Assignment#1 ATS761:Land-AtmosphereInteractions DueTuesSept20 NOTE:thesetwoproblemsarenothard,butmaytakeyouquitealotoftimeifyou haven’twrittencomputerprogramsinalongtime.Myowncomputerprogramsfor theseproblemsareontheclasswebsite,andyoucanusetheseifyouwant.Itwill helpfocusyourreadingandclasstimeifyoureadthroughtheassignmentand startthinkingabouthowtosolvetheseproblems.I’veoutlinedprettymuchallyou havetodobelow. 1. Writeasimplecomputerprogramtocalculatethediurnalcycleof incomingsolarradiation(insolation)undercloudlessskiesforthe followinglocationsanddates: • FortCollins,COUSAonAugust21(P=855mb) • FortCollins,COUSAonFebruary21(P=845mb) • Mogadishu,SomaliaonMarch21(P=1010mb) • Wellington,NewZealandonOctober21(P=1010mb) Foreachlocationanddateabove,makeagraphofthesurface insolationforeachhourofthedayfrom0=midnightto23=11PM(local standardtime). Here’show: Intheabsenceofatmosphericscatteringandabsorption,thepowerofthe Sun’sradiationincidentonahorizontalsurfaceis S (Bonaneqn4.4) SH = C2 cos Z rv whereSC=1367Wm-2isthe“solarconstant,”rvisthe“radiusvector”(the ratiooftheactualdistancebetweentheSunandtheEarthtoitsannual average),andcosZisthecosineofthesolarzenithangle.Whenthecosineof thesolarzenithangleisnegative,theSunisbelowthehorizonandwecan justsettheincomingsolarradiationtozero. Thecosineofthesolarzenithangleis (Bonaneqn4.1) cos Z = sin φ sin δ + cos φ cos δ cos h where φ islatitude,disdeclination(latitudewheretheSunisdirectly overheadatnoon),andhisthehourangle(h=0atnoon,h=p/2at6PM,h= patmidnight,h=3p/2at6AM). Tocalculatethehourangle,simplycompute 1 Assignment#1 ATS761:Land-AtmosphereInteractions h = −π + DueTuesSept20 LST 2 π 24 whereLSTislocalsolartime. Declination(latitudeofthesub-Solarpoint)isgivenby δ = ε sin θ whereeisthetiltoftheEarth’saxis(currentlye=0.4091radians)andqis theangular(seasonal)positionofEarthinit’sorbit.Theseasonalposition angleq ismeasuredfromthevernalequinox(March21),sothat θ = π 2 at theJunesolstice, θ = π attheautumnalequinox(Sept21),and θ = 3π 2 at theDecembersolstice. TheradiusvectordependsonboththepositionoftheEarthinitsorbitand the“shape”oftheorbititselfaccordingto: ! $ 1 R (1− e2 ) =# 0 &= rv " RE % [1+ ecos(θ − ϖ )] whereR0istheaverageSun-Earthdistance,REistheactualSun-Earth distance,eistheeccentricityofEarth’sorbit(deviationfromaperfectcircle), q istheseasonalpositionangle(seeabove),and ϖ istheanglebetweenthe orbitalpositionoftheEarth’sperihelionandthevernalequinox.Currently, e=0.0167and ϖ =1.7963.Seehttp://en.wikipedia.org/wiki/Insolationfora derivationanddiscussion. Thesolarbeamisalsoattenuatedbyatmosphericscatteringandabsorption. Inaclearsky,incomingsolarradiationattheEarth’ssurfacecanbe approximatedas: (Bonaneqn4.6) S = SH τ m whereSHistheincidentsolarradiationonahorizontalsurfaceabovethe atmosphere(definedabove),tistheatmospherictransmissivity,andmisthe airmassthroughwhichthesolarbeammustpass.Forthisproblem,assume t=0.7.Theairmassis 1 P (Bonaneqn4.7) m= cos Z PS 2 Assignment#1 ATS761:Land-AtmosphereInteractions DueTuesSept20 wherecosZisthecosineofthesolarzenithangle(definedabove),Pis atmosphericpressureandPS=1013.25mbistheatmosphericpressureat sealevel. 2. Writeasimplecomputerprogramtocalculatetheaverage“daily” variationofsurfacetemperatureontheEquatoroftheMoon! Here’show: TheMoonis“tidallylocked”totheEarthsothatthetimerequiredtorotate onceonitsaxisisexactlythesameastheperiodofitsorbitaroundtheEarth (thatis,thelengthoftheMoon’s“day”isthesameasthelengthofaLunar “month:”29Earthdays,12hours,44minutes). TheMoonhasnoatmosphere,andthe“tilt”ofitsaxisrelativetotheorbital planeoftheEarth-MoonsystemaroundtheSunisnegligible.Thereforethe calculationofinsolationattheLunarsurfaceismuchsimplerthantheone youdidfortheEarthinproblem1above.AssumingthatthetiltoftheMoon’s axisiszero,d=0.AccordingtoBonan’sequation4.1(above)then,atthe Moon’sequatorthecosineofthesolarzenithangleisjustequaltothecosine ofthehourangle.MuchsimplerthantheEarth! OnEarththesurfaceenergybudgetis ΔT ρc Δz = ( S ↓−S ↑+L ↓−L ↑) − H − λ E = G (Bonaneqn13.1) Δt Ontheleft-handside,risthedensityofthesoil(kgm-3),cistheheat capacityofthesoil(Jm-3K-1),DTisthechangeinsoiltemperature(Kelvin) overatimestep(Dt,seconds)foreachsoillayerwhosethicknessisDz (meters).Ontheright-handsidethefourtermsinsidetheparenthesesare shortwaveradiationdownandup,andlongwaveradiationdownandup.His theturbulentfluxofsensibleheat,listhelatentheatofevaporationofwater, Eistherateofevaporationofwaterfromthesurface,andGisthechangein groundheatstorage.AlltermsinthisequationhavetheunitsofWm-2. TheMoon’ssurfaceenergybudgetismuchsimpler!There’snowaterto evaporateandnoturbulentairtocarrysensibleheat.There’salittlebitof longwaveradiationemittedbytheEarththatheatstheMoon’ssurface,but onthefarside(whichweneversee)thisiszerosowecanneglectthis.Allof theupwardfluxofshortwaveradiationisjusttheincomingsolarradiation timestheMoon’salbedo.Tocalculateupwardlongwaveemissionwecan assumethesurfaceemitsasablackbody.SotheMoon’ssurfaceenergy budgetis 3 Assignment#1 ATS761:Land-AtmosphereInteractions ρc ΔT Δz = S ↓(1− albedo) − σ Ts 4 Δt DueTuesSept20 Invisiblewavelengths,theMoonissurprisinglydark,withanalbedoofjust 7%(likeasphalt!).AcrossthewholeSolarspectrumit’salittlebrighter,so pleaseusethebroadbandalbedoof11%. Tocalculatethetemperature,dividetheLunar“soil”into15layers.Makethe toplayerthinnest(0.02m=2cm),andthenmakeeachlayerunderneath1.5 timesasthickastheoneabove.Thiswillgetyou15lunarsoiltemperatures downtoabout17.5metersdepth. Thedownwardfluxofheatatthetopofeachlayerisproportionaltothe differenceintemperaturebetweenadjacentlayers: ΔT F ↑= −k (Bonaneqn9.1) Δz Theproportionalityconstantkiscalledthe“thermalconductivity.”The negativesignistherebecausethelayersarecounteddownfromthesurface buttheheatfluxisdefinedaspositiveupward,awayfromthesurface. Changesinsoiltemperaturearedeterminedbythedifferenceintheheatflux intoandoutofeachlayer.Thisiscalledthe“heatfluxdivergence:” ΔT ρc Δz = −(Fz − Fz+Δz ) (Bonaneqn9.2) Δt There’saniceworkedexampleofthisonBonanpage133.Thebookalso givestypicalvaluesofheatcapacityandthermalconductivityfordifferent kindsofsoil. TheLunar“soil”isactuallymadeupofmineralgrainsblastedtosmithereens bybillionsofyearsofimpactbombardment.UnlikeEarthsoils,thepore spaceisnotfilledwithwaterorair.It’sjustvacuum,sotheheatflowthrough thelunarsoilismuchslowerthanonEarth,dependingonconductanceand thermalradiationbetweenadjacentgrains! AccordingtoColozza(1991),thevolumetricheatcapacityoflunarregolithis about4.4millionJm-3K-1.Usethisvalueforrcintheequationabove.The thermalconductivityoflunar“soil”isonlyabout0.025Wm-1K-1.Thisis about100timeslessconductivethansoilsonEarth! Tocalculatethechangesintemperaturewithdepthandtimeyou’llneedto addsolarradiationtothesurface,subtractupwardlongwave,andstepthe heatfluxequationsforwardintime.You’llfindthatifyouuseatimestep 4 Assignment#1 ATS761:Land-AtmosphereInteractions DueTuesSept20 that’stoolong,thenumericalsolutionwillbecomeunstableandyou’llget crazyvalues(forexamplenegativetemperaturesKelvin).IfindIcanget awaywithatimestepofaboutanhour. 5
© Copyright 2026 Paperzz