EXERCISES FOR CHAPTER 1: Sequences and Limits 1 n 1. (a) 2 2 n (b) 3 (c) 1+n 1 2n (c) n+2 2 n +3 (c) ln2n ln n (c) 2n n2 Solution n (1)n 1 (a) lim = lim n = 0 n n 2 2 n 2n 2 (b) lim = lim n = 0 n 3 n 3 1 1+ n 1 (c) lim = lim = n 1 2n n 2 2 n 1 + (1) 1 + n2 2. (a) (b) 2 1+ n Solution (a) Limit does not exist. 1 + n2 2n = lim = (b) lim n 1 + n n 1 n+2 1 (c) lim 2 = lim =0 n n + 3 n 2n 6n 5 + n 3. (a) 5 3n + 1 (b) sin 2n n Solution 1 6n 5 (1 + 4 ) 6n 5 + n 6n = 2 = lim (a) lim 5 n 3n + 1 n 1 5 3n (1 + 5 ) 3n (b) 1 sin 2n 1 1 n n n =0 since lim n sin 2n n lim =0 n n ln 2n ln 2 ln n (c) lim = lim + lim =1 n ln n n ln n n ln n 3 /n 4. (a) 7 Solution (b) n 5n 3 2 K. A. Tsokos: Series and D.E. (a) y = lim 7 3/n ln y = n 3 lim ln 7 = 0 y = 1 n n (b) lim n 5n 3 = lim 51/n lim n 3/n = 1 n n n n n 2 2 ln 2 2 n (ln 2)2 = lim = (c) lim 2 = lim n n n n 2 2n n!+ n 2 n3 5. (a) n (b) 2n!+ n 3 n!+ 3n (c) 1+ n Solution n3 3n 2 6n 6 = lim n = lim n =0 (a) lim n = lim n 2 n e n 3 ln 3 n 3 (ln 3) n 3 (ln 3)3 n2 n!(1 + ) n!+ n 2 n! = 1 = lim (b) lim n 2n!+ n n n 2n!(1 + ) 2 2n! n 3 n!(1 + ) n!+ 3n n! = = lim (c) lim n 1 + n n 1 n(1 + ) n n e 2n e (b) (c) nsin 6. (a) n 2 n 2n (1+ 2e ) 1+ 2e Solution 1 en en = lim = n n n 1 + 2e n 2e 2 2n 1 e e2n = lim = (b) lim n 2 n (1 + 2e ) n 1 4e2n (1 + n )2 4 2e sin 2 cos 2n = lim 2n 2n = lim cos = = lim (c) lim n sin n n 1 2n n 1 2 n 2n 2 2 n n n en + 1 3 2n + 1 7. (a) ln n (b) (c) 2 e 1 n Solution en + 1 en + 1 en (a) lim ln n = ln lim = ln lim = ln1 = 0 n n e n 1 n e n e 1 (a) lim 1 n( 2 + ) 2n + 1 n = 2 = lim (b) lim n n n n n 3 3 (c) lim = since > 1 n 2 2 3 K. A. Tsokos: Series and D.E. n n + n x x x x x x 8. Show that (a) lim 1+ = e , (b) lim 1+ = e and (c) lim 1+ =e n n n n n n + where is a constant. Solution n x x 1 (a) Let y = lim 1 + . Call = so that m as n . Then n = mx and so n n n m 1 y = lim 1 + m m mx x m 1 = lim 1 + m m = ex (b) x lim 1 + n n n + x x = lim 1 + lim 1 + n n n n x = 1 lim 1 + n n n n = 1 ex = ex (c) Call m = n + . Then as n , m . So n x x lim 1 + = lim 1 + n m n + m x = lim 1 + m m m x lim 1 + m m = 1 ex = ex n (b) 1 + n n 1 9. (a) 1 2 n Solution (a) n 1 1 1 lim 1 2 = lim 1 1 + n n n n n = lim 1 n = e1e1 =1 (b) n 1 lim 1 + n n n 1 n n n 1 n (c) n m 4 K. A. Tsokos: Series and D.E. n = lim 1 + n n n lim 1 + n n ( ) = e = e 2 (c) 1 n 1 lim = lim 1 n n n n n n = e1 n + 3 10. (a) (b) n + 2 Solution (a) n n n + 3 n + 2 + 1 lim lim = n n n + 2 n + 2 n 1 = lim 1 + n n + 2 n n n + 3 2 2n (c) 1 n n =e (b) n n + 3 3 lim = lim n n + 3 n n+3 n 3 = lim 1 n n + 3 n n = e3 2 (c) lim 1 n n 11. (a) 2n 2 n 2 = lim 1 = (e2 )2 = e4 n n (ln n) 7 (b) n2 n n3 n 1+ (c) n 1 n Solution 7 6 5 ln n ) 7 ( ln n ) 42 ( ln n ) ( = lim = lim == 0 (a) lim n n n n2 2n 2 4n 2 (b) lim n n3n = lim n n lim n 3n = 1 3 = 3 n n 1+ (c) lim n 1 n n n 12. (a) n7 Solution n 1 n = lim n lim n = 1 = n n n 1 1/ ln n (b) n (c) arctan n 5 K. A. Tsokos: Series and D.E. (a) lim n n7 n = lim n n lim n 7 n = 1 7 = 7 . n n 1 (b) Let y = n 1 Thus lim n n 1/ln n n 1 ln( ) ln n = 1 . . Then lim ln y = lim n = lim n n ln n n ln n 1/ln n = e1 . . 2 (c) lim arctan n = n ( 13. Show that lim 1 + x n n ) 1/n ( = 1 if x < 1 . Hence find lim 5 n + 7 n n ) 1/n . Solution ( y = lim 1 + x n n ( lim 5 + 7 ) 1/n n n =7 ( 14. Find the limit (a) lim 2 n + 4 n n ) 1/n . Solution ( n ) 1/n = lim n = lim n = (2 1 n + 4n ) 1/n 1 2n 4 + 1 4 1/n 1 4 2n + 4 n (b) n 5 + 6 n 2n + 4 n 15. (a) n 3 + 6n Solution n 1 n n n +1 2 +4 4 2 4n = lim n = lim n = 0 (a) lim n n n 3 + 6 n n 6 n 6 1 + 1 2 2n + 4 n (b) lim n n 5 + 6 n 1/n 5n = lim 7 1 + n 7 1/n 5n = 7 lim 1 + n 7 ln(1 + x n ) ln y = lim =0 n n y =1 lim 2 n + 4 n ) n 1/n 2n + 1 4 4 = lim 6 n 5 n 6 + 1 1/n = 2 3 1/n 1/n 6 K. A. Tsokos: Series and D.E. n1 3 7 n1 7 (b) 137n en Solution n137 = 0 , standard result. (a) lim n 137 n n17 (b) lim n = 0 , standard result. n e 32n +1 32n +12 ln 3 32n +1 (2 ln 3)2 = lim = lim = (c) lim n 5n 2 n n 10 10n 16. (a) arctan n Solution = =2 (a) lim n arctan n 2 (b) ln(n + 1) ln n 17. (a) (c) 32n +1 5n 2 (c) ln(n 2 + n) ln n 2 n +1 n +1 ) = ln lim ( ) = ln1 = 0 n n n n2 + n n2 + n = lim ln( 2 ) = ln lim ( 2 ) = ln1 = 0 n n n n (b) lim ( ln(n + 1) ln n ) = lim ln( n n ( (c) lim ln(n 2 + n) ln n 2 n ) n! ln9n 8n! (b) (c) 3 n 10n!+(n 1)! 5n n Solution 8n! (a) lim n = 0 , standard result. n 5n 1 n! n! = lim = (b) lim n 10n!+ (n 1)! n 1 ) 10 10n!(1 + 10n 1 ln 9n ln 9 ln n 1 = lim 3 + lim 3 = 0 + lim n = 3lim 1/ 3 = 0 (c) lim 3 n n n n n 1 n n n n n 2 / 3 3 2 n +1 n! sin n 19. (a) (b) (c) 5n 2 n n Solution 1 n 1+ n2 + 1 n = = lim (a) lim n n n n 1 sin n 1 sin n ±1 lim = 0 since lim =0 (b) n n n n n n n n! (c) lim 2 = , standard result. n 5n 18. (a) 7 K. A. Tsokos: Series and D.E. n!+(n 1)! n 3 2n (b) n e (c) n (n 1)!+(n 2)! 3 Solution n 1 (a) lim n = lim n =0 n 3 n 3 ln 3 n3 3n 2 6n 6 (b) lim n 3e2n = lim 2n = lim 2n = lim 2n = lim 2n = 0 n n e n 2e n 4e n 8e 1 n!(1 + ) n!+ (n 1)! n = lim = (c) lim n (n 1)!+ (n 2)! n 2 (n 1)!(1 + ) n 1 32n 2 ln n 21. (a) (b) n ln(1 + ) (c) 7n n n Solution 1 ln n 2 n (a) lim = lim = lim =0 n n n 1 n 2n 2 2 n n 2 2 (b) lim n ln(1 + ) = ln lim 1 + = ln e2 = 2 n n n n 20. (a) 32n 9n 9 n ln 9 = lim = lim = (c) lim n 7n n 7n n 7 n! 2n n 22. (a) (b) n 1+ 5n! n + 3n n1 Solution 1 n! n! = lim = (a) lim n 1 + 5n! n 1 ) 5 5n!(1 + 5n! n 2n 2n n lim = lim =2 (b) n n n + 3n n 1 n n 3 n (1 + ) n n n! 2n 23. (a) n (b) 2n e + 3n! n + n! Solution 2n n 2n n = lim =2 (a) lim n n n + n! n n n! n (1 + n ) n 1 n! n! (b) lim 2n = lim 2n = n e e 3 + 3n! n ) 3n!(1 + 3n! (c) ln2n 2n 1 ln 2n ln 2 ln n 2 n (c) lim = lim + lim = 0 + lim = lim =0 n n n 1 n 2n n 2n n 2n 2 2 n 8 K. A. Tsokos: Series and D.E. n n 24. James Stirling (1692-1770) showed that for large values of n, n! 2n . Use e n! this approximation for the factorial of n to show that lim n = 0 . n n Solution n! (n / e)n 2 n 2 n lim n = lim = lim n = 0 . n n n n n n e n!en = 2 .) (Notice that Stirling’s result leads to the elegant limit lim n n n n n2 = 1 . (b) Establish this limit by an N proof. 25. (a) Show that lim 2 n n + 1 Solution n2 n2 = lim =1 (a) lim 2 n n + 1 n 2 1 n (1 + 2 ) n 2 n n2 1 (b) 2 1 < < 2 1< < 2 < . Hence we have that n +1 n +1 n +1 n2 + 1 < 1 1 1 n2 n> 1 . Thus 2 1 . 1 < for all n > N where N = n +1 1 = 0 . (b) Establish this limit by an N proof. n 2 n 26. (a) Show that lim Solution 1 1 . Then lim ln y = lim ln n = lim n ln 2 = . Hence y e = 0 . n n n n 2 2 1 1 1 1 1 ln . Thus n < (b) n < < n < . Hence n < 2 n > n > 2 2 2 ln 2 2 ln for all n > N where N = . ln 2 n! 1 27. (a) Show that lim = . (b) Establish this limit by an N proof. n 1 + 2n! 2 (a) Let y = Solution n! n! 1 = lim = . n 1 + 2n! n 1 2n!(1 + ) 2 2n! n! 1 n! 1 < < <. (b) 1 + 2n! 2 1 + 2n! 2 1 < < . We must then ensure that 2(1 + 2n!) (a) lim I.e. < 2n! 1 2n! < 2(1 + 2n!) i.e. 9 K. A. Tsokos: Series and D.E. 1 > 2(1 + 2n!) 1 < 2(1 + 2n!) 2 2n! > 1 1 1 n! > 2 1 1 1 1 Now n! > n and so we if we demand n > we automatically ensure n! > . 2 2 n! 1 1 1 < for all n > N where N > . As a check take Thus 1 + 2n! 2 2 10! 1 1 < 6.89 10 8 < 10 1 . = 10 1 N > 10 . With N = 10 we have that 1 + 2 10! 2 2 This shows that the choice of N is very loose. This is so because the inequality n! > n is 1 1 very easily satisfied so a much lower value of N than N > could have done. 2 28. A sequence of positive numbers is defined recursively through un +1 = 1 un , with 1 u1 = . Given that the sequence is convergent, find the limit of the sequence, 2 lim un . n Solution Let the limit be L. Then lim un = L , lim un +1 = L and so L = 1 L L2 + L 1 = 0 . n The positive root is L = 29. Find lim x0 1 cos x . x2 Solution n 1 + 5 . 2 1 cos x sin x cos x 1 = lim = lim = . 2 x0 x0 2x x0 2 x 2 Limit is of the 0/0 type. Hence lim 30. Find the limit lim x0 Solution ln(1 2x) . x 2 ln(1 2x) = lim 1 2x = 2 . Limit is of the 0/0 type. Hence lim x0 x0 1 x tan x . 31. Evaluate the limit lim x0 x Solution tan x sec 2 x = lim = 1. Limit is of the 0/0 type. Hence lim x0 x0 x 1 K. A. Tsokos: Series and D.E. 10 tan 3x . x0 x 32. Find lim Solution tan 3x 3sec 2 3x = lim = 3. Limit is of the 0/0 type. Hence lim x0 x0 x 1 arcsin(3x) 3x . x0 x3 33. Find lim Solution Limit is of the 0/0 type. Hence 3 1 3 3 (18x)( )(1 9x 2 )3/2 2 arcsin(3x) 3x 2 lim = lim 1 9x2 = lim x0 x0 x0 6x x3 3x 3 27(1 9x 2 )3/2 + 27x( )(1 9x 2 )3/2 (18x) 9 2 = lim = x0 2 6 1 1 34. Evaluate lim( ). x0 x sin x Solution 1 1 sin x x lim( ) = lim( ) x0 x x0 sin x x sin x cos x 1 ) = lim( x0 sin x + x cos x sin x ) = lim( x0 cos x + cos x x sin x =0 sin(x + 2 sin x) 35. Find the limit lim . x0 sin x Solution sin(x + 2 sin x) cos(x + 2 sin x)(1 + 2 cos x) lim = lim x0 x0 sin x cos x =3 1 1 36. Find lim( ). x0 x tan x Solution 1 x tan x 1 We may write which is a 0/0 limit. Using L’ Hôpital’s rule we = x tan x x tan x have 1 1 x tan x 1 sec 2 x lim( ) = lim = lim x0 x x0 x tan x x0 tan x + x sec 2 x tan x 2 sec x(sec x tan x) = lim 2 =0 x0 sec x + sec 2 x + x2 sec x(sec x tan x) 11 K. A. Tsokos: Series and D.E. 37. Find lim( x1 1 1 ). ln x x 1 Solution 1 x 1 ln x 1 = which results in a 0/0 limit. Using L’ Hôpital’s rule we have ln x x 1 (x 1)ln x 1 1 1 2 1 x 1 ln x x lim = lim = lim x = , using L’ Hôpital’s rule again. x1 (x 1)ln x x1 x 1 x1 1 1 ln x + + 2 2 x x x 38. Find lim x0 1+ x 1 x . x Solution The limit is of the 0/0 type. Using L’ Hôpital’s rule we have that 1 1 + 1+ x 1 x lim = lim 2 1 + x 2 1 x = 1 . x0 x0 x 1 e(n +1)x 1 39. Consider the function f (x) = 1 + e + e + + e . (a) Show that f (x) = . ex 1 df (b) Show that (c) Hence show that = 1e x + 2e2 x + + nenx . dx df . (d) Hence evaluate 1 + 2 + + n . (e) Using this method find 1+ 2 ++ n = dx x = 0 x 2x nx an expression for (but do not attempt to evaluate) 1k + 2 k + + n k where k is a positive integer. Solution e(n +1)x 1 (a) 1 + e x + e2 x + + enx = , by summing a geometric progression. ex 1 df (b) = 1e x + 2e2 x + + nenx dx (c) Setting x=0 in the result above gives the answer. (d) df (x) (n + 1)e(n +1)x (e x 1) (e(n +1)x 1)e x = (e x 1)2 dx e x e(n +1)x ne(n +1)x + ne(n + 2)x (e x 1)2 This gives a 0/0 limit if we put x=0. So by L’ Hôpital’s rule = K. A. Tsokos: Series and D.E. 12 df (0) e x (n + 1)e(n +1)x n(n + 1)e(n +1)x + n(n + 2)e(n + 2)x = lim x0 2(e x 1)e x dx e x (n + 1)2 e(n +1)x n(n + 1)2 e(n +1)x + n(n + 2)2 e(n + 2)x x0 4e2 x 2e x 1 (n + 1)2 n(n + 1)2 + n(n + 2)2 = 2 2 1 n 2n 1 n 3 2n 2 n + n 3 + 4n 2 + 4n = 2 2 n +n = 2 n(n + 1) = 2 = lim df = 1e x + 2e2 x + + nenx . Differentiating again gives dx d2 f = 12 e x + 2 2 e2 x + + n 2 enx 2 dx and so differentiating k times gives dk f = 1k e x + 2 k e2 x + + n k enx . dx k Thus at x = 0 we have that dk f d k e(n +1)x 1 . 1k + 2 k + + n k = k = k x dx x = 0 dx e 1 x = 0 (e) We saw that Applying L’ Hôpital’s rule to this expression is hopeless. To make progress requires more advanced work.
© Copyright 2026 Paperzz