Integrating Rational functions by the Method of Partial fraction

Integrating Rational functions by the Method of Partial fraction Decomposition
By
Antony L. Foster
At times, especially in calculus, it is necessary, it is necessary to express a fraction as the sum of two or more others that
are simpler in form than the original. The simpler fractions thus obtained are called partial fractions. In this discussion,
we shall consider the problem of expressing a given fraction as the sum of partial fractions.
A rational function π‘Ÿπ‘Ÿ(π‘₯π‘₯) = 𝑁𝑁(π‘₯π‘₯)/𝐷𝐷(π‘₯π‘₯) is the quotient of two polynomials 𝑁𝑁(π‘₯π‘₯) π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐷𝐷(π‘₯π‘₯). We shall deal exclusively
with rational functions in this discussion, and we shall develop methods that apply only to proper rational fractions, that
is, those rational functions in which the numerator is of lower degree than the denominator.
In algebra, it is known that we can express any polynomial as the product of integral powers of linear and irreducible
quadratic factors. Consequently, every rational fraction belongs to one of the following four cases:
Case 1: All factors of the denominator are linear and none of them are repeated.
Case 2: All factors of the denominator are linear and some of them are repeated.
Case 3: The denominator contains irreducible quadratic factors none of which are repeated.
Case 4: The denominator contains irreducible quadratic factors some of which are repeated.
We shall employ the following theorem in the next four paragraphs, each of which concerns one of the four cases. The
proof of the theorem is omitted because it is beyond the scope of this discussions.
𝑁𝑁(π‘₯π‘₯ )
THEOREM: If a proper rational function π‘Ÿπ‘Ÿ(π‘₯π‘₯) = 𝐷𝐷(π‘₯π‘₯ ) in lowest terms is expressed as the sum of partial fractions, then:
1.
To every linear factor π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 of the denominator 𝐷𝐷(π‘₯π‘₯) that appears without repetition, there corresponds
a partial fractions
𝐴𝐴
𝐴𝐴
= π‘Žπ‘Ž
𝑏𝑏
π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏
π‘₯π‘₯ + π‘Žπ‘Ž
where 𝐴𝐴 is a constant.
2. To every factor (π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏)π‘˜π‘˜ of the denominator 𝐷𝐷(π‘₯π‘₯), there correspond the partial fractions
𝐴𝐴1
,
π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏
𝐴𝐴2
,
(π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏)2
𝐴𝐴3
,
(π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏)3
β‹― ,
π΄π΄π‘˜π‘˜
(π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏)π‘˜π‘˜
where 𝐴𝐴1 , 𝐴𝐴2 , … , π΄π΄π‘˜π‘˜ are constants.
3. To every irreducible quadratic factor π‘Žπ‘Žπ‘₯π‘₯ 2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 of the denominator 𝐷𝐷(π‘₯π‘₯)that appears without
repetition, there corresponds the partial fraction
𝐴𝐴𝐴𝐴 + 𝐡𝐡
+ 𝑏𝑏𝑏𝑏 + 𝑐𝑐
π‘Žπ‘Žπ‘₯π‘₯ 2
where 𝐴𝐴 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐡𝐡 are constants.
4. If π‘Žπ‘Žπ‘₯π‘₯ 2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 is irreducible, then to every factor (π‘Žπ‘Žπ‘₯π‘₯ 2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐)π‘˜π‘˜ of the denominator 𝐷𝐷(π‘₯π‘₯), there
correspond the partial fractions
𝐴𝐴1 π‘₯π‘₯ + 𝐡𝐡1
,
π‘Žπ‘Žπ‘₯π‘₯ 2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐
𝐴𝐴2 π‘₯π‘₯ + 𝐡𝐡2
π΄π΄π‘˜π‘˜ π‘₯π‘₯ + π΅π΅π‘˜π‘˜
,β‹―,
2
2
(π‘Žπ‘Žπ‘₯π‘₯ + 𝑏𝑏𝑏𝑏 + 𝑐𝑐)
(π‘Žπ‘Žπ‘₯π‘₯ 2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐)π‘˜π‘˜
where 𝐴𝐴1 , 𝐴𝐴2 , … , π΄π΄π‘˜π‘˜ , 𝐡𝐡1 , 𝐡𝐡2 , … , π΅π΅π‘˜π‘˜ are constants.
CASE 1
The Denominator 𝐷𝐷 (π‘₯π‘₯) of the proper rational function contains only distinct linear factors:
Example: Express the function
as the sum of partial fractions.
π‘Ÿπ‘Ÿ(π‘₯π‘₯ ) =
𝑁𝑁(π‘₯π‘₯)
𝐷𝐷(π‘₯π‘₯)
(2π‘₯π‘₯ 2 +π‘₯π‘₯+1)
= (π‘₯π‘₯+2)(3π‘₯π‘₯+1)(π‘₯π‘₯+3)
(1)
Solution: There are two methods of solution, the first of them is as follows:
METHOD I: Each factor of the denominator of π‘Ÿπ‘Ÿ(π‘₯π‘₯) is linear and appears only once. Hence, by part 1 of the theorem
above, the partial fractions are
𝐴𝐴
,
π‘₯π‘₯ + 2
Thus, we have
π‘Ÿπ‘Ÿ(π‘₯π‘₯) = (π‘₯π‘₯
2π‘₯π‘₯ 2 +π‘₯π‘₯+1
+2)(3π‘₯π‘₯ +1)(π‘₯π‘₯ +3)
𝐡𝐡
,
3π‘₯π‘₯ + 1
𝐴𝐴
𝐢𝐢
π‘₯π‘₯ + 3
𝐡𝐡
𝐢𝐢
= π‘₯π‘₯+2 + 3π‘₯π‘₯ +1 + π‘₯π‘₯ +3
(2)
in which 𝐴𝐴, 𝐡𝐡, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢 are to be determined so that (2) holds for every value of π‘₯π‘₯ except possibly for those that cause one
of the denominators to vanish. If we multiply each member of (2) by the LCD (π‘₯π‘₯ + 2)(3π‘₯π‘₯ + 1)(π‘₯π‘₯ + 3), we get
2π‘₯π‘₯ 2 + π‘₯π‘₯ + 1 = 𝐴𝐴(3π‘₯π‘₯ + 1)(π‘₯π‘₯ + 3) + 𝐡𝐡(π‘₯π‘₯ + 2)(π‘₯π‘₯ + 3) + 𝐢𝐢(π‘₯π‘₯ + 2)(3π‘₯π‘₯ + 1)
(3)
By performing the indicated multiplications and collecting the terms in (3), we have
2π‘₯π‘₯ 2 + π‘₯π‘₯ + 1 = (3𝐴𝐴 + 𝐡𝐡 + 3𝐢𝐢 )π‘₯π‘₯ 2 + (10𝐴𝐴 + 5𝐡𝐡 + 7𝐢𝐢 )π‘₯π‘₯ + (3𝐴𝐴 + 6𝐡𝐡 + 2𝐢𝐢)
If 𝐴𝐴, 𝐡𝐡, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢 are determined so that
(4)
3𝐴𝐴 + 𝐡𝐡 + 3𝐢𝐢 = 2
10𝐴𝐴 + 5𝐡𝐡 + 7𝐢𝐢 = 1
3𝐴𝐴 + 6𝐡𝐡 + 2𝐢𝐢 = 1
then both sides of (3) are identical, and, therefore, the equation is satisfied for every value of π‘₯π‘₯. Consequently, for the
values of 𝐴𝐴, 𝐡𝐡, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢 thus determined, (2) is true for every value of π‘₯π‘₯, with the possible exception of those for which a
denominator vanishes.
We can solve this system of three linear equations in 𝐴𝐴, 𝐡𝐡, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢 by methods learned in your elementary algebra
7
1
courses (make sure you know how to solve linear systems like that above) and obtain that 𝐴𝐴 = βˆ’ 5 , 𝐡𝐡 = 5 , 𝐢𝐢 = 2.
Therefore,
βˆ’7
1
2
2π‘₯π‘₯ 2 + π‘₯π‘₯ + 1
=
+
+
(π‘₯π‘₯ + 2)(3π‘₯π‘₯ + 1)(π‘₯π‘₯ + 3) 5 (π‘₯π‘₯ + 2) 5 (3π‘₯π‘₯ + 1) π‘₯π‘₯ + 3
(5)
METHOD II: We shall present a second method for determining 𝐴𝐴, 𝐡𝐡, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢 so that both sides of (2) are equal for all
1
values of π‘₯π‘₯ except possibly for π‘₯π‘₯ = βˆ’2, π‘₯π‘₯ = βˆ’3, π‘₯π‘₯ = βˆ’ 3 for which one of the denominators vanishes.
If the members of (2) are equal for all values of π‘₯π‘₯ with the possible exception of the three mentioned above, then the
members of (4) are equal for all values of π‘₯π‘₯ including these three. Since the right members of (3) and (4) are two forms
of the same polynomial, the two members of (3) are equal for all values of π‘₯π‘₯.
If we let π‘₯π‘₯ = βˆ’2, the coefficients of 𝐡𝐡 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢 in (3) vanish, and we have
1
Similarly, when π‘₯π‘₯ = βˆ’ 3, (3) becomes
Finally, if we let π‘₯π‘₯ = βˆ’3, we have
8 βˆ’ 2 + 1 = (βˆ’5)(1)𝐴𝐴
βˆ’5𝐴𝐴 = 7
7
𝐴𝐴 = βˆ’
5
5 8
2 1
βˆ’ + 1 = οΏ½ οΏ½ οΏ½ οΏ½ 𝐡𝐡
3 3
9 3
2 βˆ’ 3 + 9 = 40𝐡𝐡
40𝐡𝐡 = 8
1
𝐡𝐡 =
5
18 βˆ’ 3 + 1 = 8𝐢𝐢
8𝐢𝐢 = 16
𝐢𝐢 = 2
Hence, we have (5).
The use of the second method in case 1 enables us to avoid solving the system of equations which involves 𝐴𝐴, 𝐡𝐡, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢
as unknowns above and thus usually saves time and labor. It can frequently be employed to an advantage in other
cases; in particular, if a linear factor appears in the denominator of π‘Ÿπ‘Ÿ(π‘₯π‘₯)
FORMULA 1
οΏ½
𝐴𝐴
𝐴𝐴
𝑑𝑑𝑑𝑑 = ln |𝛼𝛼𝛼𝛼 + 𝑏𝑏| + 𝐢𝐢
𝛼𝛼
𝛼𝛼𝛼𝛼 + 𝛽𝛽
Illustration 1: Now in calculus, if we were asked to evaluated the indefinite integral
οΏ½
2π‘₯π‘₯ 2 + π‘₯π‘₯ + 1
𝑑𝑑𝑑𝑑
(π‘₯π‘₯ + 2)(3π‘₯π‘₯ + 1)(π‘₯π‘₯ + 3)
Then expressing the integrand as a sum of partial fractions as shown in (5) above, we can then write
οΏ½
βˆ’7
1
2
2π‘₯π‘₯ 2 + π‘₯π‘₯ + 1
𝑑𝑑𝑑𝑑 = οΏ½ οΏ½
+
+
οΏ½ 𝑑𝑑𝑑𝑑
(π‘₯π‘₯ + 2)(3π‘₯π‘₯ + 1)(π‘₯π‘₯ + 3)
5 (π‘₯π‘₯ + 2) 5 (3π‘₯π‘₯ + 1) π‘₯π‘₯ + 3
7
1
1
1
3
= βˆ’ οΏ½
𝑑𝑑𝑑𝑑 + οΏ½
𝑑𝑑𝑑𝑑 + 2 οΏ½
𝑑𝑑𝑑𝑑
5 π‘₯π‘₯ + 2
15 3π‘₯π‘₯ + 1
π‘₯π‘₯ + 3
7
1
= βˆ’ ln |π‘₯π‘₯ + 2| + ln |3π‘₯π‘₯ + 1 | + 2 ln |π‘₯π‘₯ + 3| + 𝐢𝐢
5
15
EXERCISES FOR DISTINCT LINEAR FACTORS (CASE 1)
Evaluate the indefinite integrals below by decomposing each of the integrands as a sum of partial fractions. These will
be Collected!
5π‘₯π‘₯+4
1. ∫ (π‘₯π‘₯βˆ’1)(π‘₯π‘₯
𝑑𝑑𝑑𝑑
+2)
2π‘₯π‘₯+5
2. ∫ (π‘₯π‘₯+1)(π‘₯π‘₯
𝑑𝑑𝑑𝑑
+3)
8π‘‘π‘‘βˆ’7
3. ∫ (2π‘‘π‘‘βˆ’1)(π‘‘π‘‘βˆ’2) 𝑑𝑑𝑑𝑑
5𝑦𝑦
4. ∫ (𝑦𝑦+1)(2𝑦𝑦
𝑑𝑑𝑑𝑑
βˆ’3)
π‘ π‘ βˆ’8
5. ∫ (3𝑠𝑠+2)(2π‘ π‘ βˆ’3) 𝑑𝑑𝑑𝑑
8π‘₯π‘₯βˆ’31
6. ∫ (π‘₯π‘₯+3)(2π‘₯π‘₯
𝑑𝑑𝑑𝑑
βˆ’5)
2𝑀𝑀 +7
7. ∫ (2𝑀𝑀
𝑑𝑑𝑑𝑑
+5)(𝑀𝑀 +3)
5𝑦𝑦 βˆ’3
8. ∫ (π‘¦π‘¦βˆ’5)(2𝑦𝑦
𝑑𝑑𝑑𝑑
+1)
16π‘žπ‘ž+12
9. ∫ 4π‘žπ‘ž 2 +4π‘žπ‘žβˆ’3 𝑑𝑑𝑑𝑑
π‘₯π‘₯ +8
10. ∫ 15π‘₯π‘₯ 2 βˆ’7π‘₯π‘₯ βˆ’2 𝑑𝑑𝑑𝑑
19π‘₯π‘₯ βˆ’46
11. ∫ 6π‘₯π‘₯ 2 βˆ’29π‘₯π‘₯ +35 𝑑𝑑𝑑𝑑
23π‘₯π‘₯ βˆ’10
12. ∫ 15π‘₯π‘₯ 2 +π‘₯π‘₯ βˆ’6 𝑑𝑑𝑑𝑑
2π‘₯π‘₯ 2 +4π‘₯π‘₯ βˆ’6
13. ∫ 2π‘₯π‘₯ 2 βˆ’3π‘₯π‘₯ βˆ’2 𝑑𝑑𝑑𝑑
6π‘₯π‘₯ 2 +9π‘₯π‘₯ βˆ’1
14. ∫ 3π‘₯π‘₯ 2
𝑑𝑑𝑑𝑑
+2π‘₯π‘₯ βˆ’1
15. ∫
6π‘₯π‘₯ 2 +3π‘₯π‘₯ βˆ’11
2π‘₯π‘₯ 2 +π‘₯π‘₯ βˆ’6
𝑑𝑑𝑑𝑑
6π‘₯π‘₯ 2 βˆ’14π‘₯π‘₯ +5
16. ∫ 6π‘₯π‘₯ 2 βˆ’13π‘₯π‘₯ +6 𝑑𝑑𝑑𝑑
5𝑦𝑦 2 +5𝑦𝑦 βˆ’4
17. ∫ (π‘¦π‘¦βˆ’1)(𝑦𝑦+1)(𝑦𝑦
𝑑𝑑𝑑𝑑
+2)
4𝑠𝑠 2 +2π‘ π‘ βˆ’18
18. ∫ (𝑠𝑠+2)(π‘ π‘ βˆ’1)(𝑠𝑠+3) 𝑑𝑑𝑑𝑑
3𝑑𝑑 2 βˆ’13π‘‘π‘‘βˆ’28
19. ∫ (𝑑𝑑+1)(𝑑𝑑+2)(π‘‘π‘‘βˆ’3) 𝑑𝑑𝑑𝑑
4πœƒπœƒ 2 +7πœƒπœƒ βˆ’6
20. ∫ (πœƒπœƒβˆ’2)(πœƒπœƒ
𝑑𝑑𝑑𝑑
+2)(πœƒπœƒ +1)
12π‘₯π‘₯ 2 βˆ’7
21. ∫ (π‘‹π‘‹βˆ’1)(2π‘₯π‘₯
𝑑𝑑𝑑𝑑
βˆ’1)(2π‘₯π‘₯ +3)
17𝑀𝑀 2 +18𝑀𝑀 βˆ’72
22. ∫ (𝑀𝑀+1)(2𝑀𝑀
𝑑𝑑𝑑𝑑
+5)(3𝑀𝑀 βˆ’1)
6𝑠𝑠 2 +25𝑠𝑠+6
23. ∫ (π‘ π‘ βˆ’3)(2π‘ π‘ βˆ’1)(2𝑠𝑠+3) 𝑑𝑑𝑑𝑑
7π‘Œπ‘Œ 2 βˆ’47π‘Œπ‘Œβˆ’72
24. ∫ (π‘Œπ‘Œ+5)(3π‘Œπ‘Œ+2)(2π‘Œπ‘Œβˆ’3) 𝑑𝑑𝑑𝑑
CASE 2
The Denominator 𝐷𝐷(π‘₯π‘₯) of the proper rational function contains only linear factors some of which repeat.
If the denominator of a proper rational function in factored form contains only linear factors, but one or more are
repeated, we use the method illustrated in the example below for expressing it as the sum of partial fractions.
Example: Decompose
into partial fractions.
𝑅𝑅(π‘₯π‘₯) =
3π‘₯π‘₯ 2 + 5π‘₯π‘₯ + 1
(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2)2
Solution: Again we have available two methods of solution; the following is the first one. By Part 1 of the theorem, we
must have the partial fraction
𝐴𝐴
π‘₯π‘₯ βˆ’ 1
corresponding to the linear factor π‘₯π‘₯ βˆ’ 1 of the denominator 𝐷𝐷 (π‘₯π‘₯) = (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2)2 , and by part 2 of the theorem, we
must also have the partial fractions
corresponding to the factor (π‘₯π‘₯ + 2)2 . Hence we have
𝐡𝐡
,
π‘₯π‘₯ + 2
𝐢𝐢
(π‘₯π‘₯ + 2)2
3π‘₯π‘₯ 2 + 5π‘₯π‘₯ + 1
𝐴𝐴
𝐡𝐡
𝐢𝐢
=
+
+
2
(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2)
π‘₯π‘₯ βˆ’ 1 π‘₯π‘₯ + 2 (π‘₯π‘₯ + 2)2
(1)
and we must find the values of 𝐴𝐴, 𝐡𝐡, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢so that the member of (1) are equal for all values of π‘₯π‘₯, with the possible
exception of π‘₯π‘₯ = 1 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž π‘₯π‘₯ = βˆ’2. The first step in this process is to multiply each member of (1) by (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2)2
and get
3π‘₯π‘₯ 2 + 5π‘₯π‘₯ + 1 = 𝐴𝐴(π‘₯π‘₯ + 2)2 + 𝐡𝐡(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2) + 𝐢𝐢(π‘₯π‘₯ βˆ’ 1)
3π‘₯π‘₯ 2 + 5π‘₯π‘₯ + 1 = (𝐴𝐴 + 𝐡𝐡)π‘₯π‘₯ 2 + (4𝐴𝐴 + 𝐡𝐡 + 𝐢𝐢 )π‘₯π‘₯ + 4𝐴𝐴 βˆ’ 2𝐡𝐡 βˆ’ 𝐢𝐢
(2)
(3)
The members of (3) will be equal for all values of π‘₯π‘₯ if 𝐴𝐴, 𝐡𝐡, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢 are determined so that the coefficients of the like
powers of π‘₯π‘₯ in the right and left members are equal. By equating the coefficients of π‘₯π‘₯ 2 , π‘₯π‘₯, and the two constant terms,
we obtain the following system of three linear equations in 𝐴𝐴, 𝐡𝐡, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢:
𝐴𝐴 + 𝐡𝐡 = 3
4𝐴𝐴 + 𝐡𝐡 + 𝐢𝐢 = 5
4𝐴𝐴 βˆ’ 2𝐡𝐡 βˆ’ 𝐢𝐢 = 1
The solutions of this system of equations is 𝐴𝐴 = 1, 𝐡𝐡 = 2, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢 = βˆ’1. Therefore,
1
2
1
3π‘₯π‘₯ 2 + 5π‘₯π‘₯ + 1
=
+
βˆ’
2
(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2)
π‘₯π‘₯ βˆ’ 1 π‘₯π‘₯ + 2 (π‘₯π‘₯ + 2)2
The second method of evaluating 𝐴𝐴, 𝐡𝐡, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢 is similar to the second method applicable to case 1. If the members of (2)
are equal for all values of π‘₯π‘₯, with the possible exception of π‘₯π‘₯ = 1 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž π‘₯π‘₯ = βˆ’2, then the members of (2) are equal for
all values of π‘₯π‘₯.
If we let π‘₯π‘₯ = 1, in (2), the coefficients of 𝐡𝐡 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢 vanish, and we have
3 + 5 + 1 = 32 𝐴𝐴
9𝐴𝐴 = 9
𝐴𝐴 = 1
If π‘₯π‘₯ = βˆ’2, the coefficients of 𝐴𝐴 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐡𝐡 vanish in (2), and we have
12 βˆ’ 10 + 1 = βˆ’3𝐢𝐢
βˆ’3𝐢𝐢 = 3
𝐢𝐢 = βˆ’1
Since there is no single value of π‘₯π‘₯ for which the coefficients of 𝐴𝐴 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢 vanish simultaneously in (2), we must resort to
another method to evaluate 𝐡𝐡. Since the members of (2) hold for all values of π‘₯π‘₯, we may substitute any convenient
value for this variable together with the values of 𝐴𝐴 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢 above in (2) and obtain an equation containing only 𝐡𝐡. So if
we let π‘₯π‘₯ = 0, 𝐴𝐴 = 1, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐢𝐢 = βˆ’1, (2) becomes
3(0)2 + 5(0) + 1 = (1 × 4) + (βˆ’1)(2)𝐡𝐡 + (βˆ’1)(βˆ’1)
1 = 5 βˆ’ 2𝐡𝐡
2𝐡𝐡 = 4
𝐡𝐡 = 2
FORMULA 2
𝐴𝐴
𝐴𝐴
οΏ½
𝑑𝑑𝑑𝑑 =
+ 𝐢𝐢,
(
)(
(𝛼𝛼𝛼𝛼 + 𝛽𝛽)π‘˜π‘˜
𝛼𝛼 1 βˆ’ π‘˜π‘˜ 𝛼𝛼𝛼𝛼 + 𝛽𝛽)π‘˜π‘˜βˆ’1
π‘˜π‘˜ β‰₯ 2
Illustration 2: Thus, in calculus, if we were asked to evaluate the indefinite integral
3π‘₯π‘₯ 2 + 5π‘₯π‘₯ + 1
οΏ½
𝑑𝑑𝑑𝑑
(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2)2
Then expressing the integrand as a sum of partial fractions would give us
οΏ½
1
2
1
3π‘₯π‘₯ 2 + 5π‘₯π‘₯ + 1
𝑑𝑑𝑑𝑑 = οΏ½ οΏ½
+
βˆ’
οΏ½ 𝑑𝑑𝑑𝑑
2
(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2)
π‘₯π‘₯ βˆ’ 1 π‘₯π‘₯ + 2 (π‘₯π‘₯ + 2)2
1
1
1
𝑑𝑑𝑑𝑑 + 2 οΏ½
𝑑𝑑𝑑𝑑 βˆ’ οΏ½
𝑑𝑑𝑑𝑑
= οΏ½
(π‘₯π‘₯ + 2)2
π‘₯π‘₯ + 2
π‘₯π‘₯ βˆ’ 1
= ln |π‘₯π‘₯ βˆ’ 1| + 2 ln |π‘₯π‘₯ + 2| +
1
+ 𝐢𝐢
π‘₯π‘₯ + 2
EXERCISES FOR REPEATED LINEAR FACTORS (CASE 2)
Evaluate the indefinite integrals below by decomposing each of the integrands as a sum of partial fractions. These will
be Collected!
2𝑑𝑑+5
1. ∫ (𝑑𝑑+1)2 𝑑𝑑𝑑𝑑
2. ∫
βˆ’2π‘₯π‘₯ +11
(π‘₯π‘₯βˆ’4)2
3π‘₯π‘₯+1
𝑑𝑑𝑑𝑑
3. ∫ (3π‘₯π‘₯βˆ’1)2 𝑑𝑑𝑑𝑑
4π‘₯π‘₯βˆ’5
4. ∫ (2π‘₯π‘₯βˆ’1)2 𝑑𝑑𝑑𝑑
5. ∫
27π‘₯π‘₯ 2 +21π‘₯π‘₯ +8
(3π‘₯π‘₯ +2)3
6. ∫
βˆ’4π‘₯π‘₯ 2 βˆ’5π‘₯π‘₯ +1
(π‘₯π‘₯+1)3
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
7. ∫
βˆ’16𝑧𝑧 2 +54π‘§π‘§βˆ’40
(2π‘§π‘§βˆ’3)3
8. ∫
20𝑠𝑠 2 βˆ’144𝑠𝑠+265
(2π‘ π‘ βˆ’7)3
𝑑𝑑𝑑𝑑
12𝑀𝑀 2 βˆ’9𝑀𝑀 +20
𝑑𝑑𝑑𝑑
9. ∫ (2𝑀𝑀
𝑑𝑑𝑑𝑑
+3)(3𝑀𝑀 βˆ’1)2
βˆ’8π‘₯π‘₯ 2 +35π‘₯π‘₯ +9
10. ∫ (2π‘₯π‘₯βˆ’1)(π‘₯π‘₯βˆ’4)2 𝑑𝑑𝑑𝑑
24π‘₯π‘₯ 2 βˆ’94π‘₯π‘₯ +88
11. ∫ (2π‘₯π‘₯βˆ’3)(3π‘₯π‘₯βˆ’5)2 𝑑𝑑𝑑𝑑
12. ∫
βˆ’22𝑇𝑇 2 +32𝑇𝑇+138
(5𝑇𝑇+2)(2π‘‡π‘‡βˆ’7)2
𝑑𝑑𝑑𝑑
βˆ’3𝑦𝑦 3 βˆ’9𝑦𝑦 2 +49𝑦𝑦 βˆ’25
13. ∫ (2𝑦𝑦
𝑑𝑑𝑑𝑑
βˆ’1)(𝑦𝑦 +2)(𝑦𝑦 βˆ’1)2
14. ∫
3π‘₯π‘₯ 3 βˆ’11π‘₯π‘₯ 2 βˆ’18π‘₯π‘₯ +46
(π‘₯π‘₯+3)(π‘₯π‘₯βˆ’2)(π‘₯π‘₯βˆ’1)2
βˆ’14𝑠𝑠 3 +14𝑠𝑠 2 +π‘ π‘ βˆ’7
𝑑𝑑𝑑𝑑
15. ∫ (2𝑠𝑠+1)(π‘ π‘ βˆ’4)(𝑠𝑠+1)2 𝑑𝑑𝑑𝑑
2𝑦𝑦 3 βˆ’5𝑦𝑦 2 βˆ’27𝑦𝑦 βˆ’24
16. ∫ (𝑦𝑦+1)(π‘¦π‘¦βˆ’1)(𝑦𝑦 2 𝑑𝑑𝑑𝑑
+2)
17. ∫
2π‘₯π‘₯ 2 +5π‘₯π‘₯ +1
(π‘₯π‘₯+1) 2
18. ∫
3𝑑𝑑 2 βˆ’16𝑑𝑑+20
(π‘‘π‘‘βˆ’3)2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
19. ∫
2𝑧𝑧 3 βˆ’10𝑧𝑧 2 +4𝑧𝑧+11
(2𝑧𝑧+1)(π‘§π‘§βˆ’2)2
𝑑𝑑𝑑𝑑
20. ∫
3π‘₯π‘₯ 3 βˆ’12π‘₯π‘₯ 2 βˆ’3π‘₯π‘₯ +10
(3π‘₯π‘₯βˆ’2)(π‘₯π‘₯βˆ’2)2
𝑑𝑑𝑑𝑑
CASE 3
The Denominator 𝐷𝐷(π‘₯π‘₯) of the proper rational function contains distinct irreducible quadratic factors .
If the first power of an irreducible quadratic function appears among the factors of the denominator of a rational
function that is to be decomposed into partial fractions, it must appear as the denominator of one of the partial
fractions. The numerator of the partial fraction that has the quadratic denominator must be a linear function. The
linear factors of the denominator enter exactly as in the previous two cases (case 1 and case 2).
Example 1: Decompose
𝐹𝐹(π‘₯π‘₯) =
14π‘₯π‘₯ 3 + 14π‘₯π‘₯ 2 βˆ’ 4π‘₯π‘₯ + 3
(3π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2)
into partial fractions.
Solution: The quadratic factor 3π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ + 1 is irreducible in the real numbers; hence it must be used as the denominator
of a partial fraction that has a linear function 𝐴𝐴𝐴𝐴 + 𝐡𝐡 for its numerator. Each of the linear factors will enter as a
denominator of a partial fraction with a constant numerator. Thus,
14π‘₯π‘₯ 3 + 14π‘₯π‘₯ 2 βˆ’ 4π‘₯π‘₯ + 3
𝐴𝐴𝐴𝐴 + 𝐡𝐡
𝐢𝐢
𝐷𝐷
=
+
+
2
2
(3π‘₯π‘₯ βˆ’ π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2)
3π‘₯π‘₯ βˆ’ π‘₯π‘₯ + 1 π‘₯π‘₯ βˆ’ 1 π‘₯π‘₯ + 2
(1)
In order to find the values of 𝐴𝐴, 𝐡𝐡, 𝐢𝐢, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐷𝐷 so that the members of (1) are equal, we first multiply each member of (1)
by (3π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2) and get
14π‘₯π‘₯ 3 + 14π‘₯π‘₯ 2 βˆ’ 4π‘₯π‘₯ + 3 = (𝐴𝐴𝐴𝐴 + 𝐡𝐡)(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2) + 𝐢𝐢 (3π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ + 1)(π‘₯π‘₯ + 2) + 𝐷𝐷 (3π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ 1) (2)
14π‘₯π‘₯ 3 + 14π‘₯π‘₯ 2 βˆ’ 4π‘₯π‘₯ + 3 = (𝐴𝐴 + 3𝐢𝐢 + 3𝐷𝐷)π‘₯π‘₯ 3 + (𝐴𝐴 + 𝐡𝐡 + 5𝐢𝐢 βˆ’ 4𝐷𝐷)π‘₯π‘₯ 2 + (βˆ’2𝐴𝐴 + 𝐡𝐡 βˆ’ 𝐢𝐢 + 2𝐷𝐷)π‘₯π‘₯ + (βˆ’2𝐡𝐡 +
2𝐢𝐢 βˆ’ 𝐷𝐷)
(3)
We may now obtain, by equating the coefficients of equal powers of π‘₯π‘₯, the four linear equations in 𝐴𝐴, 𝐡𝐡, 𝐢𝐢, and 𝐷𝐷 which
follow:
𝐴𝐴 + 3𝐢𝐢 + 3𝐷𝐷 = 14
𝐴𝐴 + 𝐡𝐡 + 5𝐢𝐢 βˆ’ 4𝐷𝐷 = 14
βˆ’2𝐴𝐴 + 𝐡𝐡 βˆ’ 𝐢𝐢 + 2𝐷𝐷 = βˆ’4
βˆ’2𝐡𝐡 + 2𝐢𝐢 βˆ’ 𝐷𝐷 = 3
The solution of this system can be obtained by Gaussian Elimination (which can be found in Precalculus and linear
algebra textbooks) or by solving the last equation for 𝐷𝐷 in terms of 𝐡𝐡 and 𝐢𝐢, replacing each 𝐷𝐷 in the other three
equations by this value, solving the resulting system of three linear equations in three unknowns, and finally, obtaining
the value of 𝐷𝐷 from the last equation. The solution thus obtained is 𝐴𝐴 = 2, 𝐡𝐡 = 1, 𝐢𝐢 = 3, 𝐷𝐷 = 1. Hence,
𝐹𝐹 (π‘₯π‘₯) =
14π‘₯π‘₯ 3 + 14π‘₯π‘₯ 2 βˆ’ 4π‘₯π‘₯ + 3
2π‘₯π‘₯ + 1
3
1
=
+
+
2
2
(3π‘₯π‘₯ βˆ’ π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2)
3π‘₯π‘₯ βˆ’ π‘₯π‘₯ + 1 π‘₯π‘₯ βˆ’ 1 π‘₯π‘₯ + 2
Example 2: Decompose
π‘Ÿπ‘Ÿ(π‘₯π‘₯) =
4π‘₯π‘₯ 4 + 4π‘₯π‘₯ 3 βˆ’ π‘₯π‘₯ 2 + π‘₯π‘₯ + 1
(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1)(π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ βˆ’ 3)(π‘₯π‘₯ + 1)
into partial fractions.
Solution
4π‘₯π‘₯ 4 + 4π‘₯π‘₯ 3 βˆ’ π‘₯π‘₯ 2 + π‘₯π‘₯ + 1
𝐴𝐴𝐴𝐴 + 𝐡𝐡
𝐢𝐢𝐢𝐢 + 𝐷𝐷
𝐸𝐸
=
+
+
(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1)(π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ βˆ’ 3)(π‘₯π‘₯ + 1) π‘₯π‘₯ 2 + π‘₯π‘₯ + 1 π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ βˆ’ 3 π‘₯π‘₯ + 1
(1)
After multiplying each member of (1) by (π‘₯π‘₯ 2 + π‘₯π‘₯ + 1)(π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ βˆ’ 3)(π‘₯π‘₯ + 1), we have
4π‘₯π‘₯ 4 + 4π‘₯π‘₯ 3 βˆ’ π‘₯π‘₯ 2 + π‘₯π‘₯ + 1 = (𝐴𝐴𝐴𝐴 + 𝐡𝐡)(π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ βˆ’ 3)(π‘₯π‘₯ + 1) + (𝐢𝐢𝐢𝐢 + 𝐷𝐷)(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1)(π‘₯π‘₯ + 1) + 𝐸𝐸(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1)(π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ βˆ’
3)
(2)
= (𝐴𝐴 + 𝐢𝐢 + 𝐸𝐸 )π‘₯π‘₯ 4 + (𝐡𝐡 + 2𝐢𝐢 + 𝐷𝐷)π‘₯π‘₯ 3 + (βˆ’4𝐴𝐴 + 2𝐢𝐢 + 2𝐷𝐷 βˆ’ 3𝐸𝐸 )π‘₯π‘₯ 2 + (βˆ’3𝐴𝐴 βˆ’ 4𝐡𝐡 + 𝐢𝐢 + 2𝐷𝐷 βˆ’ 4𝐸𝐸 )π‘₯π‘₯ + (βˆ’3𝐡𝐡 + 𝐷𝐷 βˆ’
3𝐸𝐸)
(3)
We can obtain the following system of equations by equating the coefficients of the equal powers of π‘₯π‘₯:
𝐴𝐴 + 𝐢𝐢 + 𝐸𝐸 = 4
𝐡𝐡 + 2𝐢𝐢 + 𝐷𝐷 = 4
βˆ’4𝐴𝐴 + 2𝐢𝐢 + 2𝐷𝐷 βˆ’ 3𝐸𝐸 = βˆ’1
βˆ’3𝐴𝐴 βˆ’ 4𝐡𝐡 + 𝐢𝐢 + 2𝐷𝐷 βˆ’ 4𝐸𝐸 = 1
βˆ’3𝐡𝐡 + 𝐷𝐷 βˆ’ 3𝐸𝐸 = 1
The solution of this system can be obtained by Gaussian elimination or by obtaining an expression for 𝐷𝐷 in terms of
𝐡𝐡 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐸𝐸 from the last equation, substituting this for 𝐷𝐷 in the other four equations, thus getting a system of four linear
equations in four unknowns, and solving the system by any of the available methods. The method suggested in Example
1 can be used. The solution is 𝐴𝐴 = 1, 𝐡𝐡 = βˆ’1, 𝐢𝐢 = 2, 𝐷𝐷 = 1, 𝐸𝐸 = 1. Therefore,
π‘₯π‘₯ βˆ’ 1
2π‘₯π‘₯ + 1
1
4π‘₯π‘₯ 4 + 4π‘₯π‘₯ 3 βˆ’ π‘₯π‘₯ 2 + π‘₯π‘₯ + 1
= 2
+ 2
+
2
2
(π‘₯π‘₯ + π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ π‘₯π‘₯ βˆ’ 3)(π‘₯π‘₯ + 1) π‘₯π‘₯ + π‘₯π‘₯ + 1 π‘₯π‘₯ βˆ’ π‘₯π‘₯ βˆ’ 3 π‘₯π‘₯ + 1
FORMULA 3
οΏ½
𝛼𝛼π‘₯π‘₯ 2
2
⎧
βŽͺ
βŽͺ
οΏ½4𝛼𝛼𝛼𝛼
βˆ’ 𝛽𝛽2
2𝛼𝛼𝛼𝛼 + 𝛽𝛽
tanβˆ’1 οΏ½
οΏ½ + 𝐢𝐢 𝑖𝑖𝑖𝑖 𝛽𝛽2 βˆ’ 4𝛼𝛼𝛼𝛼 < 0
οΏ½4𝛼𝛼𝛼𝛼 βˆ’ 𝛽𝛽2
1
𝑑𝑑𝑑𝑑 =
+ 𝛽𝛽𝛽𝛽 + 𝛾𝛾
⎨
2𝛼𝛼𝛼𝛼 + 𝛽𝛽 βˆ’ �𝛽𝛽2 βˆ’ 4𝛼𝛼𝛼𝛼
1
βŽͺ
οΏ½ + 𝐢𝐢 𝑖𝑖𝑖𝑖 𝛽𝛽2 βˆ’ 4𝛼𝛼𝛼𝛼 > 0
ln οΏ½
βŽͺ 2
2
2𝛼𝛼𝛼𝛼 + 𝛽𝛽 + �𝛽𝛽 βˆ’ 4𝛼𝛼𝛼𝛼
βŽ©οΏ½π›½π›½ βˆ’ 4𝛼𝛼𝛼𝛼
FORMULA 4
οΏ½
𝛼𝛼π‘₯π‘₯ 2
π‘₯π‘₯
1
𝛽𝛽
1
οΏ½ 2
𝑑𝑑𝑑𝑑 =
ln |𝛼𝛼π‘₯π‘₯ 2 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾| βˆ’
𝑑𝑑𝑑𝑑
+ 𝛽𝛽𝛽𝛽 + 𝛾𝛾
2𝛼𝛼
2𝛼𝛼 𝛼𝛼π‘₯π‘₯ + 𝛽𝛽𝛽𝛽 + 𝛾𝛾
Illustration 3: Find the indefinite integral
οΏ½
14π‘₯π‘₯ 3 + 14π‘₯π‘₯ 2 βˆ’ 4π‘₯π‘₯ + 3
𝑑𝑑𝑑𝑑
(3π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2)
Solution: By expressing the integrand as a sum of partial fractions as seen in Example 1 just above, we have
οΏ½
2π‘₯π‘₯ + 1
3
1
14π‘₯π‘₯ 3 + 14π‘₯π‘₯ 2 βˆ’ 4π‘₯π‘₯ + 3
𝑑𝑑𝑑𝑑 = οΏ½ οΏ½ 2
+
+
οΏ½ 𝑑𝑑𝑑𝑑
2
(3π‘₯π‘₯ βˆ’ π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 2)
3π‘₯π‘₯ βˆ’ π‘₯π‘₯ + 1 π‘₯π‘₯ βˆ’ 1 π‘₯π‘₯ + 2
=οΏ½
2π‘₯π‘₯ + 1
1
1
𝑑𝑑𝑑𝑑 + 3 οΏ½
𝑑𝑑𝑑𝑑 + οΏ½
𝑑𝑑𝑑𝑑
2
3π‘₯π‘₯ βˆ’ π‘₯π‘₯ + 1
π‘₯π‘₯ βˆ’ 1
π‘₯π‘₯ + 2
= οΏ½
= 2οΏ½
3π‘₯π‘₯ 2
2π‘₯π‘₯ + 1
𝑑𝑑𝑑𝑑 + 3 ln|π‘₯π‘₯ βˆ’ 1| + ln|π‘₯π‘₯ + 2| + 𝐢𝐢
βˆ’ π‘₯π‘₯ + 1
3π‘₯π‘₯ 2
1
π‘₯π‘₯
𝑑𝑑𝑑𝑑 + οΏ½ 2
𝑑𝑑𝑑𝑑 + 3 ln|π‘₯π‘₯ βˆ’ 1| + ln|π‘₯π‘₯ + 2| + 𝐢𝐢
βˆ’ π‘₯π‘₯ + 1
3π‘₯π‘₯ βˆ’ π‘₯π‘₯ + 1
4
1
1
𝑑𝑑𝑑𝑑 + 3 ln|π‘₯π‘₯ βˆ’ 1| + ln|π‘₯π‘₯ + 2| + 𝐢𝐢
= ln|3π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ + 1| + οΏ½ 2
3 3π‘₯π‘₯ βˆ’ π‘₯π‘₯ + 1
3
=
8
6π‘₯π‘₯ βˆ’ 1
1
ln|3π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ + 1| +
tanβˆ’1 οΏ½
οΏ½ + 3 ln|π‘₯π‘₯ βˆ’ 1| + ln|π‘₯π‘₯ + 2| + 𝐢𝐢
3
3√11
√11
Illustration 4 : Suppose that in calculus we are asked to find
οΏ½
4π‘₯π‘₯ 4 + 4π‘₯π‘₯ 3 βˆ’ π‘₯π‘₯ 2 + π‘₯π‘₯ + 1
𝑑𝑑𝑑𝑑
(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1)(π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ βˆ’ 3)(π‘₯π‘₯ + 1)
Solution: By decomposing the integrand as a sum of partial fractions (using case 1, case 3) as shown in Example 2 above,
we have
οΏ½
π‘₯π‘₯ βˆ’ 1
2π‘₯π‘₯ + 1
1
4π‘₯π‘₯ 4 + 4π‘₯π‘₯ 3 βˆ’ π‘₯π‘₯ 2 + π‘₯π‘₯ + 1
𝑑𝑑𝑑𝑑 = οΏ½ οΏ½ 2
+ 2
+
οΏ½ 𝑑𝑑𝑑𝑑
(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1)(π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ βˆ’ 3)(π‘₯π‘₯ + 1)
π‘₯π‘₯ + π‘₯π‘₯ + 1 π‘₯π‘₯ βˆ’ π‘₯π‘₯ βˆ’ 3 π‘₯π‘₯ + 1
=οΏ½
π‘₯π‘₯ 2
2π‘₯π‘₯ + 1
1
π‘₯π‘₯ βˆ’ 1
𝑑𝑑𝑑𝑑 + οΏ½ 2
𝑑𝑑𝑑𝑑 + οΏ½
𝑑𝑑𝑑𝑑
+ π‘₯π‘₯ + 1
π‘₯π‘₯ βˆ’ π‘₯π‘₯ βˆ’ 3
π‘₯π‘₯ + 1
2π‘₯π‘₯ + 1
1
1
οΏ½ + ln|π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ βˆ’ 3| + 2 οΏ½ 2
𝑑𝑑𝑑𝑑 + ln|π‘₯π‘₯ + 1| + 𝐢𝐢
= ln|π‘₯π‘₯ 2 + π‘₯π‘₯ + 1| βˆ’ √3 tanβˆ’1 οΏ½
π‘₯π‘₯ βˆ’ π‘₯π‘₯ βˆ’ 3
2
√3
1
2π‘₯π‘₯ + 1
2
2π‘₯π‘₯ βˆ’ 1 βˆ’ √13
οΏ½ + ln |π‘₯π‘₯ + 1| + 𝐢𝐢
= ln |π‘₯π‘₯ 2 + π‘₯π‘₯ + 1| βˆ’ √3 tanβˆ’1 οΏ½
οΏ½ + ln|π‘₯π‘₯ 2 βˆ’ π‘₯π‘₯ βˆ’ 3| +
ln οΏ½
2
√3
√13 2π‘₯π‘₯ βˆ’ 1 + √13
EXERCISES FOR DISTINCT IRREDUCIBLE QUADRATIC FACTORS (CASE 3)
Find the following indefinite integral by decomposing the integrand into partial fractions
3π‘₯π‘₯ 2 βˆ’10π‘₯π‘₯ +16
1. ∫ (π‘₯π‘₯βˆ’3)(π‘₯π‘₯ 2 +π‘₯π‘₯ +1) 𝑑𝑑𝑑𝑑
βˆ’2π‘₯π‘₯ +5
2. ∫ (π‘₯π‘₯βˆ’1)(π‘₯π‘₯ 2 +2) 𝑑𝑑𝑑𝑑
5π‘₯π‘₯ 2 +π‘₯π‘₯+2
3. ∫ (π‘₯π‘₯+1)(π‘₯π‘₯ 2 +1) 𝑑𝑑𝑑𝑑
π‘₯π‘₯ 2 βˆ’4π‘₯π‘₯ βˆ’3
4. ∫ (2π‘₯π‘₯βˆ’3)(π‘₯π‘₯ 2
𝑑𝑑𝑑𝑑
βˆ’π‘₯π‘₯βˆ’3)
5π‘₯π‘₯ 3 +14π‘₯π‘₯ 2 +71π‘₯π‘₯ +14
5. ∫ (π‘₯π‘₯+5)(2π‘₯π‘₯
𝑑𝑑𝑑𝑑
βˆ’1)(π‘₯π‘₯ 2 βˆ’3)
π‘₯π‘₯ 3 +11π‘₯π‘₯ 2 +13π‘₯π‘₯ βˆ’5
6. ∫ (π‘₯π‘₯βˆ’3)(3π‘₯π‘₯
𝑑𝑑𝑑𝑑
+1)(π‘₯π‘₯ 2 βˆ’π‘₯π‘₯ +2)
βˆ’9π‘₯π‘₯ 3 +19π‘₯π‘₯ 2 +2π‘₯π‘₯ +3
7. ∫ (2π‘₯π‘₯βˆ’3)(π‘₯π‘₯+2)(π‘₯π‘₯ 2 +3) 𝑑𝑑𝑑𝑑
5π‘₯π‘₯ 3 βˆ’31π‘₯π‘₯ 2 βˆ’3π‘₯π‘₯βˆ’23
8. ∫ (3π‘₯π‘₯βˆ’1)(π‘₯π‘₯βˆ’3)(π‘₯π‘₯ 2 +3π‘₯π‘₯ +4) 𝑑𝑑𝑑𝑑
9. ∫
3π‘₯π‘₯ 3 βˆ’10π‘₯π‘₯ 2 +9π‘₯π‘₯ βˆ’6
(π‘₯π‘₯βˆ’1)2 (π‘₯π‘₯ 2 +1)
𝑑𝑑𝑑𝑑
10. ∫
–π‘₯π‘₯ 3 +8π‘₯π‘₯ 2 +2π‘₯π‘₯ βˆ’19
(π‘₯π‘₯βˆ’2) 2 (π‘₯π‘₯ 2 +5)
11. ∫
4π‘₯π‘₯ 3 βˆ’11π‘₯π‘₯ 2 +12π‘₯π‘₯ βˆ’12
(π‘₯π‘₯βˆ’2)2 (π‘₯π‘₯ 2 +π‘₯π‘₯+1)
12. ∫
𝑑𝑑𝑑𝑑
10π‘₯π‘₯ 3 +3π‘₯π‘₯ 2 βˆ’19π‘₯π‘₯ +12
(2π‘₯π‘₯βˆ’1)2 (π‘₯π‘₯ 2 +π‘₯π‘₯βˆ’3)
2π‘₯π‘₯ 3 βˆ’8π‘₯π‘₯ +4
13. ∫ (π‘₯π‘₯ 2 +2)(π‘₯π‘₯ 2 βˆ’2) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
3π‘₯π‘₯ 3 βˆ’3π‘₯π‘₯ 2 βˆ’4π‘₯π‘₯ βˆ’14
14. ∫ (π‘₯π‘₯ 2 βˆ’5)(π‘₯π‘₯ 2 βˆ’π‘₯π‘₯+3) 𝑑𝑑𝑑𝑑
–π‘₯π‘₯ 3 βˆ’13π‘₯π‘₯ 2 +9
15. ∫ (π‘₯π‘₯ 2 +3)(π‘₯π‘₯ 2 βˆ’3π‘₯π‘₯βˆ’3) 𝑑𝑑𝑑𝑑
3π‘₯π‘₯ 3 βˆ’10π‘₯π‘₯ 2 +7π‘₯π‘₯ βˆ’3
16. ∫ (π‘₯π‘₯ 2 +1)(π‘₯π‘₯ 2 βˆ’3π‘₯π‘₯βˆ’1) 𝑑𝑑𝑑𝑑
17. ∫
6π‘₯π‘₯ 3 βˆ’9π‘₯π‘₯ 2 +33π‘₯π‘₯ βˆ’64
(2π‘₯π‘₯ βˆ’3)(π‘₯π‘₯ 2 +5)
𝑑𝑑𝑑𝑑
18. ∫
2π‘₯π‘₯ 3 βˆ’10π‘₯π‘₯ 2 +11π‘₯π‘₯ +19
(π‘₯π‘₯βˆ’5)(2π‘₯π‘₯ 2 βˆ’3π‘₯π‘₯ +2)
19. ∫
π‘₯π‘₯ 3 +4π‘₯π‘₯ 2 βˆ’7π‘₯π‘₯ +6
(π‘₯π‘₯βˆ’1)(π‘₯π‘₯ 2 +1)
20. ∫
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
2π‘₯π‘₯ 3 +4π‘₯π‘₯ 2 βˆ’11π‘₯π‘₯ βˆ’19
(π‘₯π‘₯+4)(π‘₯π‘₯ 2 βˆ’3)
𝑑𝑑𝑑𝑑
CASE 4
The Denominator 𝐷𝐷(π‘₯π‘₯) of the proper rational function contains repeated irreducible quadratic factors .
The final case to be considered (case 4) is that in which the factors of the denominator of the given proper rational
function contains powers of one or more irreducible quadratic factors. By part 4 of the theorem in the beginning of this
discussion, to every factor of the type (𝛼𝛼π‘₯π‘₯ 2 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾)π‘˜π‘˜ appearing in the denominator of a rational function there
corresponds the partial fractions
𝐴𝐴1 π‘₯π‘₯ + 𝐡𝐡1
,
π‘Žπ‘Žπ‘₯π‘₯ 2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐
where 𝐴𝐴1 , 𝐴𝐴2 , … , π΄π΄π‘˜π‘˜ , 𝐡𝐡1 , 𝐡𝐡2 , … , π΅π΅π‘˜π‘˜ are constants.
𝐴𝐴2 π‘₯π‘₯ + 𝐡𝐡2
π΄π΄π‘˜π‘˜ π‘₯π‘₯ + π΅π΅π‘˜π‘˜
,β‹―,
2
2
(π‘Žπ‘Žπ‘₯π‘₯ + 𝑏𝑏𝑏𝑏 + 𝑐𝑐)
(π‘Žπ‘Žπ‘₯π‘₯ 2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐)π‘˜π‘˜
The linear and nonrepeated quadratic factors of the given denominator enter in the same manner as in cases 1 to 3. The
numerator of each partial fraction whose denominator contains a quadratic factor should be a linear function.
Example: Decompose the following fraction
into partial fractions.
6π‘₯π‘₯ 4 + 11π‘₯π‘₯ 3 + 18π‘₯π‘₯ 2 + 14π‘₯π‘₯ + 6
(π‘₯π‘₯ + 1)(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1)2
Solution: The denominator contains a linear function and the square of an irreducible quadratic function as factors;
hence we let
𝐴𝐴
𝐡𝐡𝐡𝐡 + 𝐢𝐢
𝐷𝐷𝐷𝐷 + 𝐸𝐸
6π‘₯π‘₯ 4 + 11π‘₯π‘₯ 3 + 18π‘₯π‘₯ 2 + 14π‘₯π‘₯ + 6
=
+ 2
+ 2
2
2
(π‘₯π‘₯ + 1)(π‘₯π‘₯ + π‘₯π‘₯ + 1)
π‘₯π‘₯ + 1 π‘₯π‘₯ + π‘₯π‘₯ + 1 (π‘₯π‘₯ + π‘₯π‘₯ + 1)2
and evaluate the undetermined constants after multiplying each member by (π‘₯π‘₯ + 1)(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1)2 . Thus
6π‘₯π‘₯ 4 + 11π‘₯π‘₯ 3 + 18π‘₯π‘₯ 2 + 14π‘₯π‘₯ + 6 = 𝐴𝐴(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1)2 + (𝐡𝐡𝐡𝐡 + 𝐢𝐢 )(π‘₯π‘₯ + 1)(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1) + (𝐷𝐷𝐷𝐷 + 𝐸𝐸 )(π‘₯π‘₯ + 1)
= (𝐴𝐴 + 𝐡𝐡)π‘₯π‘₯ 4 + (2𝐴𝐴 + 2𝐡𝐡 + 𝐢𝐢 )π‘₯π‘₯ 3 + (3𝐴𝐴 + 2𝐡𝐡 + 2𝐢𝐢 + 𝐷𝐷)π‘₯π‘₯ 2 + (2𝐴𝐴 + 𝐡𝐡 + 2𝐢𝐢 + 𝐷𝐷 + 𝐸𝐸 )π‘₯π‘₯ + (𝐴𝐴 + 𝐢𝐢 + 𝐸𝐸 ).
Therefore, by equating the coefficients of equal powers of π‘₯π‘₯, we obtain
𝐴𝐴 + 𝐡𝐡 = 6
2𝐴𝐴 + 2𝐡𝐡 + 𝐢𝐢 = 11
3𝐴𝐴 + 2𝐡𝐡 + 2𝐢𝐢 + 𝐷𝐷 = 18
2𝐴𝐴 + 𝐡𝐡 + 2𝐢𝐢 + 𝐷𝐷 + 𝐸𝐸 = 14
𝐴𝐴 + 𝐢𝐢 + 𝐸𝐸 = 6
We can solve this system by means of the method suggested in the solution of Example 2 in Case 3. The solution to this
system of equations is 𝐴𝐴 = 5, 𝐡𝐡 = 1, 𝐢𝐢 = βˆ’1, 𝐷𝐷 = 3, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐸𝐸 = 2. Therefore,
5
π‘₯π‘₯ βˆ’ 1
3π‘₯π‘₯ + 2
6π‘₯π‘₯ 4 + 11π‘₯π‘₯ 3 + 18π‘₯π‘₯ 2 + 14π‘₯π‘₯ + 6
=
+ 2
+ 2
2
2
(π‘₯π‘₯ + 1)(π‘₯π‘₯ + π‘₯π‘₯ + 1)
π‘₯π‘₯ + 1 π‘₯π‘₯ + π‘₯π‘₯ + 1 (π‘₯π‘₯ + π‘₯π‘₯ + 1)2
FORMULA 5
οΏ½
(𝛼𝛼π‘₯π‘₯ 2
1
2𝛼𝛼𝛼𝛼 + 𝛽𝛽
2𝛼𝛼
1
οΏ½ 2
𝑑𝑑𝑑𝑑 =
+
𝑑𝑑𝑑𝑑
2
2
2
2
(4𝛼𝛼𝛼𝛼 βˆ’ 𝛽𝛽 )(𝛼𝛼π‘₯π‘₯ + 𝛽𝛽𝛽𝛽 + 𝛾𝛾) 4𝛼𝛼𝛼𝛼 βˆ’ 𝛽𝛽
+ 𝛽𝛽𝛽𝛽 + 𝛾𝛾)
𝛼𝛼π‘₯π‘₯ + 𝛽𝛽𝛽𝛽 + 𝛾𝛾
FORMULA 6
οΏ½
(𝛼𝛼π‘₯π‘₯ 2
π‘₯π‘₯
𝛽𝛽𝛽𝛽 + 2𝛾𝛾
𝛽𝛽
1
οΏ½ 2
𝑑𝑑𝑑𝑑 = βˆ’
βˆ’
𝑑𝑑𝑑𝑑
2
2
2
2
(4𝛼𝛼𝛼𝛼 βˆ’ 𝛽𝛽 )(𝛼𝛼π‘₯π‘₯ + 𝛽𝛽𝛽𝛽 + 𝛾𝛾) 4𝛼𝛼𝛼𝛼 βˆ’ 𝛽𝛽
+ 𝛽𝛽𝛽𝛽 + 𝛾𝛾)
𝛼𝛼π‘₯π‘₯ + 𝛽𝛽𝛽𝛽 + 𝛾𝛾
FORMULA 7
οΏ½
2𝛼𝛼𝛼𝛼 + 𝛽𝛽
6𝛼𝛼 2 π‘₯π‘₯ + 3𝛼𝛼𝛼𝛼
6𝛼𝛼 2
1
1
οΏ½ 2
𝑑𝑑𝑑𝑑
=
+
+
𝑑𝑑𝑑𝑑
2
3
2
2
2
2
2
2
2
2
(4𝛼𝛼𝛼𝛼 βˆ’ 𝛽𝛽 ) (𝛼𝛼π‘₯π‘₯ + 𝛽𝛽𝛽𝛽 + 𝛾𝛾) (4𝛼𝛼𝛾𝛾 βˆ’ 𝛽𝛽 )
(𝛼𝛼π‘₯π‘₯ + 𝛽𝛽𝛽𝛽 + 𝛾𝛾)
2(4𝛼𝛼𝛾𝛾 βˆ’ 𝛽𝛽 )(𝛼𝛼π‘₯π‘₯ + 𝛽𝛽𝛽𝛽 + 𝛾𝛾)
𝛼𝛼π‘₯π‘₯ + 𝛽𝛽π‘₯π‘₯ + 𝛾𝛾
FORMULA 8
οΏ½
𝛽𝛽π‘₯π‘₯ + 2𝛾𝛾
6𝛼𝛼𝛽𝛽π‘₯π‘₯ + 3𝛽𝛽2
3𝛼𝛼𝛽𝛽
𝑑𝑑𝑑𝑑
π‘₯π‘₯
οΏ½ 2
𝑑𝑑𝑑𝑑
=
βˆ’
βˆ’
βˆ’
2
3
2
2
2
2
2
2
2
2
(𝛼𝛼π‘₯π‘₯ + 𝛽𝛽π‘₯π‘₯ + 𝛾𝛾)
2(4𝛼𝛼𝛾𝛾 βˆ’ 𝛽𝛽 ) (𝛼𝛼π‘₯π‘₯ + 𝛽𝛽π‘₯π‘₯ + 𝛾𝛾) (4𝛼𝛼𝛾𝛾 βˆ’ 𝛽𝛽 )
2(4𝛼𝛼𝛾𝛾 βˆ’ 𝛽𝛽 )(𝛼𝛼π‘₯π‘₯ + 𝛽𝛽π‘₯π‘₯ + 𝛾𝛾)
𝛼𝛼π‘₯π‘₯ + 𝛽𝛽π‘₯π‘₯ + 𝛾𝛾
Illustration 5: Find the indefinite integral
οΏ½
Solution
οΏ½
6π‘₯π‘₯ 4 + 11π‘₯π‘₯ 3 + 18π‘₯π‘₯ 2 + 14π‘₯π‘₯ + 6
𝑑𝑑𝑑𝑑
(π‘₯π‘₯ + 1)(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1)2
5
π‘₯π‘₯ βˆ’ 1
3π‘₯π‘₯ + 2
6π‘₯π‘₯ 4 + 11π‘₯π‘₯ 3 + 18π‘₯π‘₯ 2 + 14π‘₯π‘₯ + 6
𝑑𝑑𝑑𝑑 = οΏ½ οΏ½
+ 2
+ 2
οΏ½ 𝑑𝑑𝑑𝑑
2
2
(π‘₯π‘₯ + 1)(π‘₯π‘₯ + π‘₯π‘₯ + 1)
π‘₯π‘₯ + 1 π‘₯π‘₯ + π‘₯π‘₯ + 1 (π‘₯π‘₯ + π‘₯π‘₯ + 1)2
= 5οΏ½
= 5οΏ½
1
π‘₯π‘₯ βˆ’ 1
3π‘₯π‘₯ + 2
𝑑𝑑𝑑𝑑 + οΏ½ 2
𝑑𝑑𝑑𝑑 + οΏ½ 2
𝑑𝑑𝑑𝑑
(π‘₯π‘₯ + π‘₯π‘₯ + 1)2
π‘₯π‘₯ + 1
π‘₯π‘₯ + π‘₯π‘₯ + 1
1
π‘₯π‘₯ βˆ’ 1
π‘₯π‘₯
1
οΏ½
𝑑𝑑𝑑𝑑 + οΏ½ 2
𝑑𝑑𝑑𝑑 + 3 οΏ½ 2
𝑑𝑑𝑑𝑑
+
2
𝑑𝑑𝑑𝑑
(π‘₯π‘₯ + π‘₯π‘₯ + 1)2
(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1)2
π‘₯π‘₯ + 1
π‘₯π‘₯ + π‘₯π‘₯ + 1
1
2π‘₯π‘₯ + 1
3
2π‘₯π‘₯ + 1
1
1
= 5 ln|π‘₯π‘₯ + 1| + ln|π‘₯π‘₯ 2 + π‘₯π‘₯ + 1| βˆ’ √3 tanβˆ’1 οΏ½
οΏ½+ οΏ½ 2
𝑑𝑑𝑑𝑑 + οΏ½ 2
𝑑𝑑𝑑𝑑
2
2
2 (π‘₯π‘₯ + π‘₯π‘₯ + 1)
2 (π‘₯π‘₯ + π‘₯π‘₯ + 1)2
√3
1
2π‘₯π‘₯ + 1
3
1
1
= 5 ln|π‘₯π‘₯ + 1| + ln|π‘₯π‘₯ 2 + π‘₯π‘₯ + 1| βˆ’ √3 tanβˆ’1 οΏ½
οΏ½βˆ’
+ οΏ½ 2
𝑑𝑑𝑑𝑑
2
)
(
(
2
2 π‘₯π‘₯ + π‘₯π‘₯ + 1
2
π‘₯π‘₯ + π‘₯π‘₯ + 1)2
√3
1
2π‘₯π‘₯ + 1
3
1
4
2π‘₯π‘₯ + 1
2π‘₯π‘₯ + 1
βˆ’1
οΏ½
= 5 ln|π‘₯π‘₯ + 1| + ln|π‘₯π‘₯ 2 + π‘₯π‘₯ + 1| βˆ’ √3 tanβˆ’1 οΏ½
οΏ½βˆ’
+
+
tan
οΏ½
οΏ½οΏ½
2
2(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1) 2 3(π‘₯π‘₯ 2 + π‘₯π‘₯ + 1) 3√3
√3
√3
+ 𝐢𝐢
1
π‘₯π‘₯ βˆ’ 4
7
2π‘₯π‘₯ + 1
= 5 ln|π‘₯π‘₯ + 1| + ln|π‘₯π‘₯ 2 + π‘₯π‘₯ + 1| +
βˆ’
tanβˆ’1 οΏ½
� + 𝐢𝐢
2
2
3(π‘₯π‘₯ + π‘₯π‘₯ + 1) 3√3
√3
EXERCISE FOR REPEATED QUADRATIC FACTORS (CASE 4)
Find the value of each of the following integrals by decomposing the integrand in partial fractions. (These Problems will
be Collected!)
1. ∫
3π‘₯π‘₯ 3 +4π‘₯π‘₯ βˆ’5
(π‘₯π‘₯ 2 +2)2
𝑑𝑑𝑑𝑑
2. ∫
π‘₯π‘₯ 3 +2π‘₯π‘₯ 2 βˆ’3
(π‘₯π‘₯ 2 βˆ’2)2
3. ∫
2π‘₯π‘₯ 3 +π‘₯π‘₯ 2 +4π‘₯π‘₯ +1
(π‘₯π‘₯ 2 +π‘₯π‘₯+1)2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
4. ∫
2π‘₯π‘₯ 3 βˆ’π‘₯π‘₯ 2 βˆ’6π‘₯π‘₯ βˆ’8
(π‘₯π‘₯ 2 βˆ’π‘₯π‘₯βˆ’3)2
5. ∫
π‘₯π‘₯ 5 +2π‘₯π‘₯ 4 βˆ’3π‘₯π‘₯ 2 βˆ’3π‘₯π‘₯
(π‘₯π‘₯ 2 +π‘₯π‘₯βˆ’1)3
𝑑𝑑𝑑𝑑
6. ∫
π‘₯π‘₯ 5 βˆ’2π‘₯π‘₯ 4 +4π‘₯π‘₯ 3 βˆ’2π‘₯π‘₯ 2
(π‘₯π‘₯ 2 βˆ’π‘₯π‘₯ +1)3
7. ∫
π‘₯π‘₯ 5 +2π‘₯π‘₯ 3 βˆ’π‘₯π‘₯+3
(π‘₯π‘₯ 2 +1)3
8. ∫
π‘₯π‘₯ 3 +4π‘₯π‘₯ βˆ’5
(π‘₯π‘₯ 2 +2)3
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
π‘₯π‘₯ 4 βˆ’π‘₯π‘₯ 3 +1
9. ∫ π‘₯π‘₯ 2 (π‘₯π‘₯ 2 2 𝑑𝑑𝑑𝑑
+1)
10. ∫
2π‘₯π‘₯ 4 +13π‘₯π‘₯ 3 +13π‘₯π‘₯ 2 βˆ’12π‘₯π‘₯ +2
π‘₯π‘₯ 2 (π‘₯π‘₯ 2 +3π‘₯π‘₯ βˆ’1)2
𝑑𝑑π‘₯π‘₯
π‘₯π‘₯ 5 +π‘₯π‘₯ 4 βˆ’4π‘₯π‘₯+4
11. ∫ π‘₯π‘₯ 2 (π‘₯π‘₯ 2 βˆ’π‘₯π‘₯ +2)2 𝑑𝑑𝑑𝑑
12. ∫
βˆ’2π‘₯π‘₯ 5 βˆ’4π‘₯π‘₯ 4 +12π‘₯π‘₯ 3 +9π‘₯π‘₯ 2 βˆ’6π‘₯π‘₯ +1
π‘₯π‘₯ 2 (π‘₯π‘₯ 2 +3π‘₯π‘₯βˆ’1)2
13. ∫
4π‘₯π‘₯ 4 +π‘₯π‘₯ 3 βˆ’25π‘₯π‘₯ 2 βˆ’9π‘₯π‘₯ +30
(π‘₯π‘₯+2)(π‘₯π‘₯ 2 βˆ’3)2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
14. ∫
4π‘₯π‘₯ 4 βˆ’7π‘₯π‘₯ 3 +5π‘₯π‘₯ 2 βˆ’π‘₯π‘₯ +1
(2π‘₯π‘₯βˆ’1)(π‘₯π‘₯ 2 βˆ’π‘₯π‘₯ +1)2
15. ∫
3π‘₯π‘₯ 4 +2π‘₯π‘₯ 3 +8π‘₯π‘₯ 2 +7π‘₯π‘₯ +2
(π‘₯π‘₯βˆ’1)(π‘₯π‘₯ 2 +2)2
16. ∫
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
π‘₯π‘₯ 4 βˆ’5π‘₯π‘₯ 2 βˆ’10π‘₯π‘₯ 2 +26π‘₯π‘₯ +33
(π‘₯π‘₯+3)(π‘₯π‘₯ 2 βˆ’π‘₯π‘₯βˆ’3)2
𝑑𝑑𝑑𝑑
THE END