Inverse Sine, Cosine and Tangent Functions - (6.7) 1. Inverse Sine: Let fx sin x for " = t x t = . Then fx is an one-to-one function and f "1 x exists. 2 2 Definition: y sin "1 x means x sin y where " 1 t x t 1 and " = t y t = . 2 2 Note that: a. Domain D sin "1 x "1, 1 ; Range R sin "1 x " = , = 2 2 b. Zero: x 0, x-intercept: 0, 0 c. y "intercept: y 0 1.5 1 0.5 d. Graph -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 x0.6 0.8 1 -0.5 -1 -1.5 y sin "1 x, x in ¡"1, 1¢ Example Find the exact value: a. sin "1 1 2 e. sin "1 sin 7= 6 b. sin "1 1 c. sin "1 " 1 2 f. cos sin "1 " 1 2 a. sin "1 1 = because sin = 1 6 6 2 2 "1 = = b. sin 1 , because sin 1 2 2 " = , because sin " = " sin c. sin "1 " 1 4 4 2 1 d. sin "1 sin 3= sin "1 = 4 4 2 e. sin "1 sin 7= sin "1 " 1 " = 6 2 6 "1 = 1 f. cos sin " cos " cos = 4 4 2 3 g. tan sin "1 " tan " = " tan = 2 3 3 = 4 d. sin "1 sin 3= 4 g. tan sin "1 " " 1 2 1 2 " 3 Example Give the domain and range of the function. Sketch the graph of the function. 1 3 2 a. fx sin "1 3x b. gx 2 sin "1 1 x 3 c. hx "3 sin "1 2x a. fx sin "1 3x 1 " 1 t 3x t 1, " 1 t x t 1 , 3 3 1 1 D sin "1 3x " , 3 3 = Range: R sin "1 3x " , = 2 2 0.5 Domain: -0.3 -0.2 0 -0.1 0.1 x 0.2 0.3 -0.5 -1 b. gx 2 sin "1 1 x 3 3 Domain: " 1 t 1 x t 1, " 3 t x t 3, 3 D sin "1 1 x "3, 3 2 1 3 Range: 2 " = 2 t 2 sin "1 1 x 3 "1 1 x t= " = t 2 sin 3 R sin "1 1 x "=, = t2 = 2 -3 -2 -1 0 1 x 2 3 -1 -2 3 -3 c. hx "3 sin "1 2x Domain: " 1 t 2x t 1, " 1 t x t 1 , 2 2 D "3 sin "1 2x " 1 , 1 2 2 Range: "3 " = u "3 sin "1 2x u "3 = 2 2 "1 3= 3= " t "3 sin 2x t 2 2 3= R "3 sin "1 2x " , 3= 2 2 4 2 -0.4 -0.2 0 -2 -4 2. Inverse Cosine Let fx cos x for 0 t x t =. Then fx is an 1-1 function and f "1 x exists. Definition: y cos "1 x means x cos y where "1 t x t 1 and 0 t y t =. 2 0.2 x 0.4 Note that: a. Domain: D cos "1 x "1, 1 ; Range: R cos "1 x 0, = b. Zero: x 1, x-intercept: 1, 0 c. y "intercept: y = 2 3 2 1 d. Graph -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 x0.6 0.8 1 -1 -2 -3 y cos "1 x, x in ¡"1, 1¢ Example Find the exact value: a. cos "1 1 2 b. cos "1 1 e. cos "1 cos 7= 6 c. cos "1 " 1 2 f. cos cos "1 " 1 2 d. cos "1 cos 3= 4 g. tan cos "1 " 3 2 a. cos "1 1 = , because cos = 1 . 3 3 2 2 b. cos "1 1 0, because cos0 1. = " = 3= c. cos "1 " 1 2 4 4 3= "1 "1 d. cos cos cos " 1 3= 2 4 4 3 7= "1 "1 e. cos cos cos " 2 = " = 5= 6 6 6 3= 1 1 "1 f. cos cos " cos " 2 2 4 3 5= "1 g. tan cos " 2 tan " 1 6 3 Example Give the domain and range of the function. Sketch the graph of the function. c. hx "3 cos "1 2x a. fx cos "1 3x b. gx 2 cos "1 1 x 3 a. fx cos "1 3x 3 3 2 " 1 t 3x t 1, " 1 t x t 1 , 3 3 1 1 D cos "1 3x " , 3 3 Range: R cos "1 3x 0, = 1 Domain: -0.3 -0.2 -0.1 0.1 x0.2 0.3 -1 -2 -3 y cos "1 3x b. gx 2 cos "1 1 x 3 6 Domain: " 1 t 1 x t 1, " 3 t x t 3, 3 D cos "1 1 x "3, 3 4 2 3 Range: 20 t 2 cos "1 1 x t 2= 3 "1 1 x t 2= 0 t 2 cos 3 R cos "1 1 x 0, 2= -3 -2 -1 0 1 x 2 3 -2 -4 3 -6 c. hx "3 cos "1 2x 8 Domain: " 1 t 2x t 1, " 1 t x t 1 , 2 2 1 1 D "3 cos "1 2x " , 2 2 "1 Range: "30 u "3 cos 2x u "3= " 3= t "3 cos "1 2x t 0 R "3 cos "1 2x "3=, 0 6 4 2 -0.4 -0.2 -2 0.2 x -4 -6 -8 y "3 cos "1 2x 3. Inverse tangent Let fx tan x for " = x = . Then fx is an 1-1 function and f "1 x exists. 2 2 Definition: y tan "1 x means x tan y where ". x . and " = y = . 2 2 4 0.4 Note that: "=, = 2 2 a. Domain: D tan "1 x "., . ; Range: R tan "1 x b. Zero: x 0, x-intercept: 0, 0 c. y "intercept: y 0 d. Horizontal Asymptotes: y " = and y 2 = 2 1.5 1 0.5 e. Graph -4 0 -2 2 x 4 -0.5 -1 -1.5 y tan "1 x, x in "., . Example Find the exact value: a. tan "1 1 3 e. tan "1 tan 7= 6 b. tan "1 1 c. tan "1 " 1 3 f. cos tan "1 " 1 3 1 = , because tan "1 = 1 6 6 3 3 = = b. tan "1 1 , because tan 1 4 4 " = c. tan "1 " 1 6 3 d. tan "1 tan 3= tan "1 "1 " = 4 4 7= 1 "1 "1 e. tan tan tan " "= 3 6 6 f. cos tan "1 " 1 cos " = cos = 3 6 6 = 1 1 "1 g. tan tan " tan " " 3 3 6 d. tan "1 tan 3= 4 g. tan tan "1 " 3 3 a. tan "1 3 2 Example Give the domain and range of the function. Sketch the graph of the function. c. hx "3 tan "1 2x a. fx tan "1 3x b. gx 2 tan "1 1 x 3 a. fx tan "1 3x 5 1.5 1 "., . Domain: D tan "1 3x 0.5 "=, = 2 2 Range: R tan "1 3x -4 -2 0 2 x 4 -0.5 -1 -1.5 y tan "1 3x , x in "., . b. gx 2 tan "1 1 3 x 3 Domain: D 2 tan "1 1 3 x "., . Range: 2 " = t 2 tan "1 13 x 2 "= t 2 tan "1 13 x t = R 2 tan "1 1 3 x 2 t2 = 2 "=, = 1 -15 -10 0 -5 5 x 10 15 -1 -2 -3 y 2 tan "1 "1 1 3 x , x in "., . c. hx "3 tan 2x Domain: D "3 tan "1 2x 4 "., . Range: "3 " = u "3 tan "1 2x u "3 = 2 2 3= 3= "1 " t "3 tan 2x t 2 2 3= 3= R "3 tan "1 2x " , 2 2 2 -4 0 -2 2 x 4 -2 -4 y 2 tan "1 Example Find the exact value of the expression. 6 1 3 x , x in "., . c. cos sin "1 " 1 3 b. sin tan "1 1 2 a. sec sin "1 z d. tan cos "1 " 1 4 a. sec sin "1 z Let 2 sin "1 z . Then sin2 z z , 1 b. sin tan "1 1 2 "1 1 Let 2 tan . Then 2 tan2 1 , 2 sec sin "1 z sin tan "1 1 2 sec2 sin2 1 1 " z2 1 2 11 2 1 5 c. cos sin "1 " 1 3 "1 Let 2 sin " 1 . Then 2 is in the 4th quadrant and cos2 u 0. Let 2 be the reference angle of 3 2. Then cos sin "1 " 1 3 sin2 1 , 3 cos2 cos2 32 " 1 3 8 3 d. tan cos "1 " 1 4 "1 Let 2 cos " 1 . Then 2 is in the 2nd quadrant and tan2 t 0. Let 2 be the reference angle of 2. 4 Then cos2 1 . 4 tan cos "1 " 1 4 tan2 " tan2 " 42 " 1 " 15 1 4. Inverse Secant, Inverse Cosecant and Inverse Cotangent Relation of sec "1 x and cos "1 x : let y sec "1 x, then sec y x 1 1 "1 1 x cos y x, cos y x , y cos sec "1 x cos "1 1x Relation of csc "1 x and sin "1 x : let y csc "1 x, then csc y x 1 x, sin y 1 , y sin "1 1 x x sin y csc "1 x sin "1 1x Relation of cot "1 x and tan "1 x : let y cot "1 x, then cot y x 1 x, tan y 1 , y tan "1 1 x x tan y cot "1 x tan "1 1x Example Find the exact value of each expression. a. cot "1 "1 a. cot "1 "1 tan "1 "1 " = 4 7 b. csc "1 2 c. sec "1 " 2 3 b. csc "1 2 sin "1 1 2 c. sec "1 " 2 3 8 = 6 cos "1 3 2 = 6
© Copyright 2026 Paperzz