Divide 15 into two parts such that the square of one no. multiplied

Divide 15 into two parts such that the square of one no. multiplied with the cube of other no. is
maximum
Solution:
Denote π‘₯ is first number and 𝑦 is second number. So we have
𝑓(π‘₯, 𝑦) = π‘₯ 2 𝑦 3 β†’ π‘šπ‘Žπ‘₯
and
π‘₯ + 𝑦 = 15
or
π‘₯ = 15 βˆ’ 𝑦.
Thus we have
𝑓(𝑦) = (15 βˆ’ 𝑦)2 𝑦 3 β†’ π‘šπ‘Žπ‘₯.
We must find the first derivative of 𝑓(𝑦)
𝑓 β€² (𝑦) = βˆ’2(15 βˆ’ 𝑦)𝑦 3 + 3(15 βˆ’ 𝑦)2 𝑦 2 = (15 βˆ’ 𝑦)𝑦 2 (βˆ’5𝑦 + 45).
So
(15 βˆ’ 𝑦)𝑦 2 (βˆ’5𝑦 + 45) = 0,
15 βˆ’ 𝑦 = 0 π‘œπ‘Ÿ 𝑦 2 = 0 π‘œπ‘Ÿ (βˆ’5𝑦 + 45) = 0,
𝑦1 = 15, 𝑦2,3 = 0, 𝑦4 = 9.
We must find the second derivative of 𝑓(𝑦)
𝑓 β€²β€² (𝑦) = βˆ’π‘¦ 2 (βˆ’5𝑦 + 45) + 2𝑦(15 βˆ’ 𝑦)(βˆ’5𝑦 + 45) βˆ’ 5(15 βˆ’ 𝑦)𝑦 2
and
𝑓 β€²β€² (𝑦1 ) = 𝑓 β€²β€² (15) = βˆ’152 (βˆ’75 + 45) + 30(15 βˆ’ 15)(βˆ’75 + 45) βˆ’ 5(15 βˆ’ 15)152 =
= βˆ’152 (βˆ’30) > 0;
𝑓 β€²β€² (𝑦2,3 ) = 𝑓 β€²β€² (0) = βˆ’02 (0 + 45) + 0 βˆ™ (15 βˆ’ 0)(0 + 45) βˆ’ 5(15 βˆ’ 0) βˆ™ 02 = 0;
𝑓 β€²β€² (𝑦4 ) = 𝑓 β€²β€² (9) = βˆ’92 (βˆ’45 + 45) + 18(15 βˆ’ 9)(βˆ’45 + 45) βˆ’ 5(15 βˆ’ 9) βˆ™ 92 =
= βˆ’30 βˆ™ 92 < 0.
Because only 𝑓 β€²β€² (9) < 0 then 𝑦 = 9 is the only point of maximum. Also we have
π‘₯ = 15 βˆ’ 𝑦 = 15 βˆ’ 9 = 6.
Answer: 6 and 9.