What the M stands for Piet Termonia 5 October 2012 50 years of the Institute for Theoretical Physics Leuven During my postdoc years in theory, 1997-1999: Ed Witten, 1998: Magic, Mystery, and Matrix, Notice of the AMS, 45, 1124-1129 Witten did not specify what the M stood for: "M can stand variously for magic, mystery or matrix, according to ones taste” In 1999 I got a job in the research department of the Royal Meteorological Institute (RMI) “Congratulations, and, At least you, will know what the M stands for ...” Walter Troost The Mother of all study objects Meteorologists like to zoom in on the planet Planetary waves 107 m synoptic cyclones 106 m hurricanes 105 m fronts Individual thunderstorm cells tornado’s 104 −105 m 103 m 100 m Wind gust 10−100 m Turbulence 10−2−10 m Molecular scale 10−7 m Bjerknes, 1904: weather prediction is a problem of mathematical physics 1: The condition of the atmosphere must be known at a specific time with sufficient accuracy 2: The laws must be known, with sufficient accuracy, which determine the development of one weather condition from another. Bjerknes, V. (1904) Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik. Meteorol. Z., 21, pp. 1–7 Planetary waves 107 m synoptic cyclones 106 m hurricanes 105 m fronts Individual thunderstorm cells tornado’s Write the equations somewhere here 104 −105 m 103 m 100 m Wind gust 10−100 m Turbulence 10−2−10 m Molecular scale 10−7 m Effective theories? Explaining the atmosphere as an application of mathematical physics? BUT, there are no analytical solutions of the full 3D system, Even if we idealize the problem by “forgetting” moisture. So, historically, one needed to wait for two ingredients: smart simplifications and computers (the ENIAC) Charney, J. G., Fjørtoft, R. and Von Neumann, J. (1950) Numerical integration of the barotropic vorticity equation. Tellus, 2, pp. 237– 254 The point of view of a modeler, today (I brutally simplify here) Planetary waves 107 m synoptic cyclones 106 m hurricanes 105 m fronts Numerical discretization, cut off, is here somewhere Individual thunderstorm cells tornado’s Wind gust Dynamical equations (filtered) 104 −105 m 103 m 100 m 10−100 m Parameterizations: ●Turbulent diffusion ●Radiation Turbulence 10−2−10 m ●Subgrid convection ●Microphysics −7 Molecular scale 10 m ●Clouds ●Interactions with the surfac Parameterizations are either empirical relations or brutal approximations, so VERY inaccurate! A Mystery ... The global energy cycle in the atmosphere Unit = W/m² 342 107 235 The equations (u²+v²)/2 37 2.5 2.5 78 198 Cp.T+φ 78 30 24 324 390 Lectures Atmospheric Modeling, J.-F. Geleyn, UGent Mystery ● ● ● ● ● In the atmosphere, the energy conversions in the parameterizations are one or two orders of magnitude larger than conversion of potential energy into kinetic energy of the dynamical equations. Why is the planet inhabitable? Why is life not blown away? Or put in a more scientific way, why is the atmosphere so inefficient in converting energy? One can apply a Darwinist reasoning here: it is a matter of fine tuning (gas constant, gravitation, rotation of the planet, ...), but this, nevertheless, poses a serious problem if one wants to make weather forecasts and climate scenario's (small errors in the conversions could blow the system)! For a long time it was thought that forecasts beyond two days (the time scale of synoptic systems) would not be possible because of this. The pessimists proved to be wrong ... Atmospheric Modeling, Jean-François Geleyn, UGent Some Magic Evolution in forecast skill: roughly every ten years we look 1 day further into the future WHY?: more observations and higher resolution, BUT also a steady process of mastering the fine tuning of our atmosphere and the feedbacks in the system! Grad (RT) with water vapour only; dx = 2.3km Grad (RT) with all species included Contributors: S. Malardel & Y. Bouteloup (sensitivity), R. Brožková & P. Smolíková (DFI problem) More theory Poincaré « Une cause très petite, qui nous échappe, détermine un effet considérable que nous ne pouvons pas ne pas voir, et alors nous disons que cet effet est dû au hasard. Si nous connaissions exactement les lois de la nature et la situation de l'univers à l'instant initial, nous pourrions prédire exactement la situation de ce même univers à un instant ultérieur. Mais, lors même que les lois naturelles n'auraient plus de secret pour nous, nous ne pourrions connaître la situation qu'approximativement. Si cela nous permet de prévoir la situation ultérieure avec la même approximation, c'est tout ce qu'il nous faut, nous disons que le phénomène a été prévu, qu'il est régi par des lois ; mais il n'en est pas toujours ainsi, il peut arriver que de petites différences dans les conditions initiales en engendrent de très grandes dans les phénomènes finaux ; une petite erreur sur les premières produirait une erreur énorme sur les derniers. La prédiction devient impossible et nous avons le phénomène fortuit. » Application to meteorology: Lorenz, 1963 Lorenz, Edward N., 1963: Deterministic Nonperiodic Flow. J. Atmos. Sci., 20, 130–141. Today we perturb the model runs to make probabilistic forecasts to make early warnings (ill. Pukkelpop run) and to increase their economic value (e.g. wind for energy production) Our model (ALADIN) adds skill to ECMWF's ECMWF Smet, G., P. Termonia and A. Deckmyn, 2012: Added economic value of limited area multi-EPS weather forecasting applications Tellus , A , 64 , 18901 Summary ● ● ● ● ● In essence, one can see atmospheric modeling as an exercise in mathematical physics (already put forth in 1904 by Bjerknes and many others later), but approached with a firm dosis of pragmatism. A second main innovation in our field is the introduction of probabilistic forecasts (based on theoretical insights of Poincaré and Lorenz and many others later) quantifying the inherent predictability of the system. The complexity of the models is strongly increasing (linked to the increased resolutions and new assimilated data) and this increasingly demands unique skills. A training in theoretical physics is an excellent basis! In our research department in the RMI we are actively recruiting theorists. And finally, Walter, you were right: in the past 13 years, according to my taste ... The M stands for Meteorology
© Copyright 2026 Paperzz