Lecture 16: Double Integrals in Polar Coordinates - §12.3 April 10, 2012 (Tue) Lecture 16: Double Integrals in Polar Coordinates - §12.3 Review: One Property of Double Integrals I RR I Example: Find the area of the region R bounded by y = x and y = x 2 in the first quadrant. R 1 dA = A(R) = Area of R Lecture 16: Double Integrals in Polar Coordinates - §12.3 Review: Polar Coordinates I In polar coordinates, points are identified by their distance r from the origin (or pole) and their angle θ from the horizontal right axis. I To convert from polar to Cartesian coordinates: x = r cos θ, I y = r sin θ To convert from Cartesian to polar coordinates: p y r = x 2 + y 2 , θ = arctan x Lecture 16: Double Integrals in Polar Coordinates - §12.3 Reference: Graphing Polar Functions with Matlab Three techniques can be used to graph polar equations of the form r = f (θ): Matlab’s ezplot or polar command. The other is to use the polar to Cartesian transformations, x = r cos θ and y = r sin θ, and Matlab’s plot command. I Matlab’s ezpolar command: Sketch the graph of r = θ. I Matlab’s Polar Command: Sketch the graph of r = sin 2θ. 1. ezpolar(’theta’) or ezpolar(’theta’, [0, 2*pi]) 1. theta = linspace(0, 2*pi); 2. r = sin(2*theta); 3. polar(theta, r) I Matlab’s Plot Command: Sketch the graph of r = cos 5θ. 1. 2. 3. 4. I theta = linspace(0, 2*pi); r = cos(5*theta); x=r.*cos(theta); y=r.*sin(theta); plot(x,y) Some special polar functions: r = a + b cos θ, r 2 = a2 sin nθ Lecture 16: Double Integrals in Polar Coordinates - §12.3 Double integrals in polar coordinates I Area(R) = RR R 1 dA = RR R r dr dθ. Lecture 16: Double Integrals in Polar Coordinates - §12.3 Double integrals in polar coordinates RR Area(R) = I Example Find the area enclosed by one loop of the four-leaves rose r = cos 2θ. R 1 dA = RR I R r dr dθ. Lecture 16: Double Integrals in Polar Coordinates - §12.3 Double integrals in polar coordinates RR Area(R) = I Example Find the area enclosed by one loop of the four-leaves rose r = cos 2θ. Double Integral of f (r , θ) over R in polar coordinates I R 1 dA = RR I Z Z r dr dθ. Z Z Z f (r , θ) dA = R R β Z g2 (θ) f (r , θ) r dr dθ = R f (r , θ) r dr dθ α g1 (θ) Lecture 16: Double Integrals in Polar Coordinates - §12.3 Change to Polar Coordinates in a Double Integral I If f is continuous on a polar rectangle R given by 0 ≤ a ≤ r ≤ b and α ≤ θ ≤ β, then Z Z Z β b Z f (x, y ) dA = R f (r cos θ, r sin θ) r dr dθ α a Lecture 16: Double Integrals in Polar Coordinates - §12.3 Change to Polar Coordinates in a Double Integral I If f is continuous on a polar rectangle R given by 0 ≤ a ≤ r ≤ b and α ≤ θ ≤ β, then Z Z Z β b Z f (x, y ) dA = R I f (r cos θ, r sin θ) r dr dθ α a RR 2 Example Evaluate R (3x + 4y ) dA, where R is the region in the upper half-plane bounded by the circles x 2 + y 2 = 1 and x 2 + y 2 = 4. (Volume under the surface) Lecture 16: Double Integrals in Polar Coordinates - §12.3 Change to Polar Coordinates in a Double Integral I If f is continuous on a polar rectangle R given by 0 ≤ a ≤ r ≤ b and α ≤ θ ≤ β, then Z Z Z β b Z f (x, y ) dA = R I I f (r cos θ, r sin θ) r dr dθ α a RR 2 Example Evaluate R (3x + 4y ) dA, where R is the region in the upper half-plane bounded by the circles x 2 + y 2 = 1 and x 2 + y 2 = 4. (Volume under the surface) RR √ 1 Example Evaluate dxdy , where R is the disk R of diameter 1 centered at 1−x 2 −y 2 ( 12 , 0). Lecture 16: Double Integrals in Polar Coordinates - §12.3 Change to Polar Coordinates in a Double Integral I If f is continuous on a polar rectangle R given by 0 ≤ a ≤ r ≤ b and α ≤ θ ≤ β, then Z Z Z β b Z f (x, y ) dA = R I I a RR 2 Example Evaluate R (3x + 4y ) dA, where R is the region in the upper half-plane bounded by the circles x 2 + y 2 = 1 and x 2 + y 2 = 4. (Volume under the surface) RR √ 1 Example Evaluate dxdy , where R is the disk R of diameter 1 centered at I f (r cos θ, r sin θ) r dr dθ α 1−x 2 −y 2 ( 12 , 0). Read Example 2 and 4 in §12.3 Lecture 16: Double Integrals in Polar Coordinates - §12.3
© Copyright 2026 Paperzz