 70 100 28 17,605 16,210 10,532 11,259 11,401 13,307 17,208 15,882 16,432 15,141 34,940 44,598 12,570 11,404 12,114 10,354 13,188 18,702 10,808 18,968 90 160 180 13 16 60 90 160 60 160 20 26 100 120 105 130 175 90 300 28 12,222 11,407 9,810 10,587 10,650 11,822 12,131 11,251 12,244 11,005 20,641 24,520 10,331 10,506 10,087 9,753 10,168 12,511 9,995 13,553 90 160 180 13 16 140 90 160 60 160 18 30 100 110 95 120 175 90 140 28 11,084 10,311 9,560 10,343 10,370 10,361 11,038 10,188 11,371 10,078 15,481 17,262 9,822 10,230 9,706 9,486 9,595 11,144 9,633 12,072 80 160 180 9 14 132 80 190 64 160 10 9 90 150 90 130 175 80 160 28 10,734 9,960 9,491 10,264 10,262 9,506 10,678 9,825 11,106 9,798 13,820 15,100 9,666 10,107 9,664 9,382 9,442 10,661 9,548 11,426 7 6 8 55 63 6 8 14 - 12,717 12,454 12,468 13,407 13,352 11,995 11,487 11,853 - 27 26 28 75 82 36 38 44 30 11,323 11,390 11,426 11,022 10,671 10,821 10,526 10,653 13,010 32 31 33 90 99 43 45 53 45 10,611 10,808 10,857 10,482 10,120 10,099 9,912 10,051 12,147 21 21 22 60 66 29 30 35 30 10,601 10,769 10,761 10,399 10,060 10,047 9,774 9,963 11,860 SDG&E UNITS Encina 1 Encina 2 Encina 3 Encina 4 Encina 5 South Bay 1 South Bay 2 South Bay 3 South Bay 4 HR-DESC.DOC; 4/17/98; PAGE E-6 SYSTEM INCREMENTAL HEAT RATES If the block IHRs are sorted by increasing values for each IOU, they can be considered to be a simplified representation of the dispatch in the existing regulated system -- and is therefore a simplistic representation of MC for the respective IOU. These sorted values are shown under the heading IHR in Table E-5 series: Table E-5-PGE for PG&E, Table E-5-SCE for SCE and Table E-5-SDG for SDG&E. The only restraint is that the Block order can not be violated. That is, Block 2 must be taken before Block 3, Block 3 must be taken before Block 4, and Block 4 must be taken before Block 5. Since IHRs should always have increasing values, maintaining this restraint is not a problem. The Figure E-1 series show this same data graphically, along with corresponding AHRAVE data which is described in the next section. The column designated IHR x MW is the product of each MW increment and its corresponding IHR, which represents the number of Btu that the respective unit can produce in any one hour. The next column is a running sum of these products, which represents the total Btu that the system to that point can generate in one hour. The last column, designated “Cumulative SIHR” is the running sum values divided by the cumulative MW. These SIHR values are shown in Figure series E-2, along with similar AHR data which is also described in the next section. Since IHR values set the MC in the regulated system – along with variable O&M costs, they can be thought of a proxy for MC. Accordingly, SIHR values can be thought of as a system MC for the blocks being used at that point, which corresponds to the average MC which could be expected if all these same blocks contributed to the marginal cost equal amounts of time. That is, we will consider SIHR to be our proxy for MC in a traditional regulated system. SYSTEM AVERAGE HEAT RATES The System AHRAVE, SAHRAVE, values are calculated similarly to SIHR but the sorting is more complex, intended to be representative of the dispatch in a competitive market with one part bidding. The AHRAVE data is sorted such that blocks are taken in economic order, with the same provision that blocks can not be taken out of physical order. As it turns out, once the first block (Block 2) is taken, its upper blocks are so economic that there is no other Block 2 that can compete. Accordingly, the graphical emulation of this dispatch of heat rates, Figures E-1, show a saw tooth shape where each downward sloping arc (of four blocks) is a unit’s heat rate curve. This is a very different shape than that of the conventional IHR curve. The SAHRAVE values are calculated similar to the SIHR values and are also shown in Tables E-5. The SAHRAVE values are the cumulative weighted average of these individual unit AHRAVE values. The corresponding graphs are shown in Figure E-2. HR-DESC.DOC; 4/17/98; PAGE E-7 TABLE E-5-PGE: PG&E SYSTEM IHR AND AHRAVE CALCULATIONS SUMMARY IHR DATA UNIT BLK INC IHR CUM PLANT # MW Btu/kWh MW IHR*MW 1000Btu mos7 mos6 mos7 mos6 pit7 mos7 con7 con7 pit7 con6 pit6 mos6 mor4 mos6 pit5 con6 mos7 pit7 pit6 mor4 hnp4 con6 pit5 pot3 con7 pit3&4 pit1&2 hnp4 mor3 mor3 pot3 pit1&2 mor4 mor3 pit5 mor3 pot3 pit3&4 pit6 mor4 pit5 hnp4 pit1&2 mor1&2 mor1&2 pit7 pit3&4 mor1&2 hnp4 con7 con6 hnp3 pit6 mor1&2 pit1&2 pot3 hnp2 hmb1&2 hmb1&2 hnp3 hnp2 pit3&4 hmb1&2 hnp2 hnp3 hnp2 hmb1&2 hnp3 971,441 994,931 1,459,609 1,506,925 1,525,759 1,875,107 331,331 722,789 513,295 727,171 301,456 1,915,722 339,425 1,289,726 306,050 341,490 1,296,414 1,892,651 721,354 743,248 177,454 905,452 729,832 464,057 911,212 736,606 738,207 741,638 353,189 761,357 45,329 181,571 917,368 919,114 886,132 622,813 575,101 185,523 901,420 633,373 607,366 900,405 901,583 188,135 774,202 1,363,571 914,759 928,783 641,751 663,242 667,170 167,886 647,610 665,338 681,813 423,968 176,181 279,882 168,689 293,239 296,490 739,944 353,140 379,557 391,877 266,719 283,948 284,586 2 2 3 3 3 4 2 3 2 3 2 4 2 5 2 2 5 4 3 3 2 4 3 3 4 3 3 3 2 3 2 2 4 4 4 5 4 2 4 5 5 4 4 2 3 5 4 4 5 5 5 2 5 5 5 5 2 3 2 3 3 5 4 4 4 5 5 5 135 135 185 185 180 221 39 85 60 85 35 221 39 148 35 39 148 216 82 84 20 102 82 52 102 82 82 82 39 84 5 20 101 101 97 68 62 20 97 68 65 96 96 20 82 144 96 96 66 68 68 17 65 66 66 41 17 27 16 27 27 66 31 32 32 21 21 21 7,196 7,370 7,890 8,146 8,476 8,485 8,496 8,503 8,555 8,555 8,613 8,668 8,703 8,714 8,744 8,756 8,760 8,762 8,797 8,848 8,873 8,877 8,900 8,924 8,933 8,983 9,003 9,044 9,056 9,064 9,066 9,079 9,083 9,100 9,135 9,159 9,276 9,276 9,293 9,314 9,344 9,379 9,391 9,407 9,441 9,469 9,529 9,675 9,724 9,754 9,811 9,876 9,963 10,081 10,331 10,341 10,364 10,366 10,543 10,861 10,981 11,211 11,392 11,861 12,246 12,701 13,521 13,552 135 270 455 640 820 1,041 1,080 1,165 1,225 1,310 1,345 1,566 1,605 1,753 1,788 1,827 1,975 2,191 2,273 2,357 2,377 2,479 2,561 2,613 2,715 2,797 2,879 2,961 3,000 3,084 3,089 3,109 3,210 3,311 3,408 3,476 3,538 3,558 3,655 3,723 3,788 3,884 3,980 4,000 4,082 4,226 4,322 4,418 4,484 4,552 4,620 4,637 4,702 4,768 4,834 4,875 4,892 4,919 4,935 4,962 4,989 5,055 5,086 5,118 5,150 5,171 5,192 5,213 SUMMARY AHR DATA Cumulative IHR*MW SIHR 1000Btu Btu/kWh 971,441 1,966,372 3,425,981 4,932,906 6,458,665 8,333,772 8,665,104 9,387,893 9,901,188 10,628,359 10,929,814 12,845,537 13,184,962 14,474,688 14,780,738 15,122,229 16,418,642 18,311,293 19,032,647 19,775,896 19,953,349 20,858,801 21,588,633 22,052,690 22,963,902 23,700,507 24,438,714 25,180,352 25,533,541 26,294,897 26,340,226 26,521,797 27,439,165 28,358,279 29,244,411 29,867,224 30,442,325 30,627,848 31,529,268 32,162,641 32,770,007 33,670,412 34,571,995 34,760,130 35,534,331 36,897,902 37,812,661 38,741,444 39,383,196 40,046,438 40,713,607 40,881,494 41,529,104 42,194,442 42,876,255 43,300,223 43,476,404 43,756,286 43,924,976 44,218,215 44,514,705 45,254,649 45,607,789 45,987,346 46,379,222 46,645,941 46,929,889 47,214,476 7,196 7,283 7,530 7,708 7,876 8,006 8,023 8,058 8,083 8,113 8,126 8,203 8,215 8,257 8,267 8,277 8,313 8,358 8,373 8,390 8,394 8,414 8,430 8,440 8,458 8,474 8,489 8,504 8,511 8,526 8,527 8,531 8,548 8,565 8,581 8,592 8,604 8,608 8,626 8,639 8,651 8,669 8,686 8,690 8,705 8,731 8,749 8,769 8,783 8,798 8,812 8,816 8,832 8,850 8,870 8,882 8,887 8,895 8,901 8,911 8,923 8,952 8,967 8,985 9,006 9,021 9,039 9,057 UNIT BLK INC AHR CUM AHR*MW PLANT # MW Btu/kWh MW 1000Btu 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 17 pot3 pot3 pot3 pot3 hnp4 hnp4 hnp4 hnp4 mor4 mor4 mor4 mor4 con6 con6 con6 con6 mor3 mor3 mor3 mor3 con7 con7 con7 con7 pit5 pit5 pit5 pit5 mor1&2 mor1&2 mor1&2 mor1&2 pit6 pit6 pit6 pit6 pit3&4 pit3&4 pit3&4 pit3&4 pit7 pit7 pit7 pit7 mos7 mos7 mos7 mos7 mos6 mos6 mos6 mos6 pit1&2 pit1&2 pit1&2 pit1&2 hnp3 hnp3 hnp3 hnp3 hmb1&2 hmb1&2 hmb1&2 hmb1&2 hnp2 hnp2 hnp2 hnp2 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 5 52 62 41 20 82 96 66 39 84 101 68 39 85 102 68 39 84 101 68 39 85 102 68 35 82 97 65 20 82 96 66 35 82 97 65 20 82 96 66 60 180 216 144 135 185 221 148 135 185 221 148 20 82 96 66 17 27 32 21 16 27 31 21 17 27 32 21 10,853 10,207 9,689 9,686 11,642 10,585 9,985 9,854 11,694 10,292 9,714 9,561 11,860 10,300 9,579 9,479 12,056 10,616 9,950 9,712 12,112 10,361 9,622 9,517 12,186 10,598 9,907 9,712 12,246 11,128 10,438 10,266 12,870 10,899 10,075 9,929 12,905 11,388 10,408 10,341 13,001 11,062 9,977 9,705 13,304 9,758 9,079 8,949 13,370 9,918 9,273 9,115 13,412 11,673 10,573 10,339 16,339 12,974 12,336 12,471 16,853 13,245 12,142 12,167 16,865 13,382 12,517 12,433 5 57 119 160 180 262 358 424 463 547 648 716 755 840 942 1,010 1,049 1,133 1,234 1,302 1,341 1,426 1,528 1,596 1,631 1,713 1,810 1,875 1,895 1,977 2,073 2,139 2,174 2,256 2,353 2,418 2,438 2,520 2,616 2,682 2,742 2,922 3,138 3,282 3,417 3,602 3,823 3,971 4,106 4,291 4,512 4,660 4,680 4,762 4,858 4,924 4,941 4,968 5,000 5,021 5,037 5,064 5,095 5,116 5,133 5,160 5,192 5,213 54,266 530,763 600,716 397,135 232,845 867,947 958,544 650,366 456,063 864,561 981,103 650,147 462,528 875,488 977,042 644,582 470,181 891,770 1,004,983 660,441 472,386 880,708 981,468 647,154 426,514 869,041 960,937 631,257 244,911 912,503 1,002,050 677,577 450,461 893,708 977,237 645,407 258,107 933,821 999,204 682,485 780,062 1,991,242 2,154,948 1,397,580 1,796,095 1,805,199 2,006,352 1,324,404 1,804,959 1,834,901 2,049,296 1,349,026 268,231 957,189 1,014,964 682,388 277,769 350,302 394,742 261,888 269,651 357,616 376,412 255,499 286,706 361,311 400,547 261,103 Cumulative AHR*MW SAHR 1000Btu Btu/kWh 54,266 585,029 1,185,744 1,582,880 1,815,724 2,683,671 3,642,216 4,292,582 4,748,644 5,613,206 6,594,309 7,244,456 7,706,983 8,582,471 9,559,513 10,204,095 10,674,276 11,566,046 12,571,029 13,231,470 13,703,857 14,584,564 15,566,033 16,213,187 16,639,701 17,508,742 18,469,679 19,100,936 19,345,848 20,258,351 21,260,402 21,937,979 22,388,440 23,282,147 24,259,384 24,904,791 25,162,898 26,096,719 27,095,923 27,778,408 28,558,470 30,549,713 32,704,661 34,102,241 35,898,336 37,703,535 39,709,887 41,034,291 42,839,250 44,674,150 46,723,446 48,072,472 48,340,703 49,297,892 50,312,855 50,995,243 51,273,012 51,623,314 52,018,056 52,279,943 52,549,594 52,907,211 53,283,622 53,539,122 53,825,827 54,187,139 54,587,685 54,848,789 10,853 10,264 9,964 9,893 10,087 10,243 10,174 10,124 10,256 10,262 10,176 10,118 10,208 10,217 10,148 10,103 10,176 10,208 10,187 10,162 10,219 10,228 10,187 10,159 10,202 10,221 10,204 10,187 10,209 10,247 10,256 10,256 10,298 10,320 10,310 10,300 10,321 10,356 10,358 10,357 10,415 10,455 10,422 10,391 10,506 10,467 10,387 10,333 10,433 10,411 10,355 10,316 10,329 10,352 10,357 10,356 10,377 10,391 10,404 10,412 10,433 10,448 10,458 10,465 10,486 10,501 10,514 10,522 HR-DESC.DOC; 4/17/98; PAGE E-8 TABLE E-5-SCE: SCE SYSTEM IHR AND AHRAVE CALCULATIONS SUMMARY IHR DATA UNIT BLK INC IHR CUM PLANT # MW Btu/kWh MW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 cw34 cw34 cw34 hig3&4 cw34 hig3&4 ala5&6 orb1 orb2 hig3&4 els3&4 hig1&2 orb1 eti3&4 hig1&2 man1&2 ala3&4 orb2 hig1&2 hig3&4 hig1&2 hun1&2 red7&8 els3&4 ala3&4 eti3&4 ala5&6 sbr1&2 orb1 red7&8 hun1&2 man1&2 orb2 els3&4 ala3&4 eti3&4 red5&6 red7&8 hun1&2 sbr1&2 ala5&6 orb1 ala1&2 red5&6 els3&4 els1&2 red7&8 eti1&2 orb2 man1&2 ala3&4 cw01 eti3&4 red5&6 ala1&2 cw02 ala5&6 hun1&2 sbr1&2 2 3 4 2 5 3 2 2 2 4 2 2 3 2 3 2 2 3 4 5 5 2 2 3 3 3 3 2 4 3 3 3 4 4 4 4 2 4 4 3 4 5 2 3 5 2 5 2 5 4 5 2 5 4 3 2 5 5 4 40 60 140 14 132 26 160 120 175 30 120 10 130 120 20 100 120 175 18 9 10 100 100 160 160 160 180 28 120 300 100 105 175 160 160 160 70 140 100 28 180 130 70 90 190 70 160 60 175 95 160 13 160 90 90 16 180 90 28 7,013 7,064 7,334 7,899 8,018 8,096 8,155 8,171 8,192 8,338 8,395 8,413 8,429 8,438 8,438 8,443 8,443 8,459 8,471 8,485 8,495 8,552 8,557 8,576 8,639 8,641 8,656 8,681 8,742 8,759 8,768 8,799 8,818 8,839 8,933 8,943 8,992 9,028 9,050 9,056 9,074 9,112 9,127 9,134 9,198 9,224 9,248 9,264 9,268 9,279 9,305 9,320 9,322 9,324 9,341 9,368 9,375 9,379 9,384 40 100 240 254 386 412 572 692 867 897 1017 1027 1157 1277 1297 1397 1517 1692 1710 1719 1729 1829 1929 2089 2249 2409 2589 2617 2737 3037 3137 3242 3417 3577 3737 3897 3967 4107 4207 4235 4415 4545 4615 4705 4895 4965 5125 5185 5360 5455 5615 5628 5788 5878 5968 5984 6164 6254 6282 IHR*MW 1000Btu 280,515 423,843 1,026,818 110,589 1,058,398 210,501 1,304,836 980,508 1,433,628 250,148 1,007,398 84,135 1,095,717 1,012,529 168,768 844,270 1,013,150 1,480,332 152,474 76,365 84,951 855,242 855,746 1,372,124 1,382,232 1,382,483 1,558,076 243,056 1,049,016 2,627,705 876,842 923,941 1,543,113 1,414,195 1,429,341 1,430,826 629,452 1,263,956 905,042 253,562 1,633,296 1,184,559 638,866 822,033 1,747,566 645,700 1,479,652 555,834 1,621,972 881,550 1,488,738 121,160 1,491,457 839,196 840,686 149,892 1,687,520 844,104 262,764 SUMMARY AHR DATA Cumulative IHR*MW SIHR 1000Btu Btu/kWh 280,515 704,358 1,731,177 1,841,766 2,900,164 3,110,665 4,415,501 5,396,009 6,829,637 7,079,785 8,087,183 8,171,318 9,267,035 10,279,564 10,448,332 11,292,602 12,305,752 13,786,084 13,938,558 14,014,923 14,099,874 14,955,116 15,810,862 17,182,986 18,565,218 19,947,700 21,505,776 21,748,832 22,797,847 25,425,553 26,302,395 27,226,335 28,769,448 30,183,643 31,612,984 33,043,810 33,673,262 34,937,218 35,842,260 36,095,822 37,729,117 38,913,677 39,552,542 40,374,575 42,122,141 42,767,841 44,247,493 44,803,327 46,425,299 47,306,849 48,795,587 48,916,747 50,408,203 51,247,400 52,088,086 52,237,979 53,925,499 54,769,602 55,032,367 7,013 7,044 7,213 7,251 7,513 7,550 7,719 7,798 7,877 7,893 7,952 7,956 8,010 8,050 8,056 8,083 8,112 8,148 8,151 8,153 8,155 8,177 8,196 8,225 8,255 8,280 8,307 8,311 8,330 8,372 8,385 8,398 8,420 8,438 8,459 8,479 8,488 8,507 8,520 8,523 8,546 8,562 8,570 8,581 8,605 8,614 8,634 8,641 8,661 8,672 8,690 8,692 8,709 8,719 8,728 8,730 8,748 8,758 8,760 PLANT 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 orb1 orb1 orb1 orb1 ala5&6 ala5&6 ala5&6 ala5&6 red7&8 red7&8 red7&8 red7&8 cw01 cw01 cw01 cw01 cw02 cw02 cw02 cw02 lbc8&9 lbc8&9 lbc8&9 lbc8&9 man1&2 man1&2 man1&2 man1&2 hun1&2 hun1&2 hun1&2 hun1&2 orb2 orb2 orb2 orb2 cw34 cw34 cw34 cw34 eti3&4 eti3&4 eti3&4 eti3&4 els3&4 els3&4 els3&4 els3&4 ala3&4 ala3&4 ala3&4 ala3&4 eti1&2 eti1&2 eti1&2 eti1&2 els1&2 els1&2 els1&2 UNIT BLK INC AHR CUM AHR*MW # MW Btu/kWh MW 1000Btu 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 120 130 120 130 160 180 180 180 100 300 140 160 13 13 13 9 16 16 16 14 110 120 110 150 100 105 95 90 100 100 100 90 175 175 175 175 40 60 140 132 120 160 160 160 120 160 160 190 120 160 160 160 60 60 60 64 70 90 90 10,354 9,753 9,486 9,382 10,532 9,810 9,560 9,491 10,808 9,995 9,633 9,548 11,259 10,587 10,343 10,264 11,401 10,650 10,370 10,262 11,404 10,506 10,230 10,107 12,114 10,087 9,706 9,664 12,570 10,331 9,822 9,666 13,188 10,168 9,595 9,442 13,307 11,822 10,361 9,506 15,141 11,005 10,078 9,798 15,882 11,251 10,188 9,825 16,210 11,407 10,311 9,960 16,432 12,244 11,371 11,106 17,208 12,131 11,038 120 250 370 500 660 840 1,020 1,200 1,300 1,600 1,740 1,900 1,913 1,926 1,939 1,948 1,964 1,980 1,996 2,010 2,120 2,240 2,350 2,500 2,600 2,705 2,800 2,890 2,990 3,090 3,190 3,280 3,455 3,630 3,805 3,980 4,020 4,080 4,220 4,352 4,472 4,632 4,792 4,952 5,072 5,232 5,392 5,582 5,702 5,862 6,022 6,182 6,242 6,302 6,362 6,426 6,496 6,586 6,676 1,242,460 1,267,892 1,138,317 1,219,663 1,685,114 1,765,810 1,720,773 1,708,324 1,080,843 2,998,470 1,348,586 1,527,641 146,369 137,631 134,456 92,374 182,415 170,402 165,923 143,666 1,254,487 1,260,742 1,125,296 1,516,118 1,211,366 1,059,098 922,045 869,785 1,256,984 1,033,061 982,224 869,928 2,307,837 1,779,318 1,679,122 1,652,347 532,296 709,297 1,450,505 1,254,776 1,816,911 1,760,748 1,612,465 1,567,706 1,905,889 1,800,080 1,630,072 1,866,701 1,945,196 1,825,110 1,649,777 1,593,579 985,907 734,610 682,273 710,761 1,204,540 1,091,829 993,454 Cumulative AHR*MW SAHR 1000Btu Btu/kWh 1,242,460 2,510,352 3,648,669 4,868,332 6,553,446 8,319,256 10,040,029 11,748,353 12,829,196 15,827,666 17,176,252 18,703,893 18,850,262 18,987,893 19,122,349 19,214,723 19,397,138 19,567,541 19,733,464 19,877,130 21,131,618 22,392,360 23,517,655 25,033,773 26,245,140 27,304,238 28,226,283 29,096,067 30,353,051 31,386,112 32,368,336 33,238,264 35,546,102 37,325,420 39,004,542 40,656,889 41,189,186 41,898,483 43,348,988 44,603,764 46,420,675 48,181,424 49,793,888 51,361,595 53,267,484 55,067,564 56,697,636 58,564,337 60,509,533 62,334,643 63,984,420 65,577,999 66,563,907 67,298,517 67,980,790 68,691,551 69,896,091 70,987,920 71,981,374 10,354 10,041 9,861 9,737 9,929 9,904 9,843 9,790 9,869 9,892 9,871 9,844 9,854 9,859 9,862 9,864 9,876 9,883 9,887 9,889 9,968 9,997 10,008 10,014 10,094 10,094 10,081 10,068 10,152 10,157 10,147 10,134 10,288 10,282 10,251 10,215 10,246 10,269 10,272 10,249 10,380 10,402 10,391 10,372 10,502 10,525 10,515 10,492 10,612 10,634 10,625 10,608 10,664 10,679 10,685 10,690 10,760 10,779 10,782 - Continued on Next Page - HR-DESC.DOC; 4/17/98; PAGE E-9 TABLE E-5-SCE: SCE SYSTEM IHR AND AHRAVE CALCULATIONS - CONTINUED SUMMARY IHR DATA UNIT BLK INC IHR CUM PLANT # MW Btu/kWh MW 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 els1&2 red5&6 cw02 cw01 lbc8&9 eti1&2 els1&2 lbc8&9 ala1&2 sbr1&2 lbc8&9 cw02 cw01 lbc8&9 man1&2 els1&2 cw02 ala1&2 cw01 eti1&2 eti1&2 3 5 3 3 2 3 4 3 4 5 4 4 4 5 5 5 5 5 5 4 5 90 80 16 13 110 60 90 120 90 28 110 16 13 150 90 80 14 80 9 60 64 9,394 9,535 9,540 9,549 9,608 9,627 9,631 9,647 9,663 9,667 9,717 9,742 9,808 9,836 9,842 9,898 9,960 10,047 10,050 10,104 10,719 6372 6452 6468 6481 6591 6651 6741 6861 6951 6979 7089 7105 7118 7268 7358 7438 7452 7532 7541 7601 7665 IHR*MW 1000Btu 845,487 762,837 152,635 124,142 1,056,887 577,613 866,751 1,157,626 869,675 270,663 1,068,869 155,877 127,510 1,475,363 885,739 791,833 139,444 803,745 90,452 606,260 685,992 SUMMARY AHR DATA Cumulative IHR*MW SIHR 1000Btu Btu/kWh 55,877,854 56,640,691 56,793,326 56,917,468 57,974,354 58,551,967 59,418,718 60,576,344 61,446,019 61,716,682 62,785,550 62,941,427 63,068,937 64,544,300 65,430,039 66,221,872 66,361,316 67,165,061 67,255,513 67,861,772 68,547,765 PLANT 8,769 8,779 8,781 8,782 8,796 8,803 8,815 8,829 8,840 8,843 8,857 8,859 8,860 8,881 8,892 8,903 8,905 8,917 8,919 8,928 8,943 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 els1&2 ala1&2 ala1&2 ala1&2 ala1&2 red5&6 red5&6 red5&6 red5&6 sbr1&2 sbr1&2 sbr1&2 sbr1&2 hig1&2 hig1&2 hig1&2 hig1&2 hig3&4 hig3&4 hig3&4 hig3&4 UNIT BLK INC AHR CUM # MW Btu/kWh MW 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 80 70 90 90 80 70 90 90 80 28 28 28 28 10 20 18 10 14 26 30 9 10,678 17,605 12,222 11,084 10,734 18,702 12,511 11,144 10,661 18,968 13,553 12,072 11,426 34,940 20,641 15,481 13,820 44,598 24,520 17,262 15,100 6,756 6,826 6,916 7,006 7,086 7,156 7,246 7,336 7,416 7,444 7,472 7,500 7,528 7,538 7,558 7,576 7,586 7,600 7,626 7,656 7,665 AHR*MW 1000Btu 854,229 1,232,347 1,099,983 997,572 858,733 1,309,127 1,125,960 1,002,955 852,893 531,107 379,489 338,005 319,940 349,396 412,821 278,651 138,196 624,373 637,514 517,867 135,898 Cumulative AHR*MW SAHR 1000Btu Btu/kWh 72,835,602 74,067,949 75,167,933 76,165,504 77,024,237 78,333,364 79,459,324 80,462,279 81,315,172 81,846,279 82,225,769 82,563,773 82,883,714 83,233,109 83,645,930 83,924,581 84,062,777 84,687,150 85,324,663 85,842,530 85,978,428 10,781 10,851 10,869 10,871 10,870 10,947 10,966 10,968 10,965 10,995 11,005 11,009 11,010 11,042 11,067 11,078 11,081 11,143 11,189 11,212 11,217 TABLE E-5-SDG: SDG&E SYSTEM IHR AND AHRAVE CALCULATIONS SUMMARY IHR DATA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 UNIT BLK INC IHR PLANT # MW Btu/kWh CUM MW IHR*MW 1000Btu sba1 sba1 sba2 sba3 sba2 enc5 enc1 sba3 enc5 sba2 enc1 enc4 sba3 sba1 enc4 enc2 sba2 enc5 enc2 enc3 enc3 enc4 sba3 enc1 enc5 enc3 enc2 sba1 enc4 sba4 enc3 sba4 enc2 enc1 sba4 6 42 49 63 100 163 170 214 296 341 368 423 475 518 593 599 629 728 754 761 789 879 914 946 1,012 1,045 1,076 1,105 1,165 1,195 1,217 1,262 1,283 1,304 1,334 49,761 317,258 66,752 122,921 337,295 568,178 61,304 397,663 755,067 417,453 250,190 521,012 499,334 409,609 721,861 57,782 289,727 956,313 255,261 73,797 274,033 899,145 352,798 325,492 677,814 340,712 323,495 299,053 629,024 318,894 237,817 493,050 231,114 239,716 342,800 2 3 2 2 3 2 2 3 3 4 3 2 4 4 3 2 5 4 3 2 3 4 5 4 5 4 4 5 5 3 5 4 5 5 5 6 36 8 14 38 63 7 44 82 45 27 55 53 43 75 6 30 99 26 8 28 90 35 32 66 33 31 29 60 30 22 45 21 21 30 8,654 8,874 8,900 8,940 8,995 9,019 9,082 9,089 9,208 9,277 9,353 9,473 9,511 9,548 9,625 9,630 9,658 9,660 9,818 9,840 9,965 9,991 10,080 10,140 10,270 10,325 10,368 10,456 10,484 10,630 10,810 10,957 11,111 11,202 11,427 SUMMARY AHR DATA Cumulative IHR*MW SIHR 1000Btu Btu/kWh 49,761 367,019 433,771 556,691 893,986 1,462,164 1,523,468 1,921,131 2,676,198 3,093,651 3,343,841 3,864,854 4,364,188 4,773,796 5,495,657 5,553,440 5,843,167 6,799,479 7,054,740 7,128,538 7,402,570 8,301,716 8,654,514 8,980,006 9,657,820 9,998,533 10,322,028 10,621,080 11,250,104 11,568,999 11,806,816 12,299,866 12,530,980 12,770,695 13,113,496 8,654 8,844 8,852 8,872 8,918 8,957 8,962 8,988 9,049 9,079 9,099 9,148 9,188 9,218 9,269 9,273 9,291 9,341 9,358 9,362 9,383 9,446 9,470 9,493 9,543 9,568 9,591 9,614 9,658 9,683 9,703 9,748 9,770 9,793 9,830 PLANT 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 8 8 8 8 9 9 9 9 sba2 sba2 sba2 sba2 sba3 sba3 sba3 sba3 sba1 sba1 sba1 sba1 enc2 enc2 enc2 enc2 enc3 enc3 enc3 enc3 enc1 enc1 enc1 enc1 sba4 sba4 sba4 enc5 enc5 enc5 enc5 enc4 enc4 enc4 enc4 UNIT BLK INC AHR CUM # MW Btu/kWh MW 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 4 5 2 3 4 5 2 3 4 5 8 38 45 30 14 44 53 35 6 36 43 29 6 26 31 21 8 28 33 22 7 27 32 21 30 45 30 63 82 99 66 55 75 90 60 11,487 10,526 9,912 9,774 11,853 10,653 10,051 9,963 11,995 10,821 10,099 10,047 12,454 11,390 10,808 10,769 12,468 11,426 10,857 10,761 12,717 11,323 10,611 10,601 13,010 12,147 11,860 13,352 10,671 10,120 10,060 13,407 11,022 10,482 10,399 8 45 90 120 134 178 230 265 271 307 349 378 384 410 441 462 470 497 530 552 559 586 618 639 669 714 744 807 889 988 1,054 1,109 1,184 1,274 1,334 AHR*MW 1000Btu 86,153 394,724 446,038 293,222 162,982 466,072 527,667 348,692 68,970 386,850 433,231 287,355 74,725 296,130 337,196 223,992 93,511 314,203 358,269 236,737 85,839 302,896 340,628 226,864 390,293 546,615 355,796 841,146 875,006 1,001,886 663,934 737,388 826,635 943,351 623,912 Cumulative AHR*MW SAHR 1000Btu Btu/kWh 86,153 480,877 926,915 1,220,138 1,383,119 1,849,191 2,376,858 2,725,550 2,794,520 3,181,370 3,614,601 3,901,956 3,976,681 4,272,810 4,610,006 4,833,998 4,927,509 5,241,712 5,599,981 5,836,718 5,922,557 6,225,453 6,566,081 6,792,945 7,183,238 7,729,853 8,085,648 8,926,794 9,801,800 10,803,686 11,467,620 12,205,008 13,031,642 13,974,993 14,598,905 11,487 10,686 10,299 10,168 10,341 10,418 10,334 10,285 10,321 10,380 10,345 10,323 10,356 10,421 10,449 10,463 10,495 10,547 10,566 10,574 10,600 10,633 10,632 10,631 10,737 10,826 10,868 11,062 11,026 10,935 10,880 11,005 11,006 10,969 10,944 HR-DESC.DOC; 4/17/98; PAGE E-10 FIGURE E-1-PGE PG&E AHR ave vs IHR 18,000 HEAT RATE (Btu/kWh) 16,000 AHR ave 14,000 12,000 10,000 8,000 6,000 IHR 4,000 2,000 0 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 OUTPUT (MW) FIGURE E-1-SCE SCE AHRave vs IHR 45,000 40,000 HEAT RATE (Btu/kWh) 35,000 AHR ave 30,000 25,000 20,000 15,000 10,000 5,000 IHR 0 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 OUTPUT (MW) FIGURE E-1-SDG SDG&E AHRave vs IHR 14,000 AHR ave HEAT RATE (Btu/kWh) 12,000 10,000 8,000 IHR 6,000 4,000 2,000 0 0 200 400 600 800 1,000 1,200 1,400 OUTPUT (MW) HR-DESC.DOC; 4/17/98; PAGE E-11 FIGURE E-2-PGE PG&E SYSTEM AVERAGE HEAT RATES HEAT RATE (Btu/kWh) 12,000 11,000 10,000 SAHR ave 9,000 8,000 SIHR 7,000 6,000 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 OUTPUT (MW) FIGURE E-2-SCE SCE SYSTEM AVERAGE HEAT RATES 12,000 SAHR ave HEAT RATE (Btu/kWh) 11,000 10,000 9,000 8,000 SIHR 7,000 6,000 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 OUTPUT (MW) FIGURE E-2-SDG SDG&E SYSTEM AVERAGE HEAT RATES 12,000 HEAT RATE (Btu/kWh) SAHRave 11,000 10,000 9,000 SIHR 8,000 7,000 6,000 0 200 400 600 800 OUTPUT (MW) 1,000 1,200 1,400 HR-DESC.DOC; 4/17/98; PAGE E-12 SYSTEM COSTS The System Costs are calculated as the SIHR and the SAHRAVE values multiplied by the relevant fuel costs. SCE must be handled differently as it has two gas prices: one for the Cool Water units and another for the other SCE units. The Cool Water gas price is significantly lower than SCE’s general gas price, which gives the Cool Water units a considerable economic advantage raising them higher up in the economic dispatch order. The Table E-6 series, on the next page, gives the cost calculations for each of the three IOUs. In each case, SAHRAVE is multiplied by the total price of gas and SIHR is multiplied by the dispatch price of gas. Table E-7 gives the cost calculations for the three IOUs combined into a single system. Figures E-3 and E-4 give the graphical representations for Tables E-6 and E-7, respectively. Figure E-4 (Table E-7) can be thought of as a proxy for the entire system. The SIHR at the dispatch price of gas curve is a proxy for the MC of the regulated system, and SAHRAVE at the total price of gas curve is a proxy for the MCP of the competitive market. Figure E-5 is a curve that is the ratio of the two curves in Figure 4 (Table E-7). It is the ratio of the MCP proxy to the MC proxy for selected points: at 1000 MW intervals. The curve shows values in the range of 1.26 to 1.45 depending on the output level. These are very significant differences to be sure, but it is important to keep in mind that in any one hour the difference can be much higher than this – as high as 8.5:1 as we have already shown. The Figure E-5 curve implies that given an extended period of time where each unit is used equally and is allowed to experience all of its various levels equally, the average will be as shown. Remembering our earlier conclusion that this is unlikely since units will tend to operate more at their lower levels, we have to conclude that the 1.26 to 1.45 range is probably low. At the same time, we must recognize that the lowest and highest portions of the curve will tend to be used the least. The least that we can say here is that this ratio will undoubtedly be higher than 1.26 – that is, MCP will no doubt exceed traditional MC by something greater than 26 percent. Based on knowledge of computer simulations, not provided herein, the estimate is easily 30 percent or more. Figure E-6 is the same as Figure E-5 except that the difference due to the gas price differential has been removed. This Figure represents the difference between Average and Incremental Heat Rates, only. The range is now 1.17 to 1.36, as opposed to the 1.26 to 1.45 of Figure E-5. The effect of using Average instead of Incremental Heat Rates is in the range of something greater than 17 percent. The effect of the gas prices is therefore about 9 percent. HR-DESC.DOC; 4/17/98; PAGE E-13 TABLE E-6-PGE: PG&E SYSTEM AVERAGE COST CALCULATIONS SUMMARY IHR DATA BLK INC IHR PLANT # MW Btu/kWh CUM MW mos7 mos6 mos7 mos6 pit7 mos7 con7 con7 pit7 con6 pit6 mos6 mor4 mos6 pit5 con6 mos7 pit7 pit6 mor4 hnp4 con6 pit5 pot3 con7 pit3&4 pit1&2 hnp4 mor3 mor3 pot3 pit1&2 mor4 mor3 pit5 mor3 pot3 pit3&4 pit6 mor4 pit5 hnp4 pit1&2 mor1&2 mor1&2 pit7 pit3&4 mor1&2 hnp4 con7 con6 hnp3 pit6 mor1&2 pit1&2 pot3 hnp2 hmb1&2 hmb1&2 hnp3 hnp2 pit3&4 hmb1&2 hnp2 hnp3 hnp2 hmb1&2 hnp3 2 2 3 3 3 4 2 3 2 3 2 4 2 5 2 2 5 4 3 3 2 4 3 3 4 3 3 3 2 3 2 2 4 4 4 5 4 2 4 5 5 4 4 2 3 5 4 4 5 5 5 2 5 5 5 5 2 3 2 3 3 5 4 4 4 5 5 5 135 135 185 185 180 221 39 85 60 85 35 221 39 148 35 39 148 216 82 84 20 102 82 52 102 82 82 82 39 84 5 20 101 101 97 68 62 20 97 68 65 96 96 20 82 144 96 96 66 68 68 17 65 66 66 41 17 27 16 27 27 66 31 32 32 21 21 21 7,196 7,370 7,890 8,146 8,476 8,485 8,496 8,503 8,555 8,555 8,613 8,668 8,703 8,714 8,744 8,756 8,760 8,762 8,797 8,848 8,873 8,877 8,900 8,924 8,933 8,983 9,003 9,044 9,056 9,064 9,066 9,079 9,083 9,100 9,135 9,159 9,276 9,276 9,293 9,314 9,344 9,379 9,391 9,407 9,441 9,469 9,529 9,675 9,724 9,754 9,811 9,876 9,963 10,081 10,331 10,341 10,364 10,366 10,543 10,861 10,981 11,211 11,392 11,861 12,246 12,701 13,521 13,552 135 270 455 640 820 1041 1080 1165 1225 1310 1345 1566 1605 1753 1788 1827 1975 2191 2273 2357 2377 2479 2561 2613 2715 2797 2879 2961 3000 3084 3089 3109 3210 3311 3408 3476 3538 3558 3655 3723 3788 3884 3980 4000 4082 4226 4322 4418 4484 4552 4620 4637 4702 4768 4834 4875 4892 4919 4935 4962 4989 5055 5086 5118 5150 5171 5192 5213 Disp. 2.31 $/MWh 16.6 17.0 18.2 18.8 19.6 19.6 19.6 19.6 19.8 19.8 19.9 20.0 20.1 20.1 20.2 20.2 20.2 20.2 20.3 20.4 20.5 20.5 20.6 20.6 20.6 20.8 20.8 20.9 20.9 20.9 20.9 21.0 21.0 21.0 21.1 21.2 21.4 21.4 21.5 21.5 21.6 21.7 21.7 21.7 21.8 21.9 22.0 22.3 22.5 22.5 22.7 22.8 23.0 23.3 23.9 23.9 23.9 23.9 24.4 25.1 25.4 25.9 26.3 27.4 28.3 29.3 31.2 31.3 IHR*MW Block Cumul. 971441 994931 1459609 1506925 1525759 1875107 331331 722789 513295 727171 301456 1915722 339425 1289726 306050 341490 1296414 1892651 721354 743248 177454 905452 729832 464057 911212 736606 738207 741638 353189 761357 45329 181571 917368 919114 886132 622813 575101 185523 901420 633373 607366 900405 901583 188135 774202 1363571 914759 928783 641751 663242 667170 167886 647610 665338 681813 423968 176181 279882 168689 293239 296490 739944 353140 379557 391877 266719 283948 284586 971441 1966372 3425981 4932906 6458665 8333772 8665104 9387893 9901188 10628359 10929814 12845537 13184962 14474688 14780738 15122229 16418642 18311293 19032647 19775896 19953349 20858801 21588633 22052690 22963902 23700507 24438714 25180352 25533541 26294897 26340226 26521797 27439165 28358279 29244411 29867224 30442325 30627848 31529268 32162641 32770007 33670412 34571995 34760130 35534331 36897902 37812661 38741444 39383196 40046438 40713607 40881494 41529104 42194442 42876255 43300223 43476404 43756286 43924976 44218215 44514705 45254649 45607789 45987346 46379222 46645941 46929889 47214476 SUMMARY AHR DATA SIHR Disp. 2.31 Btu/kWh $/MWh PLANT # MW Btu/kWh CUM MW 7,196 7,283 7,530 7,708 7,876 8,006 8,023 8,058 8,083 8,113 8,126 8,203 8,215 8,257 8,267 8,277 8,313 8,358 8,373 8,390 8,394 8,414 8,430 8,440 8,458 8,474 8,489 8,504 8,511 8,526 8,527 8,531 8,548 8,565 8,581 8,592 8,604 8,608 8,626 8,639 8,651 8,669 8,686 8,690 8,705 8,731 8,749 8,769 8,783 8,798 8,812 8,816 8,832 8,850 8,870 8,882 8,887 8,895 8,901 8,911 8,923 8,952 8,967 8,985 9,006 9,021 9,039 9,057 16.6 16.8 17.4 17.8 18.2 18.5 18.5 18.6 18.7 18.7 18.8 18.9 19.0 19.1 19.1 19.1 19.2 19.3 19.3 19.4 19.4 19.4 19.5 19.5 19.5 19.6 19.6 19.6 19.7 19.7 19.7 19.7 19.7 19.8 19.8 19.8 19.9 19.9 19.9 20.0 20.0 20.0 20.1 20.1 20.1 20.2 20.2 20.3 20.3 20.3 20.4 20.4 20.4 20.4 20.5 20.5 20.5 20.5 20.6 20.6 20.6 20.7 20.7 20.8 20.8 20.8 20.9 20.9 pot3 pot3 pot3 pot3 hnp4 hnp4 hnp4 hnp4 mor4 mor4 mor4 mor4 con6 con6 con6 con6 mor3 mor3 mor3 mor3 con7 con7 con7 con7 pit5 pit5 pit5 pit5 mor1&2 mor1&2 mor1&2 mor1&2 pit6 pit6 pit6 pit6 pit3&4 pit3&4 pit3&4 pit3&4 pit7 pit7 pit7 pit7 mos7 mos7 mos7 mos7 mos6 mos6 mos6 mos6 pit1&2 pit1&2 pit1&2 pit1&2 hnp3 hnp3 hnp3 hnp3 hmb1&2 hmb1&2 hmb1&2 hmb1&2 hnp2 hnp2 hnp2 hnp2 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 5 52 62 41 20 82 96 66 39 84 101 68 39 85 102 68 39 84 101 68 39 85 102 68 35 82 97 65 20 82 96 66 35 82 97 65 20 82 96 66 60 180 216 144 135 185 221 148 135 185 221 148 20 82 96 66 17 27 32 21 16 27 31 21 17 27 32 21 10,853 10,207 9,689 9,686 11,642 10,585 9,985 9,854 11,694 10,292 9,714 9,561 11,860 10,300 9,579 9,479 12,056 10,616 9,950 9,712 12,112 10,361 9,622 9,517 12,186 10,598 9,907 9,712 12,246 11,128 10,438 10,266 12,870 10,899 10,075 9,929 12,905 11,388 10,408 10,341 13,001 11,062 9,977 9,705 13,304 9,758 9,079 8,949 13,370 9,918 9,273 9,115 13,412 11,673 10,573 10,339 16,339 12,974 12,336 12,471 16,853 13,245 12,142 12,167 16,865 13,382 12,517 12,433 5 57 119 160 180 262 358 424 463 547 648 716 755 840 942 1010 1049 1133 1234 1302 1341 1426 1528 1596 1631 1713 1810 1875 1895 1977 2073 2139 2174 2256 2353 2418 2438 2520 2616 2682 2742 2922 3138 3282 3417 3602 3823 3971 4106 4291 4512 4660 4680 4762 4858 4924 4941 4968 5000 5021 5037 5064 5095 5116 5133 5160 5192 5213 BLK INC AHR Total 2.51 $/MWh 27.2 25.6 24.3 24.3 29.2 26.6 25.1 24.7 29.4 25.8 24.4 24.0 29.8 25.9 24.0 23.8 30.3 26.6 25.0 24.4 30.4 26.0 24.2 23.9 30.6 26.6 24.9 24.4 30.7 27.9 26.2 25.8 32.3 27.4 25.3 24.9 32.4 28.6 26.1 26.0 32.6 27.8 25.0 24.4 33.4 24.5 22.8 22.5 33.6 24.9 23.3 22.9 33.7 29.3 26.5 26.0 41.0 32.6 31.0 31.3 42.3 33.2 30.5 30.5 42.3 33.6 31.4 31.2 AHR*MW Block Cumul. 54266 530763 600716 397135 232845 867947 958544 650366 456063 864561 981103 650147 462528 875488 977042 644582 470181 891770 1004983 660441 472386 880708 981468 647154 426514 869041 960937 631257 244911 912503 1002050 677577 450461 893708 977237 645407 258107 933821 999204 682485 780062 1991242 2154948 1397580 1796095 1805199 2006352 1324404 1804959 1834901 2049296 1349026 268231 957189 1014964 682388 277769 350302 394742 261888 269651 357616 376412 255499 286706 361311 400547 261103 54266 585029 1185744 1582880 1815724 2683671 3642216 4292582 4748644 5613206 6594309 7244456 7706983 8582471 9559513 10204095 10674276 11566046 12571029 13231470 13703857 14584564 15566033 16213187 16639701 17508742 18469679 19100936 19345848 20258351 21260402 21937979 22388440 23282147 24259384 24904791 25162898 26096719 27095923 27778408 28558470 30549713 32704661 34102241 35898336 37703535 39709887 41034291 42839250 44674150 46723446 48072472 48340703 49297892 50312855 50995243 51273012 51623314 52018056 52279943 52549594 52907211 53283622 53539122 53825827 54187139 54587685 54848789 SAHR Total 2.5 Btu/kWh $/MWh 10,853 10,264 9,964 9,893 10,087 10,243 10,174 10,124 10,256 10,262 10,176 10,118 10,208 10,217 10,148 10,103 10,176 10,208 10,187 10,162 10,219 10,228 10,187 10,159 10,202 10,221 10,204 10,187 10,209 10,247 10,256 10,256 10,298 10,320 10,310 10,300 10,321 10,356 10,358 10,357 10,415 10,455 10,422 10,391 10,506 10,467 10,387 10,333 10,433 10,411 10,355 10,316 10,329 10,352 10,357 10,356 10,377 10,391 10,404 10,412 10,433 10,448 10,458 10,465 10,486 10,501 10,514 10,522 27.1 25.7 24.9 24.7 25.2 25.6 25.4 25.3 25.6 25.7 25.4 25.3 25.5 25.5 25.4 25.3 25.4 25.5 25.5 25.4 25.5 25.6 25.5 25.4 25.5 25.6 25.5 25.5 25.5 25.6 25.6 25.6 25.7 25.8 25.8 25.7 25.8 25.9 25.9 25.9 26.0 26.1 26.1 26.0 26.3 26.2 26.0 25.8 26.1 26.0 25.9 25.8 25.8 25.9 25.9 25.9 25.9 26.0 26.0 26.0 26.1 26.1 26.1 26.2 26.2 26.3 26.3 26.3 HR-DESC.DOC; 4/17/98; PAGE E-14 TABLE E-6-SCE: SCE SYSTEM AVERAGE COST CALCULATIONS SUMMARY IHR DATA Disp. 2.24 DISPATCH PLANT BLK INC IHR CUM 2.43 Unit Cost * MW # MW Btu/kWh MW $/MWh Unit Cumul. cw34 cw34 cw34 cw34 cw01 cw02 cw02 cw01 cw02 cw01 cw02 cw01 hig3&4 hig3&4 ala5&6 orb1 orb2 hig3&4 els3&4 hig1&2 orb1 eti3&4 hig1&2 man1&2 ala3&4 orb2 hig1&2 hig3&4 hig1&2 hun1&2 red7&8 els3&4 ala3&4 eti3&4 ala5&6 sbr1&2 orb1 red7&8 hun1&2 man1&2 orb2 els3&4 ala3&4 eti3&4 red5&6 red7&8 hun1&2 sbr1&2 ala5&6 orb1 ala1&2 red5&6 els3&4 els1&2 red7&8 eti1&2 orb2 man1&2 ala3&4 eti3&4 2 3 4 5 2 2 3 3 4 4 5 5 2 3 2 2 2 4 2 2 3 2 3 2 2 3 4 5 5 2 2 3 3 3 3 2 4 3 3 3 4 4 4 4 2 4 4 3 4 5 2 3 5 2 5 2 5 4 5 5 40 7,013 60 7,064 140 7,334 132 8,018 13 9,320 16 9,368 16 9,540 13 9,549 16 9,742 13 9,808 14 9,960 9 10,050 14 7,899 26 8,096 160 8,155 120 8,171 175 8,192 30 8,338 120 8,395 10 8,413 130 8,429 120 8,438 20 8,438 100 8,443 120 8,443 175 8,459 18 8,471 9 8,485 10 8,495 100 8,552 100 8,557 160 8,576 160 8,639 160 8,641 180 8,656 28 8,681 120 8,742 300 8,759 100 8,768 105 8,799 175 8,818 160 8,839 160 8,933 160 8,943 70 8,992 140 9,028 100 9,050 28 9,056 180 9,074 130 9,112 70 9,127 90 9,134 190 9,198 70 9,224 160 9,248 60 9,264 175 9,268 95 9,279 160 9,305 160 9,322 40 100 240 372 385 401 417 430 446 459 473 482 496 522 682 802 977 1007 1127 1137 1267 1387 1407 1507 1627 1802 1820 1829 1839 1939 2039 2199 2359 2519 2699 2727 2847 3147 3247 3352 3527 3687 3847 4007 4077 4217 4317 4345 4525 4655 4725 4815 5005 5075 5235 5295 5470 5565 5725 5885 15.7 15.8 16.4 18.0 20.9 21.0 21.4 21.4 21.8 22.0 22.3 22.5 19.2 19.7 19.8 19.9 19.9 20.3 20.4 20.4 20.5 20.5 20.5 20.5 20.5 20.6 20.6 20.6 20.6 20.8 20.8 20.8 21.0 21.0 21.0 21.1 21.2 21.3 21.3 21.4 21.4 21.5 21.7 21.7 21.9 21.9 22.0 22.0 22.0 22.1 22.2 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 628 949 2,300 2,371 271 336 342 278 349 286 312 203 269 512 3,171 2,383 3,484 608 2,448 204 2,663 2,460 410 2,052 2,462 3,597 371 186 206 2,078 2,079 3,334 3,359 3,359 3,786 591 2,549 6,385 2,131 2,245 3,750 3,436 3,473 3,477 1,530 3,071 2,199 616 3,969 2,878 1,552 1,998 4,247 1,569 3,596 1,351 3,941 2,142 3,618 3,624 628 1,578 3,878 6,249 6,520 6,856 7,198 7,476 7,825 8,111 8,423 8,626 8,894 9,406 12,577 14,959 18,443 19,051 21,499 21,703 24,366 26,826 27,236 29,288 31,750 35,347 35,718 35,903 36,110 38,188 40,267 43,602 46,960 50,320 54,106 54,697 57,246 63,631 65,762 68,007 71,757 75,193 78,666 82,143 83,673 86,744 88,944 89,560 93,529 96,407 97,960 99,957 104,204 105,773 109,368 110,719 114,660 116,803 120,420 124,044 Disp. 2.24 =Cool Water 2.43 PLANT $/MWh 15.7 15.8 16.2 16.8 16.9 17.1 17.3 17.4 17.5 17.7 17.8 17.9 17.9 18.0 18.4 18.7 18.9 18.9 19.1 19.1 19.2 19.3 19.4 19.4 19.5 19.6 19.6 19.6 19.6 19.7 19.7 19.8 19.9 20.0 20.0 20.1 20.1 20.2 20.3 20.3 20.3 20.4 20.4 20.5 20.5 20.6 20.6 20.6 20.7 20.7 20.7 20.8 20.8 20.8 20.9 20.9 21.0 21.0 21.0 21.1 O O O O 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 cw01 cw01 cw01 cw01 cw02 cw02 cw02 cw02 orb1 orb1 orb1 orb1 ala5&6 ala5&6 ala5&6 ala5&6 red7&8 red7&8 red7&8 red7&8 lbc8&9 lbc8&9 lbc8&9 lbc8&9 cw34 cw34 cw34 cw34 man1&2 man1&2 man1&2 man1&2 hun1&2 hun1&2 hun1&2 hun1&2 orb2 orb2 orb2 orb2 eti3&4 eti3&4 eti3&4 eti3&4 els3&4 els3&4 els3&4 els3&4 ala3&4 ala3&4 ala3&4 ala3&4 eti1&2 eti1&2 eti1&2 eti1&2 els1&2 els1&2 els1&2 els1&2 BLK INC # MW 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 13 13 13 9 16 16 16 14 120 130 120 130 160 180 180 180 100 300 140 160 110 120 110 150 40 60 140 132 100 105 95 90 100 100 100 90 175 175 175 175 120 160 160 160 120 160 160 190 120 160 160 160 60 60 60 64 70 90 90 80 SUMMARY AHR DATA Total 2.34 TOTAL AHR CUM 2.61 Unit Cost * MW Btu/kWh MW $/MWh Unit Cumul. 11,259 10,587 10,343 10,264 11,401 10,650 10,370 10,262 10,354 9,753 9,486 9,382 10,532 9,810 9,560 9,491 10,808 9,995 9,633 9,548 11,404 10,506 10,230 10,107 13,307 11,822 10,361 9,506 12,114 10,087 9,706 9,664 12,570 10,331 9,822 9,666 13,188 10,168 9,595 9,442 15,141 11,005 10,078 9,798 15,882 11,251 10,188 9,825 16,210 11,407 10,311 9,960 16,432 12,244 11,371 11,106 17,208 12,131 11,038 10,678 13 26 39 48 64 80 96 110 230 360 480 610 770 950 1,130 1,310 1,410 1,710 1,850 2,010 2,120 2,240 2,350 2,500 2,540 2,600 2,740 2,872 2,972 3,077 3,172 3,262 3,362 3,462 3,562 3,652 3,827 4,002 4,177 4,352 4,472 4,632 4,792 4,952 5,072 5,232 5,392 5,582 5,702 5,862 6,022 6,182 6,242 6,302 6,362 6,426 6,496 6,586 6,676 6,756 26.3 24.8 24.2 24.0 26.7 24.9 24.3 24.0 27.0 25.5 24.8 24.5 27.5 25.6 25.0 24.8 28.2 26.1 25.1 24.9 29.8 27.4 26.7 26.4 31.1 27.7 24.2 22.2 31.6 26.3 25.3 25.2 32.8 27.0 25.6 25.2 34.4 26.5 25.0 24.6 39.5 28.7 26.3 25.6 41.5 29.4 26.6 25.6 42.3 29.8 26.9 26.0 42.9 32.0 29.7 29.0 44.9 31.7 28.8 27.9 343 322 315 216 427 399 388 336 3,243 3,309 2,971 3,183 4,398 4,609 4,491 4,459 2,821 7,826 3,520 3,987 3,274 3,291 2,937 3,957 1,246 1,660 3,394 2,936 3,162 2,764 2,407 2,270 3,281 2,696 2,564 2,271 6,023 4,644 4,383 4,313 4,742 4,596 4,209 4,092 4,974 4,698 4,254 4,872 5,077 4,764 4,306 4,159 2,573 1,917 1,781 1,855 3,144 2,850 2,593 2,230 343 665 979 1,195 1,622 2,021 2,409 2,745 5,988 9,297 12,268 15,452 19,850 24,459 28,950 33,409 36,230 44,056 47,575 51,563 54,837 58,127 61,064 65,021 66,267 67,927 71,321 74,257 77,419 80,183 82,590 84,860 88,140 90,837 93,400 95,671 101,694 106,338 110,721 115,033 119,776 124,371 128,580 132,671 137,646 142,344 146,598 151,470 156,547 161,311 165,617 169,776 172,349 174,267 176,047 177,903 181,046 183,896 186,489 188,718 Total 2.34 2.61 $/MWh 26.3 25.6 25.1 24.9 25.3 25.3 25.1 25.0 26.0 25.8 25.6 25.3 25.8 25.7 25.6 25.5 25.7 25.8 25.7 25.7 25.9 25.9 26.0 26.0 26.1 26.1 26.0 25.9 26.0 26.1 26.0 26.0 26.2 26.2 26.2 26.2 26.6 26.6 26.5 26.4 26.8 26.9 26.8 26.8 27.1 27.2 27.2 27.1 27.5 27.5 27.5 27.5 27.6 27.7 27.7 27.7 27.9 27.9 27.9 27.9 - Continued on Next Page - HR-DESC.DOC ; 4/17/98: PAGE E-15 TABLE E-6-SCE: SCE SYSTEM AVERAGE COST CALCULATIONS - CONTINUED SUMMARY IHR DATA Disp. 2.24 DISPATCH PLANT BLK INC IHR CUM 2.43 Unit Cost * MW # MW Btu/kWh MW $/MWh Unit Cumul. red5&6 ala1&2 ala5&6 hun1&2 sbr1&2 els1&2 red5&6 lbc8&9 eti1&2 els1&2 lbc8&9 ala1&2 sbr1&2 lbc8&9 lbc8&9 man1&2 els1&2 ala1&2 eti1&2 eti1&2 4 3 5 5 4 3 5 2 3 4 3 4 5 4 5 5 5 5 4 5 90 9,324 90 9,341 180 9,375 90 9,379 28 9,384 90 9,394 80 9,535 110 9,608 60 9,627 90 9,631 120 9,647 90 9,663 28 9,667 110 9,717 150 9,836 90 9,842 80 9,898 80 10,047 60 10,104 64 10,719 5975 6065 6245 6335 6363 6453 6533 6643 6703 6793 6913 7003 7031 7141 7291 7381 7461 7541 7601 7665 22.7 22.7 22.8 22.8 22.8 22.8 23.2 23.3 23.4 23.4 23.4 23.5 23.5 23.6 23.9 23.9 24.1 24.4 24.6 26.0 2,039 2,043 4,101 2,051 639 2,055 1,854 2,568 1,404 2,106 2,813 2,113 658 2,597 3,585 2,152 1,924 1,953 1,473 1,667 Disp. 2.24 =Cool Water 2.43 PLANT $/MWh 126,084 128,127 132,227 134,278 134,917 136,971 138,825 141,393 142,797 144,903 147,716 149,829 150,487 153,085 156,670 158,822 160,746 162,699 164,172 165,839 21.1 21.1 21.2 21.2 21.2 21.2 21.2 21.3 21.3 21.3 21.4 21.4 21.4 21.4 21.5 21.5 21.5 21.6 21.6 21.6 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 BLK INC # MW ala1&2 ala1&2 ala1&2 ala1&2 red5&6 red5&6 red5&6 red5&6 sbr1&2 sbr1&2 sbr1&2 sbr1&2 hig1&2 hig1&2 hig1&2 hig1&2 hig3&4 hig3&4 hig3&4 hig3&4 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 70 90 90 80 70 90 90 80 28 28 28 28 10 20 18 10 14 26 30 9 SUMMARY AHR DATA Total 2.34 TOTAL AHR CUM 2.61 Unit Cost * MW Btu/kWh MW $/MWh Unit Cumul. 17,605 12,222 11,084 10,734 18,702 12,511 11,144 10,661 18,968 13,553 12,072 11,426 34,940 20,641 15,481 13,820 44,598 24,520 17,262 15,100 6,826 6,916 7,006 7,086 7,156 7,246 7,336 7,416 7,444 7,472 7,500 7,528 7,538 7,558 7,576 7,586 7,600 7,626 7,656 7,665 45.9 31.9 28.9 28.0 48.8 32.7 29.1 27.8 49.5 35.4 31.5 29.8 91.2 53.9 40.4 36.1 116.4 64.0 45.1 39.4 3,216 2,871 2,604 2,241 3,417 2,939 2,618 2,226 1,386 990 882 835 912 1,077 727 361 1,630 1,664 1,352 355 Total 2.34 2.61 $/MWh 191,935 194,806 197,410 199,651 203,068 206,006 208,624 210,850 212,236 213,227 214,109 214,944 215,856 216,933 217,661 218,021 219,651 221,315 222,667 223,021 28.1 28.2 28.2 28.2 28.4 28.4 28.4 28.4 28.5 28.5 28.5 28.6 28.6 28.7 28.7 28.7 28.9 29.0 29.1 29.1 SHAR Total 2.91 TABLE E-6-SDG: SDG&E SYSTEM AVERAGE COST CALCULATIONS SUMMARY IHR DATA BLK INC CUM PLANT # MW MW IHR Disp. 2.34 Btu/kWh $/MWh Block Cumul. sba1 sba1 sba3 enc5 sba3 sba2 enc5 sba2 sba1 enc3 enc4 sba3 enc5 enc4 enc3 enc1 enc2 sba2 enc1 enc2 enc4 sba3 enc5 sba1 enc1 enc2 sba4 sba4 enc3 sba2 enc4 sba4 enc2 enc1 enc3 sba4 8,560 8,764 8,937 9,016 9,082 9,127 9,190 9,287 9,368 9,374 9,472 9,487 9,605 9,617 9,635 9,736 9,763 9,763 9,815 9,889 9,966 10,027 10,163 10,169 10,231 10,258 10,268 10,278 10,375 10,407 10,437 10,741 10,760 10,909 11,377 11,797 20.0 20.5 20.9 21.1 21.3 21.4 21.5 21.7 21.9 21.9 22.2 22.2 22.5 22.5 22.5 22.8 22.8 22.8 23.0 23.1 23.3 23.5 23.8 23.8 23.9 24.0 24.0 24.0 24.3 24.4 24.4 25.1 25.2 25.5 26.6 27.6 59923 324271 116177 531917 390525 73019 725985 343637 412176 74995 502013 483825 902838 711654 260155 68155 58577 439331 265009 257107 867054 340914 640257 294911 327393 318009 369663 10278 342383 312208 615781 483358 225956 229081 250290 353905 59923 384194 500371 1032288 1422813 1495832 2221817 2565454 2977630 3052625 3554638 4038464 4941301 5652955 5913110 5981265 6039842 6479174 6744183 7001290 7868344 8209258 8849515 9144426 9471819 9789828 10159491 10169769 10512151 10824359 11440141 11923498 12149455 12378536 12628826 12982730 2 3 2 2 3 2 3 3 4 2 2 4 4 3 3 2 2 4 3 3 4 5 5 5 4 4 3 2 4 5 5 4 5 5 5 5 7 37 13 59 43 8 79 37 44 8 53 51 94 74 27 7 6 45 27 26 87 34 63 29 32 31 36 1 33 30 59 45 21 21 22 30 7 44 57 116 159 167 246 283 327 335 388 439 533 607 634 641 647 692 719 745 832 866 929 958 990 1021 1057 1058 1091 1121 1180 1225 1246 1267 1289 1319 IHR*MW SUMMARY AHR DATA SHIR Total 2.91 Btu/kWh $/MWh 8,560 8,732 8,778 8,899 8,949 8,957 9,032 9,065 9,106 9,112 9,161 9,199 9,271 9,313 9,327 9,331 9,335 9,363 9,380 9,398 9,457 9,480 9,526 9,545 9,567 9,588 9,612 9,612 9,635 9,656 9,695 9,733 9,751 9,770 9,797 9,843 24.9 25.4 25.5 25.9 26.0 26.1 26.3 26.4 26.5 26.5 26.7 26.8 27.0 27.1 27.1 27.2 27.2 27.2 27.3 27.3 27.5 27.6 27.7 27.8 27.8 27.9 28.0 28.0 28.0 28.1 28.2 28.3 28.4 28.4 28.5 28.6 BLK INC CUM PLANT # MW MW AHR Total 2.91 Btu/kWh $/MWh Block Cumul. Btu/kWh $/MWh sba1 sba1 sba1 sba1 sba3 sba3 sba3 sba3 sba2 sba2 sba2 sba2 enc1 enc1 enc1 enc1 enc3 enc3 enc3 enc3 enc4 enc4 enc4 enc4 enc5 enc5 enc5 enc5 enc2 enc2 enc2 enc2 sba4 sba4 sba4 sba4 11,778 10,613 9,922 9,857 11,880 10,680 10,062 9,961 12,099 11,007 10,352 10,259 12,632 11,483 10,831 10,737 13,155 11,675 10,933 10,891 13,472 11,055 10,494 10,398 13,485 10,741 10,144 10,055 14,131 12,451 11,406 11,135 14,726 13,382 12,128 11,847 34.3 30.9 28.9 28.7 34.6 31.1 29.3 29.0 35.2 32.0 30.1 29.9 36.8 33.4 31.5 31.2 38.3 34.0 31.8 31.7 39.2 32.2 30.5 30.3 39.2 31.3 29.5 29.3 41.1 36.2 33.2 32.4 42.9 38.9 35.3 34.5 82446 392666 436553 285863 154440 459244 513141 338664 96795 407264 465856 307762 88422 310038 346586 225480 105243 315230 360797 239600 714007 818074 912936 613474 795593 848535 953543 633474 84783 323726 353600 233841 14726 481746 545765 355406 82446 475112 911665 1197528 1351968 1811212 2324353 2663017 2759812 3167077 3632933 3940695 4029117 4339155 4685741 4911221 5016464 5331694 5692491 5932091 6646098 7464172 8377108 8990582 9786176 10634711 11588254 12221728 12306511 12630237 12983837 13217677 13232404 13714149 14259914 14615320 11,778 10,798 10,360 10,235 10,400 10,469 10,377 10,322 10,375 10,452 10,439 10,425 10,465 10,532 10,553 10,562 10,606 10,663 10,680 10,688 10,931 10,945 10,894 10,858 11,033 11,009 10,932 10,883 10,900 10,935 10,948 10,951 10,954 11,024 11,063 11,081 34.3 31.4 30.1 29.8 30.3 30.5 30.2 30.0 30.2 30.4 30.4 30.3 30.5 30.6 30.7 30.7 30.9 31.0 31.1 31.1 31.8 31.8 31.7 31.6 32.1 32.0 31.8 31.7 31.7 31.8 31.9 31.9 31.9 32.1 32.2 32.2 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 7 37 44 29 13 43 51 34 8 37 45 30 7 27 32 21 8 27 33 22 53 74 87 59 59 79 94 63 6 26 31 21 1 36 45 30 7 44 88 117 130 173 224 258 266 303 348 378 385 412 444 465 473 500 533 555 608 682 769 828 887 966 1060 1123 1129 1155 1186 1207 1208 1244 1289 1319 AHR*MW HR-DESC.DOC ; 4/17/98: PAGE E-16 FIGURE E-3-PGE PG&E MCP & MC PROXIES 35 MCP = AHR @ TOTAL GAS PRICE COST ($/MWh) 30 25 20 15 MC = IHR @ DISPATCH GAS PRICE 10 5 0 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 OUTPUT (MW) FIGURE E-3-SCE SCE MCP & MC PROXIES 35 MCP = AHR @ TOTAL GAS PRICE COST ($/MWh) 30 25 20 MC = IHR @ DISPATCH GAS PRICE 15 10 5 0 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 OUTPUT (MW) FIGURE E-3-SDG SDG&E MCP & MC PROXIES 35 COST ($/MWh) 30 MCP = AHR @ TOTAL GAS PRICE 25 20 MC = IHR @ DISPATCH GAS PRICE 15 10 5 0 0 200 400 600 800 1,000 1,200 1,400 OUTPUT (MW) HR-DESC.DOC ; 4/17/98: PAGE E-17 TABLE E-7: ALL IOUs SYSTEM AVERAGE COST CALCULATIONS SUMMARY IHR DATA (Dispatch Gas Price) BLK INC IHR PLANT # MW Btu/kWh cw34 cw34 cw34 mos7 cw34 mos6 cw01 cw02 cw02 cw01 mos7 cw02 cw01 mos6 cw02 cw01 pit7 mos7 con7 con7 pit7 con6 mos6 mor4 mos6 pit5 con6 mos7 pit7 pit6 mor4 pit6 hnp4 con6 pit5 pot3 con7 pit3&4 pit1&2 hnp4 mor3 mor3 pot3 pit1&2 mor4 mor3 pit6 pit5 mor3 pot3 pit3&4 mor4 pit5 sba1 hnp4 pit1&2 mor1&2 mor1&2 pit7 pit3&4 pit6 2 3 4 2 5 2 2 2 3 3 3 4 4 3 5 5 3 4 2 3 2 3 4 2 5 2 2 5 4 2 3 3 2 4 3 3 4 3 3 3 2 3 2 2 4 4 4 4 5 4 2 5 5 2 4 4 2 3 5 4 5 40 7,013 60 7,064 140 7,334 135 7,196 132 8,018 135 7,370 13 9,320 16 9,368 16 9,540 13 9,549 185 7,890 16 9,742 13 9,808 185 8,146 14 9,960 9 10,050 180 8,476 221 8,485 39 8,496 85 8,503 60 8,555 85 8,555 221 8,668 39 8,703 148 8,714 35 8,744 39 8,756 148 8,760 216 8,762 35 8,821 84 8,848 82 8,868 20 8,873 102 8,877 82 8,900 52 8,924 102 8,933 82 8,983 82 9,003 82 9,044 39 9,056 84 9,064 5 9,066 20 9,079 101 9,083 101 9,100 97 9,135 97 9,135 68 9,159 62 9,276 20 9,276 68 9,314 65 9,344 7 8,560 96 9,379 96 9,391 20 9,407 82 9,441 144 9,469 96 9,529 65 9,579 SUMMARY AHR DATA (Total Gas Price) Unit Unit*MW System CUM Cost Unit Cumul. Cost MW $/MWh $/hr $/hr $/MWh 40 100 240 375 507 642 655 671 687 700 885 901 914 1099 1113 1122 1302 1523 1562 1647 1707 1792 2013 2052 2200 2235 2274 2422 2638 2673 2757 2839 2859 2961 3043 3095 3197 3279 3361 3443 3482 3566 3571 3591 3692 3793 3890 3987 4055 4117 4137 4205 4270 4277 4373 4469 4489 4571 4715 4811 4876 15.7 15.8 16.4 16.6 18.0 17.0 20.9 21.0 21.4 21.4 18.2 21.8 22.0 18.8 22.3 22.5 19.6 19.6 19.6 19.6 19.8 19.8 20.0 20.1 20.1 20.2 20.2 20.2 20.2 20.4 20.4 20.5 20.5 20.5 20.6 20.6 20.6 20.8 20.8 20.9 20.9 20.9 20.9 21.0 21.0 21.0 21.1 21.1 21.2 21.4 21.4 21.5 21.6 20.0 21.7 21.7 21.7 21.8 21.9 22.0 22.1 628 949 2300 2244 2371 2298 271 336 342 278 3372 349 286 3481 312 203 3525 4331 765 1670 1186 1680 4425 784 2979 707 789 2995 4372 713 1717 1680 410 2092 1686 1072 2105 1702 1705 1713 816 1759 105 419 2119 2123 2047 2047 1439 1328 429 1463 1403 140 2080 2083 435 1788 3150 2113 1438 628 1578 3878 6122 8493 10791 11062 11398 11740 12018 15390 15739 16025 19506 19818 20021 23545 27877 28642 30312 31497 33177 37602 38386 41366 42073 42862 45856 50228 50941 52658 54338 54748 56840 58526 59598 61702 63404 65109 66822 67638 69397 69502 69921 72040 74163 76210 78257 79696 81025 81453 82916 84319 84459 86539 88622 89057 90845 93995 96108 97546 15.7 15.8 16.2 16.3 16.8 16.8 16.9 17.0 17.1 17.2 17.4 17.5 17.5 17.7 17.8 17.8 18.1 18.3 18.3 18.4 18.5 18.5 18.7 18.7 18.8 18.8 18.8 18.9 19.0 19.1 19.1 19.1 19.1 19.2 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.7 19.7 19.7 19.7 19.7 19.7 19.8 19.8 19.8 19.9 19.9 20.0 20.0 BLK INC 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 AHR PLANT # MW Btu/kWh cw01 cw01 cw01 cw01 cw02 cw02 cw02 cw02 orb1 orb1 orb1 orb1 pot3 pot3 pot3 pot3 ala5&6 ala5&6 ala5&6 ala5&6 red7&8 red7&8 red7&8 red7&8 hnp4 hnp4 hnp4 hnp4 mor4 mor4 mor4 mor4 pit6 pit6 pit6 pit6 hun3 hun3 hun3 hun3 con6 con6 con6 con6 hun4 hun4 hun4 hun4 mor3 mor3 mor3 mor3 con7 con7 con7 con7 pit5 pit5 pit5 pit5 mor1&2 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 13 13 13 9 16 16 16 14 120 130 120 130 5 52 62 41 160 180 180 180 100 300 140 160 20 82 96 66 39 84 101 68 35 82 97 65 30 30 30 35 39 85 102 68 30 30 30 45 39 84 101 68 39 85 102 68 35 82 97 65 20 11,259 10,587 10,343 10,264 11,401 10,650 10,370 10,262 10,354 9,753 9,486 9,382 10,853 10,207 9,689 9,686 10,532 9,810 9,560 9,491 10,808 9,995 9,633 9,548 11,642 10,585 9,985 9,854 11,694 10,292 9,714 9,561 11,709 10,352 9,751 9,625 11,342 10,862 10,602 10,474 11,860 10,300 9,579 9,479 11,407 10,926 10,661 10,474 12,056 10,616 9,950 9,712 12,112 10,361 9,622 9,517 12,186 10,598 9,907 9,712 12,246 Unit Unit*MW System CUM Total Unit Cumul. Total MW $/MWh $/hr $/hr $/MWh 13 26 39 48 64 80 96 110 230 360 480 610 615 667 729 770 930 1110 1290 1470 1570 1870 2010 2170 2190 2272 2368 2434 2473 2557 2658 2726 2761 2843 2940 3005 3035 3065 3095 3130 3169 3254 3356 3424 3454 3484 3514 3559 3598 3682 3783 3851 3890 3975 4077 4145 4180 4262 4359 4424 4444 26.3 24.8 24.2 24.0 26.7 24.9 24.3 24.0 27.0 25.5 24.8 24.5 27.2 25.6 24.3 24.3 27.5 25.6 25.0 24.8 28.2 26.1 25.1 24.9 29.2 26.6 25.1 24.7 29.4 25.8 24.4 24.0 29.4 26.0 24.5 24.2 29.6 28.4 27.7 27.3 29.8 25.9 24.0 23.8 29.8 28.5 27.8 27.3 30.3 26.6 25.0 24.4 30.4 26.0 24.2 23.9 30.6 26.6 24.9 24.4 30.7 343 322 315 216 427 399 388 336 3243 3309 2971 3183 136 1332 1508 997 4398 4609 4491 4459 2821 7826 3520 3987 584 2179 2406 1632 1145 2170 2463 1632 1029 2131 2374 1570 888 851 830 957 1161 2197 2452 1618 893 855 835 1230 1180 2238 2523 1658 1186 2211 2463 1624 1071 2181 2412 1584 615 343 665 979 1195 1622 2021 2409 2745 5988 9297 12268 15452 15588 16920 18428 19425 23823 28432 32923 37382 40203 48029 51548 55536 56120 58299 60704 62337 63482 65652 68114 69746 70775 72905 75280 76850 77738 78588 79419 80375 81536 83734 86186 87804 88697 89553 90387 91618 92798 95036 97559 99216 100402 102613 105076 106700 107771 109952 112364 113949 114563 26.3 25.6 25.1 24.9 25.3 25.3 25.1 25.0 26.0 25.8 25.6 25.3 25.3 25.4 25.3 25.2 25.6 25.6 25.5 25.4 25.6 25.7 25.6 25.6 25.6 25.7 25.6 25.6 25.7 25.7 25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.7 25.7 25.7 25.7 25.7 25.6 25.7 25.7 25.7 25.7 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.7 25.8 25.8 25.8 25.8 25.8 - Continued on Next Page - HR-DESC.DOC ; 4/17/98: PAGE E-18 TABLE E-7: ALL IOUs SYSTEM AVERAGE COST CALCULATIONS - CONTINUED SUMMARY IHR DATA (Dispatch Gas Price) BLK INC IHR PLANT # MW Btu/kWh sba1 mor1&2 hnp4 con7 sba3 con6 enc5 hnp3 hig3&4 sba3 sba2 enc5 mor1&2 sba2 hig3&4 sba1 enc3 pit1&2 pot3 ala5&6 enc4 orb2 hnp2 hmb1&2 orb1 sba3 enc5 enc4 enc3 hig3&4 hmb1&2 enc1 enc2 sba2 hig1&2 orb1 eti3&4 hig1&2 man1&2 ala3&4 enc1 orb2 hig1&2 hig3&4 hig1&2 enc2 hnp3 hun1&2 red7&8 enc4 sba3 ala3&4 hnp2 eti3&4 ala5&6 sbr1&2 els1-4 orb1 enc5 sba1 red7&8 3 4 5 5 2 5 2 2 2 3 2 3 5 3 3 4 2 5 5 2 2 2 2 3 2 4 4 3 3 4 2 2 2 4 2 3 2 3 2 2 3 3 4 5 5 3 3 2 2 4 5 3 3 3 3 2 2 4 5 5 3 37 96 66 68 13 68 59 17 14 43 8 79 66 37 26 44 8 66 41 160 53 175 17 27 120 51 94 74 27 30 16 7 6 45 10 130 120 20 100 120 27 175 18 9 10 26 27 100 100 87 34 160 27 160 180 28 190 120 63 29 300 8,764 9,675 9,724 9,754 8,937 9,811 9,016 9,876 7,899 9,082 9,127 9,190 10,081 9,287 8,096 9,368 9,374 10,331 10,341 8,155 9,472 8,192 10,364 10,366 8,171 9,487 9,605 9,617 9,635 8,338 10,543 9,736 9,763 9,763 8,413 8,429 8,438 8,438 8,443 8,443 9,815 8,459 8,471 8,485 8,495 9,889 10,861 8,552 8,557 9,966 10,027 8,639 10,981 8,641 8,656 8,681 8,715 8,742 10,163 10,169 8,759 SUMMARY AHR DATA (Total Gas Price) Unit Unit*MW System CUM Cost Unit Cumul. Cost MW $/MWh $/hr $/hr $/MWh 4913 5009 5075 5143 5156 5224 5283 5300 5314 5357 5365 5444 5510 5547 5573 5617 5625 5691 5732 5892 5945 6120 6137 6164 6284 6335 6429 6503 6530 6560 6576 6583 6589 6634 6644 6774 6894 6914 7014 7134 7161 7336 7354 7363 7373 7399 7426 7526 7626 7713 7747 7907 7934 8094 8274 8302 8492 8612 8675 8704 9004 20.5 22.3 22.5 22.5 20.9 22.7 21.1 22.8 19.2 21.3 21.4 21.5 23.3 21.7 19.7 21.9 21.9 23.9 23.9 19.8 22.2 19.9 23.9 23.9 19.9 22.2 22.5 22.5 22.5 20.3 24.4 22.8 22.8 22.8 20.4 20.5 20.5 20.5 20.5 20.5 23.0 20.6 20.6 20.6 20.6 23.1 25.1 20.8 20.8 23.3 23.5 21.0 25.4 21.0 21.0 21.1 21.2 21.2 23.8 23.8 21.3 759 2145 1482 1532 272 1541 1245 388 269 914 171 1699 1537 804 512 964 175 1575 979 3171 1175 3484 407 647 2383 1132 2113 1665 609 608 390 159 137 1028 204 2663 2460 410 2052 2462 620 3597 371 186 206 602 677 2078 2079 2029 798 3359 685 3359 3786 591 4024 2549 1498 690 6385 98305 100450 101933 103465 103737 105278 106523 106911 107179 108093 108264 109963 111500 112304 112815 113780 113955 115530 116510 119680 120855 124339 124746 125392 127775 128907 131020 132685 133294 133902 134291 134451 134588 135616 135820 138483 140943 141353 143405 145867 146487 150084 150455 150640 150847 151448 152126 154204 156284 158312 159110 162469 163154 166513 170299 170890 174914 177463 178961 179651 186036 20.0 20.1 20.1 20.1 20.1 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.7 BLK INC 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21 21 21 22 22 22 22 23 23 23 23 24 24 24 24 25 25 25 25 26 26 26 26 27 27 27 27 28 28 28 28 29 29 29 29 30 30 30 30 31 31 AHR PLANT # MW Btu/kWh mor1&2 mor1&2 mor1&2 cw34 cw34 cw34 cw34 man1&2 man1&2 man1&2 man1&2 pit3&4 pit3&4 pit3&4 pit3&4 pit7 pit7 pit7 pit7 hun1&2 hun1&2 hun1&2 hun1&2 mos7 mos7 mos7 mos7 mos6 mos6 mos6 mos6 pit1&2 pit1&2 pit1&2 pit1&2 sba1 sba1 sba1 sba1 orb2 orb2 orb2 orb2 sba3 sba3 sba3 sba3 sba2 sba2 sba2 sba2 enc1 enc1 enc1 enc1 enc3 enc3 enc3 enc3 enc4 enc4 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 82 96 66 40 60 140 132 100 105 95 90 20 82 96 66 60 180 216 144 100 100 100 90 135 185 221 148 135 185 221 148 20 82 96 66 7 37 44 29 175 175 175 175 13 43 51 34 8 37 45 30 7 27 32 21 8 27 33 22 53 74 11,128 10,438 10,266 13,307 11,822 10,361 9,506 12,114 10,087 9,706 9,664 12,905 11,388 10,408 10,341 13,001 11,062 9,977 9,705 12,570 10,331 9,822 9,666 13,304 9,758 9,079 8,949 13,370 9,918 9,273 9,115 13,412 11,673 10,573 10,339 11,778 10,613 9,922 9,857 13,188 10,168 9,595 9,442 11,880 10,680 10,062 9,961 12,099 11,007 10,352 10,259 12,632 11,483 10,831 10,737 13,155 11,675 10,933 10,891 13,472 11,055 Unit*MW System CUM Total Unit Cumul. Total MW $/MWh $/hr $/hr $/MWh 4526 4622 4688 4728 4788 4928 5060 5160 5265 5360 5450 5470 5552 5648 5714 5774 5954 6170 6314 6414 6514 6614 6704 6839 7024 7245 7393 7528 7713 7934 8082 8102 8184 8280 8346 8353 8390 8434 8463 8638 8813 8988 9163 9176 9219 9270 9304 9312 9349 9394 9424 9431 9458 9490 9511 9519 9546 9579 9601 9654 9728 27.9 26.2 25.8 31.1 27.7 24.2 22.2 31.6 26.3 25.3 25.2 32.4 28.6 26.1 26.0 32.6 27.8 25.0 24.4 32.8 27.0 25.6 25.2 33.4 24.5 22.8 22.5 33.6 24.9 23.3 22.9 33.7 29.3 26.5 26.0 34.3 30.9 28.9 28.7 34.4 26.5 25.0 24.6 34.6 31.1 29.3 29.0 35.2 32.0 30.1 29.9 36.8 33.4 31.5 31.2 38.3 34.0 31.8 31.7 39.2 32.2 2290 2515 1701 1246 1660 3394 2936 3162 2764 2407 2270 648 2344 2508 1713 1958 4998 5409 3508 3281 2696 2564 2271 4508 4531 5036 3324 4530 4606 5144 3386 673 2403 2548 1713 240 1143 1270 832 6023 4644 4383 4313 449 1336 1493 986 282 1185 1356 896 257 902 1009 656 306 917 1050 697 2078 2381 116854 119369 121070 122315 123975 127369 130305 133467 136231 138638 140908 141556 143900 146408 148121 150079 155077 160486 163994 167274 169971 172534 174805 179313 183844 188880 192204 196735 201340 206484 209870 210543 212946 215493 217206 217446 218589 219859 220691 226714 231358 235741 240054 240503 241839 243333 244318 244600 245785 247141 248036 248293 249196 250204 250860 251167 252084 253134 253831 255909 258289 25.8 25.8 25.8 25.9 25.9 25.8 25.8 25.9 25.9 25.9 25.9 25.9 25.9 25.9 25.9 26.0 26.0 26.0 26.0 26.1 26.1 26.1 26.1 26.2 26.2 26.1 26.0 26.1 26.1 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.1 26.1 26.1 26.2 26.3 26.2 26.2 26.2 26.2 26.2 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.4 26.4 26.4 26.4 26.4 26.4 26.5 26.6 - Continued on Next Page - HR-DESC.DOC ; 4/17/98: PAGE E-19 TABLE E-7: ALL IOUs SYSTEM AVERAGE COST CALCULATIONS - CONTINUED SUMMARY IHR DATA (Dispatch Gas Price) SUMMARY AHR DATA (Total Gas Price) PLANT # MW Btu/kWh Unit Unit*MW System CUM Cost Unit Cumul. Cost MW $/MWh $/hr $/hr $/MWh hun1&2 man1&2 enc1 orb2 pit3&4 enc2 sba4 sba4 enc3 ala3&4 eti3&4 sba2 els1-4 hmb1&2 enc4 red5&6 red7&8 hun1&2 sbr1&2 ala5&6 orb1 hun3 ala1&2 red5&6 hun4 sba4 red7&8 enc2 els1-4 eti1&2 orb2 man1&2 ala3&4 hun3 eti3&4 red5&6 hnp2 ala1&2 ala5&6 hun1&2 sbr1&2 enc1 hun4 red5&6 hun4 els1-4 hun3 eti1&2 hnp3 ala1&2 sbr1&2 hun4 enc3 man1&2 hnp2 ala1&2 hun3 eti1&2 sba4 hmb1&2 hnp3 eti1&2 3 3 4 4 5 4 3 2 4 4 4 5 3 4 5 2 4 4 3 4 5 2 2 3 2 4 5 5 4 2 5 4 5 3 5 4 4 3 5 5 4 5 3 5 4 5 4 3 4 4 5 5 5 5 5 5 5 4 5 5 5 5 100 105 32 175 66 31 36 1 33 160 160 30 250 31 59 70 140 100 28 180 130 30 70 90 30 45 160 21 250 60 175 95 160 30 160 90 32 90 180 90 28 21 30 80 30 270 30 60 32 90 28 45 22 90 21 80 35 60 30 21 21 64 9104 9209 9241 9416 9482 9513 9549 9550 9583 9743 9903 9933 10183 10214 10273 10343 10483 10583 10611 10791 10921 10951 11021 11111 11141 11186 11346 11367 11617 11677 11852 11947 12107 12137 12297 12387 12419 12509 12689 12779 12807 12828 12858 12938 12968 13238 13268 13328 13360 13450 13478 13523 13545 13635 13656 13736 13771 13831 13861 13882 13903 13967 BLK INC IHR 8,768 8,799 10,231 8,818 11,211 10,258 10,268 10,278 10,375 8,933 8,943 10,407 8,963 11,392 10,437 8,992 9,028 9,050 9,056 9,074 9,112 9,126 9,127 9,134 9,137 10,741 9,248 10,760 9,259 9,264 9,268 9,279 9,305 9,309 9,322 9,324 11,861 9,341 9,375 9,379 9,384 10,909 9,387 9,535 9,568 9,583 9,606 9,627 12,246 9,663 9,667 9,695 11,377 9,842 12,701 10,047 10,057 10,104 11,797 13,521 13,552 10,719 21.3 21.4 23.9 21.4 25.9 24.0 24.0 24.0 24.3 21.7 21.7 24.4 21.8 26.3 24.4 21.9 21.9 22.0 22.0 22.0 22.1 22.2 22.2 22.2 22.2 25.1 22.5 25.2 22.5 22.5 22.5 22.5 22.6 22.6 22.7 22.7 27.4 22.7 22.8 22.8 22.8 25.5 22.8 23.2 23.3 23.3 23.3 23.4 28.3 23.5 23.5 23.6 26.6 23.9 29.3 24.4 24.4 24.6 27.6 31.2 31.3 26.0 2131 2245 766 3750 1709 744 865 24 801 3473 3477 731 5445 816 1441 1530 3071 2199 616 3969 2878 665 1552 1998 666 1131 3596 529 5625 1351 3941 2142 3618 679 3624 2039 877 2043 4101 2051 639 536 684 1854 698 6287 700 1404 905 2113 658 1060 586 2152 616 1953 855 1473 828 656 657 1667 188167 190412 191178 194928 196638 197382 198247 198271 199072 202545 206022 206753 212198 213014 214454 215984 219055 221255 221871 225840 228718 229383 230936 232933 233600 234731 238326 238855 244480 245830 249772 251914 255532 256210 259834 261874 262750 264793 268894 270945 271584 272120 272804 274658 275355 281642 282343 283746 284652 286765 287423 288483 289068 291221 291837 293790 294645 296119 296947 297603 298260 299927 20.7 20.7 20.7 20.7 20.7 20.7 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.5 21.5 BLK INC 31 31 32 32 32 32 33 33 33 33 34 34 34 34 35 35 35 35 36 36 36 36 37 37 37 37 38 38 38 38 39 39 39 39 40 40 40 40 41 41 41 41 42 42 42 42 43 43 43 43 44 44 44 44 45 45 45 45 46 46 46 46 AHR PLANT # MW Btu/kWh enc4 enc4 enc5 enc5 enc5 enc5 eti3&4 eti3&4 eti3&4 eti3&4 hnp3 hnp3 hnp3 hnp3 enc2 enc2 enc2 enc2 els1-4 els1-4 els1-4 els1-4 hmb1&2 hmb1&2 hmb1&2 hmb1&2 ala3&4 ala3&4 ala3&4 ala3&4 hnp2 hnp2 hnp2 hnp2 sba4 sba4 sba4 sba4 eti1&2 eti1&2 eti1&2 eti1&2 ala1&2 ala1&2 ala1&2 ala1&2 red5&6 red5&6 red5&6 red5&6 sbr1&2 sbr1&2 sbr1&2 sbr1&2 hig1&2 hig1&2 hig1&2 hig1&2 hig3&4 hig3&4 hig3&4 hig3&4 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 87 59 59 79 94 63 120 160 160 160 17 27 32 21 6 26 31 21 190 250 250 270 16 27 31 21 120 160 160 160 17 27 32 21 1 36 45 30 60 60 60 64 70 90 90 80 70 90 90 80 28 28 28 28 10 20 18 10 14 26 30 9 10,494 10,398 13,485 10,741 10,144 10,055 15,141 11,005 10,078 9,798 16,339 12,974 12,336 12,471 14,131 12,451 11,406 11,135 16,141 11,525 10,517 10,188 16,853 13,245 12,142 12,167 16,210 11,407 10,311 9,960 16,865 13,382 12,517 12,433 14,726 13,382 12,128 11,847 16,432 12,244 11,371 11,106 17,605 12,222 11,084 10,734 18,702 12,511 11,144 10,661 18,968 13,553 12,072 11,426 34,940 20,641 15,481 13,820 44,598 24,520 17,262 15,100 Unit*MW System CUM Total Unit Cumul. Total MW $/MWh $/hr $/hr $/MWh 9815 30.5 9874 30.3 9933 39.2 10012 31.3 10106 29.5 10169 29.3 10289 39.5 10449 28.7 10609 26.3 10769 25.6 10786 41.0 10813 32.6 10845 31.0 10866 31.3 10872 41.1 10898 36.2 10929 33.2 10950 32.4 11140 42.1 11390 30.1 11640 27.4 11910 26.6 11926 42.3 11953 33.2 11984 30.5 12005 30.5 12125 42.3 12285 29.8 12445 26.9 12605 26.0 12622 42.3 12649 33.6 12681 31.4 12702 31.2 12703 42.9 12739 38.9 12784 35.3 12814 34.5 12874 42.9 12934 32.0 12994 29.7 13058 29.0 13128 45.9 13218 31.9 13308 28.9 13388 28.0 13458 48.8 13548 32.7 13638 29.1 13718 27.8 13746 49.5 13774 35.4 13802 31.5 13830 29.8 13840 91.2 13860 53.9 13878 40.4 13888 36.1 13902 116.4 13928 64.0 13958 45.1 13967 39.4 2657 1785 2315 2469 2775 1843 4742 4596 4209 4092 697 879 991 657 247 942 1029 680 8005 7520 6862 7179 677 898 945 641 5077 4764 4306 4159 720 907 1005 655 43 1402 1588 1034 2573 1917 1781 1855 3216 2871 2604 2241 3417 2939 2618 2226 1386 990 882 835 912 1077 727 361 1630 1664 1352 355 260946 262731 265046 267516 270291 272134 276876 281472 285680 289772 290469 291348 292339 292996 293243 294185 295214 295895 303899 311419 318281 325461 326137 327035 327980 328621 333698 338462 342768 346927 347646 348553 349559 350214 350257 351659 353247 354281 356854 358772 360552 362408 365624 368495 371099 373340 376757 379695 382313 384539 385925 386916 387798 388633 389545 390622 391350 391710 393340 395004 396356 396710 26.6 26.6 26.7 26.7 26.7 26.8 26.9 26.9 26.9 26.9 26.9 26.9 27.0 27.0 27.0 27.0 27.0 27.0 27.3 27.3 27.3 27.3 27.3 27.4 27.4 27.4 27.5 27.6 27.5 27.5 27.5 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.7 27.7 27.7 27.8 27.9 27.9 27.9 27.9 28.0 28.0 28.0 28.0 28.1 28.1 28.1 28.1 28.1 28.2 28.2 28.2 28.3 28.4 28.4 28.4 HR-DESC.DOC ; 4/17/98: PAGE E-20 FIGURE E-4-ALL COLLECTIVE IOUs MCP & MC PROXIES 25 MCP = SAHR @ TOTAL GAS PRICE 20 MC = SIHR @ DISPATCH GAS PRICE 15 10 5 0 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 OUTPUT (MW) FIGURE E-5 COLLECTIVE IOUs AHR/IHR (MCP/MC) AHR/IHR 1.5 1.4 1.3 1.2 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 10,000 12,000 14,000 OUTPUT(MW) FIGURE E-6 COLLECTIVE IOUs AHR/IHR (MCP/MC) HEAT RATES ONLY 1.4 AHR/IHR UNIT COST ($/MWh) 30 1.3 1.2 1.1 0 2,000 4,000 6,000 8,000 OUTPUT(MW) HR-DESC.DOC ; 4/17/98: PAGE E-21 APPENDIX F FR 97 GAS PRICE FORECAST This Appendix summarizes the Energy Commission’s 1997 Gas Price Forecast (FR 97), which was approved by the Commissioners at their March 18, 1998 Business Meeting. The 1998 dispatch and total gas prices were used in Section VI in demonstrating the difference between traditional marginal cost and the market clearing price of the new competitive market. Table F-1 summarizes the dispatch and total gas prices in both nominal and real 1998 dollars. The dispatch gas price reflects the variable costs of gas, only. Total gas price also includes the fixed component of gas. Although both of these are provided, Energy Commission Staff expects that the electric utilities will no longer use the dispatch price of gas in the new competitive market and will base all their bidding on the total price of gas. TABLE F-1: FR 97 GAS PRICE FORECAST FR 97 GAS PRICE FORECAST (MARCH 18, 1998) Nominal $/MMBtu Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 PG&E Disp Total 2.31 2.51 2.04 2.24 1.98 2.19 2.07 2.28 2.17 2.38 2.28 2.50 2.40 2.62 2.53 2.75 2.66 2.89 2.80 3.03 2.94 3.18 3.09 3.34 3.25 3.51 3.44 3.70 3.64 3.91 3.86 4.13 4.08 4.36 4.30 4.59 4.54 4.83 SCE Disp Total 2.43 2.61 2.08 2.27 1.97 2.17 2.09 2.29 2.20 2.40 2.34 2.55 2.48 2.69 2.63 2.85 2.78 3.00 2.95 3.17 3.15 3.38 3.33 3.57 3.45 3.69 3.65 3.90 3.87 4.12 4.09 4.35 4.32 4.59 4.55 4.83 4.81 5.10 Cool Water SDG&E Disp Total Disp Total 2.24 2.34 2.34 2.91 1.90 2.00 2.04 2.56 1.98 2.08 2.07 2.61 2.08 2.18 2.18 2.73 2.17 2.27 2.29 2.85 2.28 2.38 2.42 2.98 2.41 2.51 2.56 3.13 2.55 2.65 2.70 3.28 2.70 2.80 2.84 3.43 2.85 2.95 3.01 3.61 3.01 3.11 3.21 3.81 3.18 3.28 3.38 3.99 3.34 3.44 3.51 4.14 3.52 3.62 3.72 4.36 3.70 3.80 3.94 4.58 3.89 3.99 4.16 4.82 4.09 4.19 4.39 5.06 4.30 4.40 4.63 5.31 4.51 4.61 4.89 5.59 1998 $/MMBtu Apr 16, 1997 Deflators 1998 1.00 1999 1.02 2000 1.05 2001 1.08 2002 1.11 2003 1.15 2004 1.18 2005 1.22 2006 1.27 2007 1.31 2008 1.36 2009 1.41 2010 1.46 2011 1.51 2012 1.56 2013 1.62 2014 1.68 2015 1.74 2016 1.80 Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 PG&E Disp Total 2.31 2.51 1.99 2.19 1.88 2.08 1.91 2.11 1.95 2.14 1.99 2.18 2.03 2.21 2.06 2.25 2.10 2.28 2.13 2.31 2.16 2.34 2.19 2.37 2.23 2.41 2.28 2.45 2.33 2.50 2.38 2.55 2.43 2.60 2.48 2.64 2.52 2.69 SCE Disp Total 2.43 2.61 2.03 2.21 1.88 2.06 1.93 2.11 1.98 2.16 2.04 2.22 2.10 2.28 2.15 2.32 2.19 2.36 2.25 2.42 2.32 2.49 2.36 2.53 2.37 2.53 2.42 2.59 2.47 2.64 2.53 2.69 2.58 2.74 2.62 2.78 2.67 2.83 Cool Water Disp Total 2.24 2.34 1.85 1.95 1.88 1.98 1.92 2.01 1.95 2.04 1.98 2.07 2.04 2.12 2.09 2.17 2.13 2.21 2.17 2.25 2.22 2.29 2.26 2.33 2.29 2.36 2.33 2.40 2.37 2.43 2.40 2.47 2.44 2.50 2.47 2.53 2.51 2.56 SDG&E Disp Total 2.34 2.91 1.99 2.49 1.96 2.48 2.01 2.52 2.05 2.56 2.11 2.59 2.16 2.64 2.20 2.68 2.25 2.71 2.29 2.75 2.36 2.81 2.40 2.84 2.41 2.84 2.47 2.89 2.52 2.93 2.57 2.98 2.62 3.02 2.67 3.06 2.72 3.10 After 1998, gas prices drop and do not return to their 1998 level in real dollars until around 2010 and beyond, depending on the utility. This drop is due to vast gas resources in the Gulf of Mexico becoming available. HR-DESC.DOC ; 4/17/98: PAGE F-1 Figures F-1 through F-4 provide the data of Table F-1 graphically. Figures F-1 and F-2 present the gas prices in nominal (current) dollars; F-1 presents the dispatch price of gas and F-2 presents the total price of gas. Figures F-3 and F-4 present the comparable data in real 1998 dollars. FIGURE F-1 FR 97 DISPATCH GAS PRICES IN NOMINAL $/MMBtu GAS PRICE($/MMBtu) 5.0 4.5 4.0 PG&E 3.5 SCE 3.0 C.W. 2.5 SDG&E 2.0 1.5 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 YEAR FIGURE F-2 GAS PRICE($/MMBtu) FR 97 TOTAL GAS PRICES IN NOMINAL $/MMBtu 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 PG&E SCE C.W. SDG&E YEAR HR-DESC.DOC ; 4/17/98: PAGE F-2 FIGURE F-3 FR 97 DISPATCH GAS PRICES IN REAL 1998 $/MMBtu GAS PRICE ($/MMBtu) 2.8 2.6 PG&E 2.4 SCE 2.2 CW SDG&E 2.0 1.8 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 YEAR FIGURE F-4 GAS PRICE ($/MMBtu) FR 97 TOTAL GAS PRICE IN REAL 1998 $/MMBtu 3.2 3.0 2.8 PG&E 2.6 SCE 2.4 CW 2.2 SDG&E 2.0 1.8 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 YEAR HR-DESC.DOC ; 4/17/98: PAGE F-3
© Copyright 2025 Paperzz