16.1 (Day One) Properties of Logarithms Date: ______ Properties of

Algebra 2
16.1 Notes
16.1 (Day One) Properties of Logarithms
Date: ___________
Properties of Logarithms
Logarithmic expressions can be rewritten using one or more properties of logarithms.
Learning Target A: I can use the properties of logarithms.
Recall that a logarithm is the exponent to which a base must be raised in order to obtain a given number.
EXPONENTIAL EQUATION
LOGARITHMIC EQUATION
𝒃𝒙 = 𝒂
π’π’π’ˆπ’ƒ 𝒂 = 𝒙
𝒃 > 𝟎, 𝒃 β‰  𝟏
A) Determine each of the following to identify the definition-based properties of logs:
If π’π’π’ˆπ’ƒ π’ƒπ’Ž = ___________,
It follows that π’π’π’ˆπ’ƒ π’ƒπŸŽ = ______, so π’π’π’ˆπ’ƒ 𝟏 = _______.
Also, π’π’π’ˆπ’ƒ π’ƒπŸ = _____, so π’π’π’ˆπ’ƒ 𝒃 = _________.
B) Just like we have exponent properties for powers of the same __________, we have log
properties for logs of the same base! Fill in the table to determine the properties of operations
with logs.
Product
Quotient
Power
Exponent Properties
Logarithm Properties
π‘Žπ‘š β‹… π‘Žπ‘› =
π‘™π‘œπ‘”π‘ π‘šπ‘› =
π‘Žπ‘š
π‘š
=
π‘™π‘œπ‘”π‘ 𝑁 =
(π‘Žπ‘š )𝑛 =
π‘™π‘œπ‘”π‘ π‘šπ‘› =
π‘Žπ‘›
Example 1. Expand each expression to be written in terms of log m and log n.
A) π‘™π‘œπ‘”π‘š2 𝑛5
B) π‘™π‘œπ‘”
3
βˆšπ‘š
𝑛4
1
Algebra 2
16.1 Notes
4
βˆšπ‘›
C) π‘™π‘œπ‘”π‘š4 𝑛2
D) π‘™π‘œπ‘” π‘š2
Fill out the table with the properties of logarithms that you discovered on the first page.
Properties of Logarithms
For any positive numbers a, m, n, b, (𝒃 β‰  𝟎), and c (𝒄 β‰  𝟎), the following properties hold:
1. π‘™π‘œπ‘”π‘ 𝑏 π‘š = π‘š
Definition-Based Properties
2. π‘™π‘œπ‘”π‘ 1 = 0
3. π‘™π‘œπ‘”π‘ 𝑏 = 1
Product Property of Logarithms
π‘™π‘œπ‘”π‘ π‘šπ‘› =
Quotient Property of Logarithms
π‘™π‘œπ‘”π‘
Power Property of Logarithms
π‘™π‘œπ‘”π‘ π‘šπ‘› =
π‘š
=
𝑛
Example 2. Express each expression as a single logarithm. Evaluate without a calculator, if possible.
A) ln 18 βˆ’ 2 ln 3 + ln 4
B) ln 25 + 4 ln 5 βˆ’ ln 125
C) log 6 + log 11
D) π‘™π‘œπ‘”3 250 βˆ’ 2π‘™π‘œπ‘”3 10
1
E) 3 π‘™π‘œπ‘”5 8 βˆ’
1
2
π‘™π‘œπ‘”5 9
5
F) 2 π‘™π‘œπ‘”7 16 +
2
3
π‘™π‘œπ‘”7 125
2