Possibly Useful Equations f¯ = mā f (t) = I0 ᾱ = X M̄0 an = bn = cos(a ± b) = cos(a) cos(b) ∓ sin(a) sin(b) a0 = e±iωt = cos(ωt) ± i sin(ωt) x(t) = aeiωn t + be−iωn t δL δ q̇i + Z ω0 π Z ω0 2π Z 2π ω0 i = 1, . . . , n K − ω 2 M X̄ = 0 2π ω0 Z p [C(ω, ζ)]2 + [S(ω, ζ)]2 ζ≈ δh 2ωn E = mc2 −1 t f (τ )h(t − τ )dτ x(t) = A= 0 Z f (t)dt 0 2 + 2 = 2 × 2 = 22 = 0b0010 = 0x2 √ f (t) sin(nω0 t)dt 0 x(0) x(N tp ) x(0) σ = ln x(tp ) σ ζ=√ 4π 2 + σ 2 σ ζ= 2π p ωp = ωn 1 − 2ζ 2 M Ẍ + C Ẋ + KX = F i≡ f (t) cos(nω0 t)dt 0 1 σ = ln N ωn2 ȳ sin(ωt) ωn2 − ω 2 det K − ω 2 M = 0 2π ω0 ω0 π x(t) = c + e−ζωn t [a cos(ωd t) + b sin(ωd t)] X δL δRD − = Qi , δ q̇i δqi bn sin(nω0 t) 1 X̃i = q Xi XiT M Xi −1 1 a b d −b = c d a ad − bc −c x(t) = e−ζωn t [a cos(ωd t) + b sin(ωd t)] √ −b ± b2 − 4ac x= 2a Z Z u dv = uv − v du d dt ∞ X n=1 V (ω, ζ) = e−ζωtn x(t) = a cos ωn t + b sin ωn t x(t) = an cos(nω0 t) + n=0 sin(a ± b) = sin(a) cos(b) ± cos(a) sin(b) δoc V = ∀ ∞ X t 0 −K −K −C B= −K 0 0 M f (t − τ )h(τ )dτ x(t) = 0 1 U T M U Ḧ + U T KU H = U T F cos ωt Possibly Useful Equations ¯ ¯ f f (ωn2 − ω) m (2ζωωn ) m cos ωt + sin ωt x(t) = − 2 (ωn − ω 2 )2 + (2ζωωn )2 (ωn2 − ω 2 )2 + (2ζωωn )2 " # f¯ 1 2ζωωn −1 p = cos (ωt − φ), where φ = tan m (ωn2 − ω 2 )2 + (2ζωωn )2 ωn2 − ω 2 s ωn4 + (2ζωωn )2 eiφ , where (ωn2 − ω 2 )2 + (2ζωωn )2 2ζωωn −1 2ζω −1 φ = φ1 − φ2 , where φ1 = tan and φ2 = tan ωn ωn2 − ω 2 g(ω) = s 1 + (2ζΩ)2 eiφ , where (1 − Ω2 )2 + (2ζΩ)2 2ζΩ −1 −1 φ = tan (2ζΩ) − tan 1 − Ω2 g(Ω) = 1 p e−iφ , where m (ωn2 − ω 2 )2 + (2ζωωn )2 2ζωωn −1 φ = tan ωn2 − ω 2 g(ω) = x(t) = eβω 2 cos(ωt − φ), (ωn2 − ω 2 )2 + (2ζωωn )2 2ζωωn −1 where φ = tan ωn2 − ω 2 p eβΩ2 p cos(ωt − φ), where (1 − Ω2 )2 + (2ζΩ)2 2ζΩ −1 φ = tan 1 − Ω2 x(t) = 2
© Copyright 2026 Paperzz