Organic Superconductivity P. M. Chaikin, Center for Soft Matter Research, NYU Brief History (TMTSF)2PF6 the first organic superconductor Triplet? 6 2 μH = Δ Controllable Coherence? 2K 1K 4 N(μV/K) BCS@50 October 12, 2007 A Remarkable Set of Materials! Nature of the Superconducting State? The Discovery of New Condensed Phases & New Effects in High Magnetic Fields 2 0 -2 -2L -4 c' -1L 1L -50 -40 -30 -20 -10 0 10 20 30 40 50 θ (TMTSF)2PF6 - Most Remarkable Electronic Material Ever Discovered October 12, 2007 All the usual competitions: Metal-Insulator, Magnetic-Superconductor, Commensurate-Incommensurate, FermiLiquid- NonFermiLiquid, Spin Density Wave - Charge Density Wave…… BCS@50 So far in one single crystal: Exhibits all transport mechanisms known to man: Metallic, Sliding Density Wave, Superconducting, Quantum Hall Plus somethings new : Field Induced SDW/QHE Giant Nernst Effect, Magic Angle Effects Triplet Superconductivity, Field Induced Slabs Who’s to Blame Princeton • InJae Lee (Chonbuk National University) • Weida Wu (Rutgers) UCLA • Stuart Brown • Gil Clark • David Chow Boston College • Mike Naughton With Advice from: Andrei Lebed, Victor Yakovenko, Phil Anderson, David Huse, Phuan Ong Superconductivity Discovered by Gilles Holst 1911 Superconductivity Explained BCS 1957 Bill Little proposes Excitonic, Organic, Polymeric Superconductor 1963 Schegolev, Bloch, Heeger,…. Work on “1D” metals, TCNQ’s Fred Wudl discovers TTF 1970 TTF-TCNQ first organic metal (not superconductor) 1973 Rick Greene, (SN)x , first (and only) polymeric superconductor Tc~0.3K Bechgaard and Jerome First Organic Superconductor TMTSF2 PF6 Tc~1.2K G. Saito, (ET)2Cu[N(CN)2Br] Tc~13K Alan Heeger, others 1975 1979 Superconductivity Discovered by Gilles Holst 1911 Superconductivity Explained BCS 1957 Bill Little proposes Excitonic, Organic, Polymeric Superconductor 1963 Schegolev, Bloch, Heeger,…. Work on “1D” metals, TCNQ’s Fred Wudl discovers TTF 1970 TTF-TCNQ first organic metal (not superconductor) 1973 Rick Greene, (SN)x , first (and only) polymeric superconductor Tc~0.3K Bechgaard and Jerome First Organic Superconductor TMTSF2 PF6 Tc~1.2K G. Saito, (ET)2Cu[N(CN)2Br] Tc~13K Alan Heeger, others 1975 1979 “g-ology Phase Diagram 1D electrons g1 kF g2 -kF 2kF kF-q Only two interactions important q = 2kF kF ε ε backscattering forward scattering kF -kF g1(q=2kF) -kF kF g2(q=0) Superconductivity Discovered by Gilles Holst 1911 Superconductivity Explained BCS 1957 Bill Little proposes Excitonic, Organic, Polymeric Superconductor 1963 Schegolev, Bloch, Heeger,…. Work on “1D” metals, TCNQ’s Fred Wudl discovers TTF 1970 TTF-TCNQ first organic metal (not superconductor) 1973 Rick Greene, (SN)x , first (and only) polymeric superconductor Tc~0.3K Bechgaard and Jerome First Organic Superconductor TMTSF2 PF6 Tc~1.2K G. Saito, (ET)2Cu[N(CN)2Br] Tc~13K Alan Heeger, others 1975 1979 R X X R R X Wudl X R X X R Y2 X X Y1 R X X R Y2 X X Y1 TTF : X=S, R=H TSF : X=Se, R=H TTeF : X=Te, R=H TMTSF : X=Se, R=Me TMTTF : X=S, R=Me Quasi 1D X X ET(BEDT-TTF) : X=Y1=Y2=S BO(BEDO-TTF) : X=S,Y1=Y2=O BETS(BEDT-TSF) : X=Se,Y1=Y2=S EOET : X=S,Y1=S,Y2=O X X OMTTF : X=S OMTSF : X=Se S S S S S S S S S S S S S S S S Te Te Te S BMDT-TTF X X S S S S S X Y2 X X Y1 ET(BEDT-TTF) : X=Y1=Y2=S BO(BEDO-TTF) : X=S,Y1=Y2=O BETS(BEDT-TSF) : X=Se,Y1=Y2=S EOET : X=S,Y1=S,Y2=O R R X X TTN : X=S, R=H TSN : X=Se, R=H TMTTeN : X=Te, R=Me X R2 R1 R2 R1 X Quasi 2D X S S S S S S S S S S S H2n+1CnX S S XCnH2n+1 H2n+1CnX S S XCnH2n+1 TTCn-TTF : X=S TSeCn-TTF : X=Se TTeCn-TTF : X=Te X DMTTA : X=S, R1=H, R2=Me TMTTA : X=S, R1=R2==Me 6,7-DMTTA : X=S, R1=H, R2=Me TSA : X=Se, R1=R2=H DMTSA : X=Se, R1=Me, R2=H 6,7-DMTSA : X=Se, R1=H, R2=Me TMTSA : X=Se, R1=R2=Me DMTTeA : X=Te, R1=Me, R2=H S S S CnH2n+1 S S S CnTET-TTF CnH2n+1 S X X R1 R4 S R1 R2 Y Y TTT : X=Y=S, R1=R2=R3=R4=H F2TTT : X=Y=S, R1=R2=R3=R4=H TST : X=Y=Se, R1=R2=F, R3=R4=H TTeT : X=Y=Te,R1=R2=R3=R4=H R2 S R2 R1 DTPY : R1=R2=H MSDTPY : R1=SeMe,R2=H MTDTPY : R1=SMe,R2=H Ph2DTPY : R1=Ph,R2=H 3,8-(MeO)2DTPY : R1=H, R2=MeO Saito Me2N NMe2 Me NMe2 Me2N Me2N NMe2 TDAE S S R3 Yagubski X BET-TTF X R S Me X R X BVDT-TTF BDMT-TTeF MDT-TTF Y1 S S Me S S Me Te X HMTTF : X=S HMTSF : X=Se HMTTeF : X=Te BPDT-TTF Me X X X DBTTF : X=S DBTSF : X=Se R TTF : X=S, R=H TSF : X=Se, R=H TTeF : X=Te, R=H TMTSF : X=Se, R=Me TMTTF : X=S, R=Me Y2 X TMPD Me S S S S S S TMDTDM-TTF S S S ETDTPY Superconductivity Discovered by Gilles Holst 1911 Superconductivity Explained BCS 1957 Bill Little proposes Excitonic, Organic, Polymeric Superconductor 1963 Schegolev, Bloch, Heeger,…. Work on “1D” metals, TCNQ’s Fred Wudl discovers TTF 1970 TTF-TCNQ first organic metal (not superconductor) 1973 Rick Greene, (SN)x , first (and only) polymeric superconductor Tc~0.3K Bechgaard and Jerome First Organic Superconductor TMTSF2 PF6 Tc~1.2K G. Saito, (ET)2Cu[N(CN)2Br] Tc~13K Alan Heeger, others 1975 1979 Observed and hinted at ground states BEDT-TTF family (TMTSF)2PF6 Supercond – triplet? Supercond – singlet SDW d-wave? CDW LOFF? Field Induced SDW Ferromagnetic Quantum Hall SDW Fermi-Liquid CDW Non – Fermi, Luttinger? Liq Quantum Hall? Mott Insulator? Fermi-Liquid Crystal Structure of Bechgaard Salts (TMTSF)2X • Highly anisotropic σa : σb : σc = 1 : 10-2 : 10-5 4ta : 4tb : 4tc = 1 : 0.1: 0.003 (eV) σi ~ ti2 • Good metal ρ ~1 μΩcm at 4K (ρ (Cu) ~ 1μΩcm at 300K). c b • Extremely clean a l~10μ at 1K, h/τ~0.1K at 1K Triclinic α = 83.39°, β = 86.27°, γ = 71.01° o o o a = 7.297 Α, b = 7.711Α, c = 13.522 Α • ¼ Filled, Slightly Dimerized Single chain has charge gap. Woowon Kang Phase Diagram (TMTSF)2PF6 ta me l 15 S D meta l W F D W T(K) 10 I S n = 0 5 SD W QH 0 30 E 25 sc 0 20 5 P(k bar) 10 15 meta l 10 5 15 0 te H( sla ) 1D metals are unstable – Fermi Surfaces Nest Interchain hopping – warped Fermi Surface – regain metal Pressure increases interchain hopping – more 3D ta me l 15 S D meta l W F D W T(K) 10 I S n = 0 5 SD W QH 0 30 E 25 sc 0 20 5 Mo re 3 D P(k bar) 10 15 meta l 10 5 15 like 0 ) sla e t H( 3D (P,H,T) phase diagram of (TMTSF)2PF6 First guess from g-ology T(K) g1 TS (SS) SD SDW g2 W P( k b ar) SC H // s i x c-a Insulator-Superconductor Bechgaard, Jerome 1979 1D-electron gas phase diagram (“g-ology”). J. Solyom, Adv. Phys 28, 201 (1979) Singlet or Triplet ? Radiation damage experiments Resistive upper critical fields Hp=16 KG Non s-wave M.Y. Choi et.al., Phys. Rev. B25, 6208 (1982) Singlet (s,d-wave)? P.M. Chaikin, M.Y. Choi and R.L. Greene, Mag. Mat. 31, 1268 (1983) Proton spin-lattice relaxation experiments T3 M. Takigawa et.al., J.Phys. Soc. Jpn. 56, 873 (1987) Non S-wave (line node on FS) Belin et. al. Thermal conductivity S-wave (a finite gap) (No node on FS) Singlet – Triplet Unresolved after ~ 12 years in 1980’s But People discovered unusual things in Magnetic Fields Electron Orbits for a Magnetic Field along c H One-Dimensionalized by Magnetic field k space Real Space ⎛ 4tb wb = b⎜⎜ ⎝ evF Bz ⎞ ⎟⎟ ⎠ y h λ= ebB z x ωb = Chaikin, Azbel, Holstein, ‘83 ev f bBz h Bz ky kx vF But nesting at q=2kF +/- nG, G=2π/λ Woowon Kang Integer Quantum Hall Effect in (TMTSF)2PF6 100 N=1 Rxy(mΩ) T = 300mK P = 10kbar 50 N=2 N=3 N=4 0 Rxx(mΩ) 60 30 0 0 5 10 B(tesla) 15 ta me l 15 S D meta l W F D W T(K) 10 I S n = 0 5 SD W QH 0 30 E 25 sc 0 20 5 Mo re 3 D P(k bar) 10 15 meta l 10 5 15 like ) sla e t H( 0 D 1 e r o M il ke Main lesson: Magnetic field perpendicular to the chains reduces electronic dimension Does this decouple chains/planes? c H=0 b c a 3D coherent Coherent planes b H Two Contributions to Magnetic Critical Field - Orbital and Spin Spin derives from susceptibility of spin paired state Orbital term derives from Field Expulsion e.g. Meisner Effect Need currents to expel field j~H, ΔF~K.E. ~j2~H2 F FNormal ΔF~ - (1/2)ΔχH2 FNormal Hc2orbital Fsuper Usually Hc2orbital <<HPauli Fsuper H H - (1/2) χPauliH2 Hc2orbital T HPauli HPauli Tc H Note: When ↑↓> μ0 H > Δ H single pairs break A.G. Lebed’/DMS’s proposal. Field-induced dimensional crossover quenches orbital pair breaking effect A.G. Lebed’, JETP Lett., 44, 114 (1986) N. Dupuis, G. Montambaux and C.A.R. Sa de Melo, PRL., 70, 2613, (1993) c H//y (b) H tc/Tc = 7 tc/Tc = 4 b a Test for the triplet superconducting pairing? Hp = L.I. Burlarchkov, L.P. Gor’kov and A.G. Lebed’ Europhys. Lett., 4 941 (1987) Δ = 1.84Tc [Tesla ] 2μo Junction 6 (TMTSF)2PF6 P=6kbar Magnetic Field (T) 5 H // b' 4 3 2 PL H // a 1 H // c* 0 0.0 0.3 0.6 0.9 temperature (K) 1.2 Injae Lee Injae Lee 2 μH = Δ HC2 > 4 x HPauli proves triplet (equal spin paired) ↑↑ or ↓↓ But people are more used to seeing NMR Knight Shift Setup for 77Se NMR Knight Shift experiments • Dilution temperature (0.03 K) • High pressure (7 kbar) • Precise angular alignment (resolution: 0.0025o) • Simultaneous NMR and transport measurements 1mm Miniature pressure cell mounted on the bottom of mixing chamber 1.2mm Spin susceptibility in (TMTSF)2PF6 Tiplet χ / χn 1.0 0.5 H // a H // b Singlet ω − ω χ = χn Ks n 0.63 H/Hc2 = 0 0.0 0.5 1.0 1.5 2.0 P. Fulde and K. Maki, Phys. Rev. B139, A788 (1965) T / Tc(H) I.J. Lee et al., PRL, 88, 17004 (2002) (H=2.38T)/(Hc2(0) =5T) ~ 0.5 for H // b (H=1.43T)/(Hc2(0)=3.4T) ~ 0.4 for H // a Spin triplet superconductivity? On the superconducting state of the organic conductor (TMTSF)2ClO4 J. Shinagawa,1 Y. Kurosaki,1,2 F. Zhang,1 C. Parker,1,3 S. E. Brown,1 D. J´erome,4 J. B. Christensen,5 and K. Bechgaard5 (Dated: April 9, 2007) (TMTSF)2ClO4 is a quasi-one dimensional organic conductor and superconductor with Tc = 1.4K, and one of at least two Bechgaard salts observed to have upper critical fields far exceeding the paramagnetic limit. Nevertheless, the 77Se NMR Knight shift at low fields reveals a decrease in spin susceptibility s consistent with singlet spin pairing. The field dependence of the spin-lattice relaxation rate at 100mK exhibits a sharp crossover (or phase transition) at a field Hs ∼ 15kOe, to a regime where s is close to the normal state value, even though Hc2 ≫ Hs. But at low field there is a Knight Shift shift? Back to Magnetic Field Induced Decoupling/Decoherence Lebed’s magic Angles Something happens when ωb/ωc = p/q rational H kc 2k f θ ωc=evFHbsin(θ)/h 2π/c kb ka /a π 2 2 π/b ωb=evFHbcos(θ)/h Lebed Magic Angle Effects A.G. Lebed, “Anisotropy Of An Instability For A Spin-Density Wave-Induced By A Magnetic-Field In A Q1D Conductor”, JETP Lett. 43, 174 (1986). A. G. Lebed, P. Bak, “Theory Of Unusual Anisotropy Of Magnetoresistance In Organic Superconductors”, Phys Rev Lett 63, 1315 1989 Commensurate Orbits correspond to field directed between real space chains Magic Angles Æ Lattice Vectors B B kz ky Recip space ⊥ Real space Quasi-particle coherence Rxx Woowon Kang Basic Idea: Coherent-Incoherent Transition above Threshold Hperp field c b Strong, Clark, Anderson PRL 73, 1007 (1994) At magic angles metallic dR/dT>0 9 2L c 2L 3Max b 1Max * c 1L -1L 2Max 3Max 8 At nonmagic angles Nonmetallic dR/dT<0 7 6 These differ by 6o Rzz , Ω 5 4 3 H=0 2 1 Similar effect along a,b,c axes b c 0 0 5 10 T,K 15 20 Chashechkina Чашечкина Look at Conductivity instead of resistivity 6 .1T ca xisc o n d u c tan c e 5 4 3 2 2T 9.2T 1 0 -100 -50 0 50 a ngle (b-c rota tion, b=90) Insulating when decoupled Conducting when field allows interchain tunneling 100 Weida Wu Angular dependent Nernst 6 2K 1K N(μV/K) 4 2 0 -2 -2L -4 c' -1L 1L -50 -40 -30 -20 -10 0 10 20 30 40 50 θ Giant Nernst Signal 8 2K 7.5 Tesla 1K 6 0.2K eN ( μV / K ) 4 eN ∝ T • B sin θ kB T ωcτ ~ e TF 2 0 ≈ 1nV / K -2 (TMTSF)2PF6: eN ~ 10 μV / K -4 -2L c' -1L -6 -8 Drude, Boltzmann: -40 -20 0 o θ( ) 1L 20 40 Field induced inter-chain decoupling 5 3 1 Rzz eN c' 4 2 θ H H c −∇T H c c c c H a 1 a 2 a 3 a 4 a 5 H 6.0 eN ( μV/K ) 4.0 2.0 0.0 -2.0 -4.0 -6.0 b a -40 -1 -20 0 θ 20 b c H +1 c' -1 Transport: Only coherent at planes // H 40 c’ a What is the coherence? c H b +1 c a H SC Phase coherence at Magic Angle Planes e zz 5 3 1 R N c' 4 2 H −∇T a H c −∇T 1 a θ c c v 2 a H 3 a v 4 c c H H a 5 N.P. Ong, W. Wu, P. M. Chaikin and P. W. Anderson, EuroPhys. Lett. 66 (4) 579 (2004) Moon-Sun Nam, Arzhang Ardavan, Stephen J. Blundell & John A. Schlueter Vol 449 4 October 2007 1038/nature 06182 Vortex Nernst enhanced Near Mott Insulator Summary • 2D organics - S and D wave Superconductors, • 1D organics - Singlet and Triplet superconductors, • Strong fields control dimensionality and coherence. • Organic Superconductors remain an exciting testing ground for low dimensional strongly interacting electrons with characteristic energies HTc/10 (TMTSF)2PF6 STILL MOST REMARKABLE ELECTRONIC MATERIAL?
© Copyright 2025 Paperzz