856 CHAPTER 7 SOLUTION TECHNIQUES OF INTEGRATION Let t.y/ D sinh!1 .tan y/. Then t 0 .y/ D For 0 " y < ! 2, cos2 y p 1 tan2 y C1 D cos2 y 1 q 1 cos2 y D 1 cos2 y ! 1 j cos yj D 1 D j sec yj: j cos yj sec y > 0; therefore t 0 .y/ D sec y. Integrating this last relation yields Z y 1 t.y/ # t.a/ D dt: cos t a For this to be of the desired form, we must have t.a/ D sinh!1 .tan a/ D 0. The only value for a that satisfies this equation is a D 0. 49. The relations cosh.it/ D cos t and sinh.it/ D i sin t were discussed in the Excursion. Use these relations to show that the identity cos2 t C sin2 t D 1 results from setting x D it in the identity cosh2 x # sinh2 x D 1. SOLUTION Let x D it. Then cosh2 x D .cosh.it//2 D cos2 t and sinh2 x D .sinh.it//2 D i 2 sin2 t D # sin2 t: Thus, 1 D cosh2 .it/ # sinh2 .it/ D cos2 t # .# sin2 t/ D cos2 t C sin2 t; as desired. 7.5 The Method of Partial Fractions PreliminaryR Questions 1. Suppose that f .x/ dx D ln x C p x C 1 C C . Can f .x/ be a rational function? Explain. SOLUTION No, f .x/ cannot be a rational function because the integral of a rational function cannot contain a term with a nonp integer exponent such as x C 1. 2. Which of the following are proper rational functions? x (a) x#3 x 2 C 12 (c) .x C 2/.x C 1/.x # 3/ (b) (d) 4 9#x 4x 3 # 7x .x # 3/.2x C 5/.9 # x/ SOLUTION (a) (b) (c) (d) No, this is not a proper rational function because the degree of the numerator is not less than the degree of the denominator. Yes, this is a proper rational function. Yes, this is a proper rational function. No, this is not a proper rational function because the degree of the numerator is not less than the degree of the denominator. 3. Which of the following quadratic polynomials are irreducible? To check, complete the square if necessary. (a) x 2 C 5 (b) x 2 # 5 (c) x 2 C 4x C 6 (d) x 2 C 4x C 2 SOLUTION (a) (b) (c) (d) Square is already completed; irreducible. p p Square is already completed; factors as .x # 5/.x C 5/. x 2 C 4x C 6 D .x C 2/2 C 2; irreducible. p p x 2 C 4x C 2 D .x C 2/2 # 2; factors as .x C 2 # 2/.x C 2 C 2/. 4. Let P .x/=Q.x/ be a proper rational function where Q.x/ factors as a product of distinct linear factors .x # ai /. Then Z P .x/ dx Q.x/ (choose the correct answer): (a) is a sum of logarithmic terms Ai ln.x # ai / for some constants Ai . (b) may contain a term involving the arctangent. S E C T I O N 7.5 SOLUTION The Method of Partial Fractions 857 The correct answer is (a): the integral is a sum of logarithmic terms Ai ln.x # ai / for some constants Ai . Exercises 1. Match the rational functions (a)–(d) with the corresponding partial fraction decompositions (i)–(iv). x 2 C 4x C 12 2x 2 C 8x C 24 (a) (b) 2 .x C 2/.x C 4/ .x C 2/2 .x 2 C 4/ (c) x 2 # 4x C 8 .x # 1/2 .x # 2/2 (d) x 4 # 4x C 8 .x C 2/.x 2 C 4/ 4 4x # 4 # x C 2 x2 C 4 #8 4 8 5 (ii) C C C 2 x#2 x #1 .x # 2/ .x # 1/2 1 2 #x C 2 1 4 (iii) C C 2 (iv) C 2 2 xC2 x C 2 .x C 2/ x C4 x C4 (i) x # 2 C SOLUTION x 2 C 4x C 12 1 4 D C 2 . 2 xC2 .x C 2/.x C 4/ x C4 2x 2 C 8x C 24 1 2 #x C 2 (b) D C C 2 . xC2 .x C 2/2 .x 2 C 4/ .x C 2/2 x C4 x 2 # 4x C 8 #8 4 8 5 (c) D C C C . x#2 x#1 .x # 1/2 .x # 2/2 .x # 2/2 .x # 1/2 x 4 # 4x C 8 4 4x # 4 (d) Dx#2C # . x C 2 x2 C 4 .x C 2/.x 2 C 4/ (a) 2. Determine the constants A; B: 2x # 3 A B D C .x # 3/.x # 4/ x#3 x#4 SOLUTION Clearing denominators gives 2x # 3 D A.x # 4/ C B.x # 3/: Setting x D 4 then yields 8 # 3 D A.0/ C B.1/ or B D 5; while setting x D 3 yields or 6 # 3 D A.#1/ C 0 A D #3: 3. Clear denominators in the following partial fraction decomposition and determine the constant B (substitute a value of x or use the method of undetermined coefficients). 3x 2 C 11x C 12 1 B 3 D # # x C 1 x C 3 .x C 3/2 .x C 1/.x C 3/2 SOLUTION Clearing denominators gives 3x 2 C 11x C 12 D .x C 3/2 # B.x C 1/.x C 3/ # 3.x C 1/: Setting x D 0 then yields 12 D 9 # B.1/.3/ # 3.1/ or B D #2: To use the method of undetermined coefficients, expand the right-hand side and gather like terms: 3x 2 C 11x C 12 D .1 # B/x 2 C .3 # 4B/x C .6 # 3B/: Equating x 2 -coefficients on both sides, we find 3D1#B or B D #2: 858 TECHNIQUES OF INTEGRATION CHAPTER 7 4. Find the constants in the partial fraction decomposition 2x C 4 A Bx C C D C 2 x #2 .x # 2/.x 2 C 4/ x C4 SOLUTION Clearing denominators gives 2x C 4 D A.x 2 C 4/ C .Bx C C /.x # 2/: Setting x D 2 then yields 4 C 4 D A.4 C 4/ C 0 or A D 1: To find B and C , expand the right side, gather like terms, and use the method of undetermined coefficients: 2x C 4 D .B C 1/x 2 C .#2B C C /x C .4 # 2C /: Equating x 2 -coefficients, we find or 0DB C1 B D #1; while equating constants yields or 4 D 4 # 2C C D 0: Thus, A D 1, B D #1, C D 0. In Exercises 5–8, evaluate using long division first to write f .x/ as the sum of a polynomial and a proper rational function. Z x dx 5. 3x # 4 SOLUTION Long division gives us x 1 4=3 D C 3x # 4 3 3x # 4 Therefore the integral is 6. Z Z .x 2 C 2/ dx xC3 SOLUTION x dx D 3x # 4 Z 1 4 1 4 # dx D x # ln j9x # 12j C C 3 9x # 12 3 9 Long division gives us x2 C 2 11 Dx#3C : xC3 xC3 Therefore the integral is 7. Z Z .x 3 C 2x 2 C 1/ dx xC2 SOLUTION x2 C 2 dx D xC3 Z .x # 3/ dx C 11 Z dx x2 D # 3x C 11 ln jx C 3j C C: xC3 2 Long division gives us x 3 C 2x 2 C 1 1 D x2 C xC2 xC2 Therefore the integral is 8. Z .x 3 C 1/ dx x2 C 1 Z x 3 C 2x 2 C 1 dx D xC2 Z x2 C 1 1 dx D x 3 C ln jx C 2j C C xC2 3 S E C T I O N 7.5 SOLUTION The Method of Partial Fractions Long division gives x3 C 1 x #1 Dx# 2 x2 C 1 x C1 Therefore the integral is Z 3 Z Z x C1 x#1 1 2 x 1 dx D x # dx D x # dx C 2 dx 2 x2 C 1 x2 C 1 x2 C 1 x C1 Z 1 1 2x dx 1 1 1 D x2 # C 2 dx D x 2 # ln.x 2 C 1/ C tan!1 x C C 2 2 2 2 x2 C 1 x C1 In Exercises 9–44, evaluate the integral. Z dx 9. .x # 2/.x # 4/ SOLUTION The partial fraction decomposition has the form: 1 A B D C : .x # 2/.x # 4/ x#2 x#4 Clearing denominators gives us 1 D A.x # 4/ C B.x # 2/: Setting x D 2 then yields 1 D A.2 # 4/ C 0 1 AD# ; 2 or while setting x D 4 yields 1 D 0 C B.4 # 2/ or BD 1 : 2 The result is: 1 # 12 1 D C 2 : .x # 2/.x # 4/ x#2 x#4 Thus, 10. Z .x C 3/ dx xC4 SOLUTION Z dx 1 D# .x # 2/.x # 4/ 2 Z dx 1 C x#2 2 Z dx 1 1 D # ln jx # 2j C ln jx # 4j C C: x#4 2 2 Start with long division: xC3 1 D1# xC4 xC4 so that 11. Z dx x.2x C 1/ SOLUTION Z xC3 dx D xC4 Z 1# 1 dx D x # ln jx C 4j C C xC4 The partial fraction decomposition has the form: 1 A B D C : x.2x C 1/ x 2x C 1 Clearing denominators gives us 1 D A.2x C 1/ C Bx: Setting x D 0 then yields 1 D A.1/ C 0 or A D 1; 859 860 TECHNIQUES OF INTEGRATION CHAPTER 7 while setting x D # 12 yields ! " 1 1D 0CB # 2 or B D #2: The result is: 1 1 #2 D C : x.2x C 1/ x 2x C 1 Thus, Z dx D x.2x C 1/ Z dx # x Z 2 dx D ln jxj # ln j2x C 1j C C: 2x C 1 For the integral on the right, we have used the substitution u D 2x C 1, du D 2 dx. Z .2x # 1/ dx 12. x 2 # 5x C 6 SOLUTION The partial fraction decomposition has the form: 2x # 1 2x # 1 A B D D C : .x # 2/.x # 3/ x#2 x #3 x 2 # 5x C 6 Clearing denominators gives us 2x # 1 D A.x # 3/ C B.x # 2/: Setting x D 2 then yields 3 D A.#1/ C 0 or A D #3; 5 D 0 C B.1/ or B D 5: while setting x D 3 yields The result is: 2x # 1 #3 5 D C : x#2 x #3 x 2 # 5x C 6 Thus, 13. Z x 2 dx x2 C 9 Z .2x # 1/ dx D #3 x 2 # 5x C 6 Z dx C5 x#2 Z dx D #3 ln jx # 2j C 5 ln jx # 3j C C: x#3 SOLUTION 14. Z dx .x # 2/.x # 3/.x C 2/ SOLUTION Z x2 dx D 2 x C9 Z 1# x2 #x $ 9 dx D x # 3 tan!1 CC 3 C9 The partial fraction decomposition has the form: 1 A B C D C C : .x # 2/.x # 3/.x C 2/ x#2 x#3 xC2 Clearing denominators gives us 1 D A.x # 3/.x C 2/ C B.x # 2/.x C 2/ C C.x # 2/.x # 3/: Setting x D 2 then yields 1 D A.#1/.4/ C 0 C 0 or 1 AD# ; 4 1 D 0 C B.1/.5/ C 0 or BD while setting x D 3 yields 1 ; 5 The Method of Partial Fractions S E C T I O N 7.5 and setting x D #2 yields or 1 D 0 C 0 C C.#4/.#5/ C D 1 : 20 The result is: 1 1 # 14 1 D C 5 C 20 : .x # 2/.x # 3/.x C 2/ x#2 x#3 xC2 Thus, Z 15. Z dx 1 D# .x # 2/.x # 3/.x C 2/ 4 Z dx 1 C x #2 5 Z dx 1 C x#3 20 Z dx xC2 1 1 1 D # ln jx # 2j C ln jx # 3j C ln jx C 2j C C: 4 5 20 .x 2 C 3x # 44/ dx .x C 3/.x C 5/.3x # 2/ SOLUTION The partial fraction decomposition has the form: x 2 C 3x # 44 A B C D C C : .x C 3/.x C 5/.3x # 2/ xC3 xC5 3x # 2 Clearing denominators gives us x 2 C 3x # 44 D A.x C 5/.3x # 2/ C B.x C 3/.3x # 2/ C C.x C 3/.x C 5/: Setting x D #3 then yields 9 # 9 # 44 D A.2/.#11/ C 0 C 0 or A D 2; while setting x D #5 yields 25 # 15 # 44 D 0 C B.#2/.#17/ C 0 and setting x D 2 3 or B D #1; yields 4 C 2 # 44 D 0 C 0 C C 9 ! 11 3 "! 17 3 " or C D #2: The result is: x 2 C 3x # 44 2 #1 #2 D C C : .x C 3/.x C 5/.3x # 2/ xC3 xC5 3x # 2 Thus, Z .x 2 C 3x # 44/ dx D2 .x C 3/.x C 5/.3x # 2/ Z dx # xC3 Z dx #2 xC5 D 2 ln jx C 3j # ln jx C 5j # Z dx 3x # 2 2 ln j3x # 2j C C: 3 To evaluate the last integral, we have made the substitution u D 3x # 2, du D 3 dx. Z 3 dx 16. .x C 1/.x 2 C x/ SOLUTION The partial fraction decomposition has the form: 3 3 3 A B C D D D C C : .x C 1/.x/.x C 1/ x xC1 .x C 1/.x 2 C x/ x.x C 1/2 .x C 1/2 Clearing denominators gives us 3 D A.x C 1/2 C Bx.x C 1/ C C x: Setting x D 0 then yields 3 D A.1/ C 0 C 0 or A D 3; 861 862 CHAPTER 7 TECHNIQUES OF INTEGRATION while setting x D #1 yields or 3 D 0 C 0 C C.#1/ C D #3: Now plug in A D 3 and C D #3: 3 D 3.x C 1/2 C Bx.x C 1/ # 3x: The constant B can be determined by plugging in for x any value other than 0 or #1. Plugging in x D 1 gives us or 3 D 3.4/ C B.1/.2/ # 3 B D #3: The result is 3 3 #3 #3 D C C : x xC1 .x C 1/.x 2 C x/ .x C 1/2 Thus, 17. Z Z 3 dx D3 .x C 1/.x 2 C x/ .x 2 C 11x/ dx .x # 1/.x C 1/2 SOLUTION Z dx #3 x Z dx #3 xC1 Z dx 3 D 3 ln jxj # 3 ln jx C 1j C C C: xC1 .x C 1/2 The partial fraction decomposition has the form: x 2 C 11x A B C D C C : x#1 xC1 .x # 1/.x C 1/2 .x C 1/2 Clearing denominators gives us x 2 C 11x D A.x C 1/2 C B.x # 1/.x C 1/ C C.x # 1/: Setting x D 1 then yields or 12 D A.4/ C 0 C 0 A D 3; while setting x D #1 yields #10 D 0 C 0 C C.#2/ or C D 5: Plugging in these values results in x 2 C 11x D 3.x C 1/2 C B.x # 1/.x C 1/ C 5.x # 1/: The constant B can be determined by plugging in for x any value other than 1 or #1. If we plug in x D 0, we get or 0 D 3 C B.#1/.1/ C 5.#1/ B D #2: The result is x 2 C 11x 3 #2 5 D C C : x#1 xC1 .x # 1/.x C 1/2 .x C 1/2 Thus, 18. Z Z .x 2 C 11x/ dx D3 .x # 1/.x C 1/2 .4x 2 # 21x/ dx .x # 3/2 .2x C 3/ SOLUTION Z dx #2 x#1 Z dx C5 xC1 Z dx 5 D 3 ln jx # 1j # 2 ln jx C 1j # C C: xC1 .x C 1/2 The partial fraction decomposition has the form: 4x 2 # 21x A B C D C C : x#3 2x C 3 .x # 3/2 .2x C 3/ .x # 3/2 Clearing denominators gives us 4x 2 # 21x D A.x # 3/.2x C 3/ C B.2x C 3/ C C.x # 3/2 : Setting x D 3 then yields #27 D 0 C B.9/ C 0 or B D #3; S E C T I O N 7.5 while setting x D # 32 yields 9C 63 D0C0CC 2 ! 81 4 " or The Method of Partial Fractions C D 2: Plugging in these values results in 4x 2 # 21x D A.x # 3/.2x C 3/ # 3.2x C 3/ C 2.x # 3/2 : Setting x D 0 gives us 0 D A.#3/.3/ # 9 C 18 or A D 1: The result is 4x 2 # 21x 1 #3 2 D C C : x#3 2x C 3 .x # 3/2 .2x C 3/ .x # 3/2 Thus, 19. Z Z .4x 2 # 21x/ dx D .x # 3/2 .2x C 3/ dx .x # 1/2 .x # 2/2 SOLUTION Z dx #3 x#3 Z dx C .x # 3/2 Z 2 dx 3 D ln jx # 3j C C ln j2x C 3j C C: 2x C 3 x #3 The partial fraction decomposition has the form: 1 A B C D D C C C : x #1 x#2 .x # 1/2 .x # 2/2 .x # 1/2 .x # 2/2 Clearing denominators gives us 1 D A.x # 1/.x # 2/2 C B.x # 2/2 C C.x # 2/.x # 1/2 C D.x # 1/2 : Setting x D 1 then yields 1 D B.1/ or B D 1; 1 D D.1/ or D D 1: while setting x D 2 yields Plugging in these values gives us 1 D A.x # 1/.x # 2/2 C .x # 2/2 C C.x # 2/.x # 1/2 C .x # 1/2 : Setting x D 0 now yields 1 D A.#1/.4/ C 4 C C.#2/.1/ C 1 or # 4 D #4A # 2C; while setting x D 3 yields 1 D A.2/.1/ C 1 C C.1/.4/ C 4 or # 4 D 2A C 4C: Solving this system of two equations in two unknowns gives A D 2 and C D #2. The result is 1 2 1 #2 1 D C C C : x #1 x#2 .x # 1/2 .x # 2/2 .x # 1/2 .x # 2/2 Thus, Z 20. Z dx D2 .x # 1/2 .x # 2/2 Z dx C x#1 D 2 ln jx # 1j # .x 2 # 8x/ dx .x C 1/.x C 4/3 Z dx #2 .x # 1/2 Z dx C x#2 Z dx .x # 2/2 1 1 # 2 ln jx # 2j # C C: x #1 x#2 863 864 CHAPTER 7 SOLUTION TECHNIQUES OF INTEGRATION The partial fraction decomposition is x 2 # 8x A B C D D C C C xC1 xC4 .x C 1/.x C 4/3 .x C 4/2 .x C 4/3 Clearing fractions gives x 2 # 8x D A.x C 4/3 C B.x C 4/2 .x C 1/ C C.x C 4/.x C 1/ C D.x C 1/ Setting x D #4 gives 48 D #3D so that D D #16. Setting x D #1 gives 9 D 27A so that A D 13 . Thus x 2 # 8x D 1 .x C 4/3 C B.x C 4/2 .x C 1/ C C.x C 4/.x C 1/ # 16.x C 1/ 3 The coefficient of x 3 on the right hand side must be zero; it is 13 C B, so that B D # 13 . Finally, the constant term on the right must be zero as well; substituting the known values of A, B, and D gives for the constant term 1 1 ! 64 # ! 16 C 4C # 16 D 4C 3 3 so that C D 0, and the partial fraction decomposition is x 2 # 8x 1 1 16 D # # 3 3.x C 1/ 3.x C 4/ .x C 4/3 .x C 1/.x C 4/ Thus Z 21. Z x 2 # 8x 1 dx D 3 .x C 1/.x C 4/3 D 8 dx x.x C 2/3 SOLUTION Z 1 1 dx # xC1 3 Z 1 dx # 16 xC4 Z 1 dx .x C 4/3 ˇ ˇ 1 1 1 ˇ x C 1 ˇˇ ln jx C 1j # ln jx C 4j C 8.x C 4/!2 C C D ln ˇˇ C 8.x C 4/!2 C C 3 3 3 x C 4ˇ The partial fraction decomposition is 8 A B C D D C C C 3 2 x xC2 x.x C 2/ .x C 2/ .x C 2/3 Clearing fractions gives 8 D A.x C 2/3 C Bx.x C 2/2 C C x.x C 2/ C Dx Setting x D 0 gives 8 D 8A so A D 1; setting x D #2 gives 8 D #2D so that D D #4; the result is 8 D .x C 2/3 C Bx.x C 2/2 C C x.x C 2/ # 4x The coefficient of x 3 on the right-hand side must be zero, since it is zero on the left. We compute it to be 1 C B, so that B D #1. Finally, we look at the coefficient of x 2 on the right-hand side; it must be zero as well. We compute it to be 3!2#4CC D C C2 so that C D #2 and the partial fraction decomposition is 8 1 1 2 4 D # # # 3 2 x x C 2 .x C 2/ x.x C 2/ .x C 2/3 and Z 22. Z 8 dx D x.x C 2/3 Z 1 1 dx # dx # 2 x xC2 Z .x C 2/!2 dx # 4 Z .x C 2/!3 dx ˇ ˇ D ln jxj # ln jx C 2j C 2.x C 2/!1 C 2.x C 2/!2 C C D ln ˇˇ x 2 dx x2 C 3 ˇ x ˇˇ 2 2 C C CC x C 2ˇ x C 2 .x C 2/2 SOLUTION Z x2 dx D 2 x C3 Z 1# 3 dx D x2 C 3 Z 1 dx # 3 Z p 1 dx D x # 3 tan!1 2 x C3 ! x p 3 " CC The Method of Partial Fractions S E C T I O N 7.5 Z dx 2x 2 # 3 SOLUTION The partial fraction decomposition has the form 23. 1 1 A B D p p p p D p p Cp p : 2x 2 # 3 . 2x # 3/. 2x C 3/ 2x # 3 2x C 3 Clearing denominators, we get 1DA Setting x D p p 3= 2 then yields 1DA p p while setting x D # 3= 2 yields The result is #p #p p $ p $ 2x C 3 C B 2x # 3 : #p 3C p $ 3 C0 1 AD p ; 2 3 or # p p $ 1 D 0CB # 3# 3 #1 BD p : 2 3 or p p 1 1=2 3 1=2 3 D p p # p p : 2x 2 # 3 2x # 3 2x C 3 Thus, Z Z Z dx 1 dx 1 dx D p p p # p p p : 2x 2 # 3 2 3 2x # 3 2 3 2x C 3 p p p p p p For the first integral, let u D 2x # 3, du D 2 dx, and for the second, let w D 2x C 3, dw D 2 dx. Then we have Z Z Z ˇp ˇp p ˇˇ p ˇˇ dx 1 du 1 dw 1 1 ˇ ˇ D p p # p p D p ln 2x # 3 # p ln 2x C 3ˇ C C: ˇ ˇ ˇ u w 2x 2 # 3 2 3. 2/ 2 3. 2/ 2 6 2 6 Z dx 24. .x # 4/2 .x # 1/ SOLUTION The partial fraction decomposition has the form: 1 A B C D C C : x#4 .x # 1/ .x # 4/2 .x # 1/ .x # 4/2 Clearing denominators, we get 1 D A.x # 4/.x # 1/ C B.x # 1/ C C.x # 4/2 : Setting x D 1 then yields 1 D 0 C 0 C C.9/ or C D 1 ; 9 1 D 0 C B.3/ C 0 or BD 1 : 3 while setting x D 4 yields Plugging in B D 1 3 and C D 19 , and setting x D 5, we find 1 1 1 D A.1/.4/ C .4/ C .1/ 3 9 or 1 AD# : 9 The result is 1 .x # 4/2 .x # 1/ D 1 1 # 19 3 9 C C : x#4 x #1 .x # 4/2 Thus, Z 1 dx D# 9 .x # 4/2 .x # 1/ Z dx 1 C x#4 3 Z 1 dx C 9 .x # 4/2 Z dx x#1 1 1 1 C ln jx # 1j C C: D # ln jx # 4j # 9 3.x # 4/ 9 865 866 25. TECHNIQUES OF INTEGRATION CHAPTER 7 Z 4x 2 # 20 dx .2x C 5/3 SOLUTION The partial fraction decomposition is 4x 2 # 20 A B C D C C 2x C 5 .2x C 5/3 .2x C 5/2 .2x C 5/3 Clearing fractions gives 4x 2 # 20 D A.2x C 5/2 C B.2x C 5/ C C Setting x D #5=2 gives 5 D C so that C D 5. The coefficient of x 2 on the left-hand side is 4, and on the right-hand side is 4A, so that A D 1 and we have 4x 2 # 20 D .2x C 5/2 C B.2x C 5/ C 5 Considering the constant terms now gives #20 D 25 C 5B C 5 so that B D #10. Thus Z Z Z Z 4x 2 # 20 1 1 1 D dx # 10 dx C 5 dx 2x C 5 .2x C 5/3 .2x C 5/2 .2x C 5/3 26. Z D x 2 .x SOLUTION 3x C 6 dx # 1/.x # 3/ 1 5 5 ln j2x C 5j C # CC 2 2x C 5 4.2x C 5/2 The partial fraction decomposition has the form: 3x C 6 A B C D D C 2 C C : x x #1 x #3 x 2 .x # 1/.x # 3/ x Clearing denominators gives us 3x C 6 D Ax.x # 1/.x # 3/ C B.x # 1/.x # 3/ C C x 2 .x # 3/ C Dx 2 .x # 1/: Setting x D 0, then yields or 6 D 0 C B.#1/.#3/ C 0 C 0 B D 2; while setting x D 1 yields 9 D 0 C 0 C C.1/.#2/ C 0 or 9 C D# ; 2 15 D 0 C 0 C 0 C D.9/.2/ or DD and setting x D 3 yields 5 : 6 In order to find A, let’s look at the x 3 -coefficient on the right-hand side (which must equal 0, since there’s no x 3 term on the left): 0DACC CD DA# 9 5 C ; 2 6 so AD 11 : 3 The result is x 2 .x 11 5 # 92 3x C 6 2 D 3 C 2 C C 6 : x x #1 x #3 # 1/.x # 3/ x Thus, Z 27. Z .3x C 6/ dx 11 D 2 3 x .x # 1/.x # 3/ D dx x.x # 1/3 Z dx C2 x Z dx 9 # 2 x2 Z dx 5 C x#1 6 Z dx x#3 2 9 5 11 ln jxj # # ln jx # 1j C ln jx # 3j C C: 3 x 2 6 The Method of Partial Fractions S E C T I O N 7.5 SOLUTION The partial fraction decomposition has the form: 1 A B C D D C C C : x x#1 x.x # 1/3 .x # 1/2 .x # 1/3 Clearing denominators, we get 1 D A.x # 1/3 C Bx.x # 1/2 C C x.x # 1/ C Dx: Setting x D 0 then yields 1 D A.#1/ C 0 C 0 C 0 or A D #1; 1 D 0 C 0 C 0 C D.1/ or D D 1: while setting x D 1 yields Plugging in A D #1 and D D 1 gives us 1 D #.x # 1/3 C Bx.x # 1/2 C C x.x # 1/ C x: Now, setting x D 2 yields 1 D #1 C 2B C 2C C 2 or 2B C 2C D 0; and setting x D 3 yields or 1 D #8 C 12B C 6C C 3 2B C C D 1: Solving these two equations in two unknowns, we find B D 1 and C D #1. The result is 1 #1 1 #1 1 D C C C : x x#1 x.x # 1/3 .x # 1/2 .x # 1/3 Thus, Z dx D# x.x # 1/3 Z dx C x Z dx # x #1 D # ln jxj C ln jx # 1j C 28. Z .3x 2 # 2/ dx x#4 SOLUTION Z dx C .x # 1/2 Z dx .x # 1/3 1 1 # C C: x # 1 2.x # 1/2 First we use long division to write 3x 2 # 2 46 D 3x C 12 C : x#4 x#4 Then the integral becomes Z Z Z .3x 2 # 2/ dx dx 3 D .3x C 12/ dx C 46 D x 2 C 12x C 46 ln jx # 4j C C: x#4 x #4 2 Z .x 2 # x C 1/ dx 29. x2 C x SOLUTION First use long division to write x2 # x C 1 #2x C 1 #2x C 1 D1C 2 D1C : x.x C 1/ x2 C x x Cx The partial fraction decomposition of the term on the right has the form: #2x C 1 A B D C : x.x C 1/ x xC1 Clearing denominators gives us #2x C 1 D A.x C 1/ C Bx: Setting x D 0 then yields 1 D A.1/ C 0 or A D 1; 867 868 TECHNIQUES OF INTEGRATION CHAPTER 7 while setting x D #1 yields or 3 D 0 C B.#1/ B D #3: The result is #2x C 1 1 #3 D C : x.x C 1/ x xC1 Thus, 30. Z dx x.x 2 C 1/ SOLUTION Z .x 2 # x C 1/ dx D x2 C x Z dx C Z dx #3 x Z dx D x C ln jxj # 3 ln jx C 1j C C: xC1 The partial fraction decomposition has the form: 1 A Bx C C D C 2 : x x.x 2 C 1/ x C1 Clearing denominators, we get 1 D A.x 2 C 1/ C .Bx C C /x: Setting x D 0 then yields or 1 D A.1/ C 0 A D 1: This gives us 1 D x 2 C 1 C Bx 2 C C x D .B C 1/x 2 C C x C 1: Equating x 2 -coefficients, we find or B C1D0 B D #1I while equating x-coefficients yields C D 0. The result is 1 1 #x D C 2 : x x.x 2 C 1/ x C1 Thus, Z dx D x.x 2 C 1/ Z dx # x Z x dx : x2 C 1 For the integral on the right, use the substitution u D x 2 C 1, du D 2x dx. Then we have Z Z Z dx dx 1 du 1 D # D ln jxj # ln jx 2 C 1j C C: x 2 u 2 x.x 2 C 1/ Z 2 .3x # 4x C 5/ dx 31. .x # 1/.x 2 C 1/ SOLUTION The partial fraction decomposition has the form: 3x 2 # 4x C 5 A Bx C C D C 2 : x#1 .x # 1/.x 2 C 1/ x C1 Clearing denominators, we get 3x 2 # 4x C 5 D A.x 2 C 1/ C .Bx C C /.x # 1/: Setting x D 1 then yields 3 # 4 C 5 D A.2/ C 0 or A D 2: This gives us 3x 2 # 4x C 5 D 2.x 2 C 1/ C .Bx C C /.x # 1/ D .B C 2/x 2 C .C # B/x C .2 # C /: The Method of Partial Fractions S E C T I O N 7.5 Equating x 2 -coefficients, we find 3DB C2 or B D 1I while equating constant coefficients yields 5D2#C or C D #3: The result is 3x 2 # 4x C 5 2 x#3 D C 2 : 2 x # 1 .x # 1/.x C 1/ x C1 Thus, Z .3x 2 # 4x C 5/ dx D2 .x # 1/.x 2 C 1/ Z dx C x#1 Z .x # 3/ dx D2 x2 C 1 Z dx C x#1 Z x dx #3 x2 C 1 Z dx : x2 C 1 For the second integral, use the substitution u D x 2 C 1, du D 2x dx. The final answer is Z .3x 2 # 4x C 5/ dx 1 D 2 ln jx # 1j C ln jx 2 C 1j # 3 tan!1 x C C: 2 2 .x # 1/.x C 1/ Z 2 x 32. dx .x C 1/.x 2 C 1/ SOLUTION The partial fraction decomposition has the form x2 A Bx C C D C 2 : xC1 .x C 1/.x 2 C 1/ x C1 Clearing denominators, we get x 2 D A.x 2 C 1/ C .Bx C C /.x C 1/: Setting x D #1 then yields or 1 D A.2/ C 0 AD 1 : 2 This gives us x2 D ! " ! " 1 2 1 1 1 x C C Bx 2 C Bx C C x C C D B C x 2 C .B C C /x C C C : 2 2 2 2 Equating x 2 -coefficients, we find 1DBC 1 2 or BD 1 ; 2 while equating constant coefficients yields 0DC C 1 2 or 1 C D# : 2 The result is 1 1 x# 1 x2 D 2 C 22 2 : 2 xC1 .x C 1/.x C 1/ x C1 Thus, Z x 2 dx 1 D 2 .x C 1/.x 2 C 1/ D Z dx 1 C xC1 2 Z .x # 1/ dx 1 D 2 x2 C 1 Z dx 1 C xC1 2 1 1 1 ln jx C 1j C ln jx 2 C 1j # tan!1 x C C: 2 4 2 Here we used u D x 2 C 1, du D 2x dx for the second integral. Z dx 33. x.x 2 C 25/ Z x dx 1 # x2 C 1 2 Z dx x2 C 1 869 870 CHAPTER 7 SOLUTION TECHNIQUES OF INTEGRATION The partial fraction decomposition has the form: 1 A Bx C C D C 2 : x x.x 2 C 25/ x C 25 Clearing denominators, we get 1 D A.x 2 C 25/ C .Bx C C /x: Setting x D 0 then yields or 1 D A.25/ C 0 AD 1 : 25 This gives us 1D ! " 1 2 1 x C 1 C Bx 2 C C x D B C x 2 C C x C 1: 25 25 Equating x 2 -coefficients, we find 0DBC 1 25 or BD# 1 ; 25 while equating x-coefficients yields C D 0. The result is 1 1 # 25 x 1 25 D C : x x.x 2 C 25/ x 2 C 25 Thus, Z dx 1 D 25 x.x 2 C 25/ Z dx 1 # x 25 Z x dx : x 2 C 25 For the integral on the right, use u D x 2 C 25, du D 2x dx. Then we have Z dx 1 1 D ln jxj # ln jx 2 C 25j C C: x.x 2 C 25/ 25 50 Z dx 34. x 2 .x 2 C 25/ SOLUTION The partial fraction decomposition has the form: 1 A B Cx C D D C 2 C 2 : x x 2 .x 2 C 25/ x x C 25 Clearing denominators, we get 1 D Ax.x 2 C 25/ C B.x 2 C 25/ C .C x C D/x 2 : Setting x D 0 then yields or 1 D 0 C B.25/ C 0 BD 1 : 25 This gives us 1 D Ax 3 C 25Ax C ! " 1 2 1 x C 1 C C x 3 C Dx 2 D .A C C /x 3 C D C x 2 C 25Ax C 1: 25 25 Equating x-coefficients yields 0 D 25A or A D 0; while equating x 3 -coefficients yields 0DACC D 0CC or C D 0; and equating x 2 -coefficients yields 0DDC 1 25 or DD #1 : 25 The Method of Partial Fractions S E C T I O N 7.5 The result is 1 !1 1 25 25 D C : x 2 .x 2 C 25/ x2 x 2 C 25 Thus, 35. Z .6x 2 C 2/ dx x 2 C 2x # 3 Z dx 1 D 25 x 2 .x 2 C 25/ Z dx 1 # 25 x2 Z # $ dx 1 1 !1 x D # # tan C C: 25x 125 5 x 2 C 25 Long division gives SOLUTION 6x 2 C 2 12x # 20 12x # 20 D6# 2 D6# .x C 3/.x # 1/ x 2 C 2x # 3 x C 2x # 3 The partial fraction decomposition of the second term is 12x # 20 A B D C .x C 3/.x # 1/ xC3 x #1 Clear fractions to get 12x # 20 D A.x # 1/ C B.x C 3/ Set x D 1 to get #8 D 4B so that B D #2. Set x D #3 to get #56 D #4A so that A D 14, and we have Z Z Z Z Z 6x 2 C 2 14 2 1 1 D 6 # C dx D 6 dx # 14 dx C 2 dx xC3 x#1 xC3 x #1 x 2 C 2x # 3 36. Z D 6x # 14 ln jx C 3j C 2 ln jx # 1j C C 6x 2 C 7x # 6 dx .x 2 # 4/.x C 2/ The partial fraction decomposition has the form: SOLUTION 6x 2 C 7x # 6 6x 2 C 7x # 6 A B C D D C C : 2 .x # 2/.x C 2/.x C 2/ x #2 xC2 .x # 4/.x C 2/ .x C 2/2 Clearing denominators, we get 6x 2 C 7x # 6 D A.x C 2/2 C B.x # 2/.x C 2/ C C.x # 2/: Setting x D 2 then yields 24 C 14 # 6 D A.16/ C 0 C 0 or A D 2; while setting x D #2 yields 24 # 14 # 6 D 0 C 0 C C.#4/ or C D #1: This gives us 6x 2 C 7x # 6 D 2.x C 2/2 C B.x # 2/.x C 2/ # .x # 2/: Now, setting x D 1 yields 6 C 7 # 6 D 2.9/ C B.#1/.3/ # .#1/ or B D 4: The result is 2 6x 2 C 7x # 6 4 #1 D : C C 2 x#2 xC2 .x # 4/.x C 2/ .x C 2/2 Thus, Z .6x 2 C 7x # 6/ dx D2 .x 2 # 4/.x C 2/ Z dx C4 x#2 Z dx # xC2 Z dx 1 D 2 ln jx # 2j C 4 ln jx C 2j C C C: xC2 .x C 2/2 871 872 37. TECHNIQUES OF INTEGRATION CHAPTER 7 Z 10 dx .x # 1/2 .x 2 C 9/ SOLUTION The partial fraction decomposition has the form: 10 .x # 1/2 .x 2 C 9/ D A B Cx C D C C 2 : 2 x#1 .x # 1/ x C9 Clearing denominators, we get 10 D A.x # 1/.x 2 C 9/ C B.x 2 C 9/ C .C x C D/.x # 1/2 : Setting x D 1 then yields or 10 D 0 C B.10/ C 0 B D 1: Expanding the right-hand side, we have 10 D .A C C /x 3 C .1 # A # 2C C D/x 2 C .9A C C # 2D/x C .9 # 9A C D/: Equating coefficients of like powers of x then yields ACC D 0 1 # A # 2C C D D 0 9A C C # 2D D 0 9 # 9A C D D 10 From the first equation, we have C D #A, and from the fourth equation we have D D 1 C 9A. Substituting these into the second equation, we get Finally, C D 1 5 1 AD# : 5 or 1 # A # 2.#A/ C .1 C 9A/ D 0 and D D # 45 . The result is 1 4 # 15 10 1 5x # 5 D C C : x#1 .x # 1/2 .x 2 C 9/ .x # 1/2 x2 C 9 Thus, Z 38. Z 10 dx 1 D# 5 .x # 1/2 .x 2 C 9/ dx C x #1 Z dx 1 C 5 .x # 1/2 Z x dx 4 # x2 C 9 5 Z dx x2 C 9 #x$ 1 1 1 4 D # ln jx # 1j # C ln jx 2 C 9j # tan!1 C C: 5 x#1 10 15 3 10 dx .x C 1/.x 2 C 9/2 SOLUTION Z The partial fraction decomposition has the form: 10 A Bx C C Dx C E D C 2 C 2 : xC1 .x C 1/.x 2 C 9/2 x C9 .x C 9/2 Clearing denominators gives us 10 D A.x 2 C 9/2 C .Bx C C /.x C 1/.x 2 C 9/ C .Dx C E/.x C 1/: Setting x D #1 then yields 10 D A.100/ C 0 C 0 or AD 1 : 10 Expanding the right-hand side, we find ! ! ! " " " 18 81 1 10 D B C x 4 C .B C C /x 3 C 9B C C C D C x 2 .9B C 9C C D C E/x C 9C C E C : 10 10 10 Equating x 4 -coefficients yields BC 1 D0 10 or BD# 1 ; 10 The Method of Partial Fractions S E C T I O N 7.5 while equating x 3 -coefficients yields # 1 CC D0 10 or C D 1 ; 10 or D D #1: and equating x 2 -coefficients yields # 9 1 18 C CDC D0 10 10 10 Finally, equating constant coefficients, we find 10 D 9 81 CE C 10 10 or E D 1: The result is 1 1 1 # 10 x C 10 10 #x C 1 10 D C C 2 : 2 2 2 x C 1 .x C 1/.x C 9/ x C9 .x C 9/2 Thus, Z 10 dx 1 D 10 .x C 1/.x 2 C 9/2 Z dx 1 # x C 1 10 Z x dx 1 C 10 x2 C 9 Z dx # x2 C 9 Z x dx C .x 2 C 9/2 Z dx : .x 2 C 9/2 For the second and fourth integrals, use the substitution u D x 2 C 9, du D 2x dx. Then we have Z Z # $ 10 dx 1 1 1 1 dx 2 !1 x D ln jx C 1j # ln jx C 9j C tan C C : 2 2 2 2 10 20 30 3 .x C 1/.x C 9/ 2.x C 9/ .x C 9/2 For the last integral, use the trigonometric substitution x D 3 tan !; dx D 3 sec2 ! d!; x 2 C 9 D 9 tan2 ! C 9 D 9 sec2 !: Then, Z dx D .x 2 C 9/2 Z 3 sec2 ! d! 1 D 27 .9 sec2 !/2 Now we construct a right triangle with tan ! D Z d! 1 D 27 sec2 ! Z % & 1 1 1 cos ! d! D ! C sin ! cos ! C C: 27 2 2 2 x 3: x2 + 9 x 3 p p From this we see that sin ! D x= x 2 C 9 and cos ! D 3= x 2 C 9. Thus ! "! " Z # $ # $ dx 1 1 x 3 1 x !1 x !1 x D tan C p p C C D tan C C C: 2 C 9/ 2 2 54 3 54 54 3 .x 2 C 9/2 18.x x C9 x C9 Collecting all the terms, we obtain Z # $ 10 dx 1 1 1 1 2 !1 x D ln jx C 1j # ln jx C 9j C tan C 10 20 30 3 .x C 1/.x 2 C 9/2 2.x 2 C 9/ #x $ 1 x C tan!1 C CC 54 3 18.x 2 C 9/ #x $ 1 1 7 xC9 D ln jx C 1j # ln jx 2 C 9j C tan!1 C C C: 10 20 135 3 18.x 2 C 9/ Z dx 39. 2 x.x C 8/2 SOLUTION The partial fraction decomposition has the form: A 1 Bx C C Dx C E D C 2 : C 2 x x.x 2 C 8/2 x C8 .x C 8/2 Clearing denominators, we get 1 D A.x 2 C 8/2 C .Bx C C /x.x 2 C 8/ C .Dx C E/x: 873 874 CHAPTER 7 TECHNIQUES OF INTEGRATION Expanding the right-hand side gives us 1 D .A C B/x 4 C C x 3 C .16A C 8B C D/x 2 C .8C C E/x C 64A: Equating coefficients of like powers of x yields ACB D0 C D0 16A C 8B C D D 0 8C C E D 0 64A D 1 The solution to this system of equations is AD 1 ; 64 BD# 1 ; 64 1 DD# ; 8 C D 0; E D 0: Therefore x.x 2 1 #1x #1x 1 D 64 C 264 C 2 8 2 ; 2 x C 8/ x C8 .x C 8/ and Z dx 1 D 64 x.x 2 C 8/2 Z dx 1 # x 64 Z x dx 1 # x2 C 8 8 Z x dx : .x 2 C 8/2 For the second and third integrals, use the substitution u D x 2 C 8, du D 2x dx. Then we have Z dx 1 1 1 D ln jxj # ln jx 2 C 8j C C C: 64 128 x.x 2 C 8/2 16.x 2 C 8/ Z 100x dx 40. .x # 3/.x 2 C 1/2 SOLUTION The partial fraction decomposition has the form: 100x A Bx C C Dx C E D C 2 C 2 : x#3 .x # 3/.x 2 C 1/2 x C1 .x C 1/2 Clearing denominators, we get 100x D A.x 2 C 1/2 C .Bx C C /.x # 3/.x 2 C 1/ C .Dx C E/.x # 3/: Setting x D 3 then yields 300 D A.100/ C 0 C 0 or A D 3: Expanding the right-hand side, we find 100x D .B C 3/x 4 C .C # 3B/x 3 C .B # 3C C D C 6/x 2 C .C # 3B # 3D C E/x C .3 # 3C # 3E/: Equating coefficients of like powers of x then yields B C3D0 C # 3B D 0 B # 3C C D C 6 D 0 C # 3B # 3D C E D 100 3 # 3C # 3E D 0 The solution to this system of equations is B D #3; C D #9; D D #30; E D 10: Therefore 100x #3x # 9 #30x C 10 3 C 2 C D ; x#3 .x # 3/.x 2 C 1/2 x C1 .x 2 C 1/2 S E C T I O N 7.5 The Method of Partial Fractions and Z Z .#3x # 9/ dx .#30x C 10/ dx C 2 x C1 .x 2 C 1/2 Z Z Z Z Z dx x dx dx x dx dx D3 #3 # 9 # 30 C 10 : 2 2 2 2 2 x #3 x C1 x C1 .x C 1/ .x C 1/2 100x dx D3 .x # 3/.x 2 C 1/2 Z dx C x #3 Z For the second and fourth integrals, use the substitution u D x 2 C 1, du D 2x dx. Then we have Z Z 100x dx 3 15 dx 2 !1 D 3 ln jx # 3j # ln jx C 1j # 9 tan x C C 10 : 2 .x # 3/.x 2 C 1/2 x2 C 1 .x 2 C 1/2 For the last integral, use the trigonometric substitution x D tan !, dx D sec2 ! d!. Then x 2 C 1 D tan2 ! C 1 D sec2 !, and Z Z Z dx sec2 ! d! 1 1 D D cos2 ! D ! C sin ! cos ! C C: 2 2 .x 2 C 1/2 sec4 ! We construct the following right triangle with tan ! D x: 1 + x2 x 1 p p From this we see that sin ! D x= 1 C x 2 and cos ! D 1= 1 C x 2 . Thus ! "! " Z dx 1 1 x 1 1 x !1 D tan x C p p C C D tan!1 x C C C: 2 2 2 2 2 2 2 2 .x C 1/ 2.x C 1/ 1Cx 1Cx Collecting all the terms, we obtain ! " Z 100x dx 3 15 1 x 2 !1 !1 D 3 ln jx # 3j # ln jx C 1j # 9 tan x C C 10 tan x C CC 2 2 .x # 3/.x 2 C 1/2 x2 C 1 2.x 2 C 1/ 41. Z D 3 ln jx # 3j # .x dx C 4x C 10/ 3 5x C 15 ln jx 2 C 1j # 4 tan!1 x C 2 C C: 2 x C1 C 2/.x 2 SOLUTION The partial fraction decomposition has the form: 1 A Bx C C D C 2 : xC2 .x C 2/.x 2 C 4x C 10/ x C 4x C 10 Clearing denominators, we get 1 D A.x 2 C 4x C 10/ C .Bx C C /.x C 2/: Setting x D #2 then yields or 1 D A.6/ C 0 AD 1 : 6 Expanding the right-hand side gives us 1D ! " ! " ! " 1 2 5 C B x2 C C 2B C C x C C 2C : 6 3 3 Equating x 2 -coefficients yields 0D 1 CB 6 or 1 BD# ; 6 1D 5 C 2C 3 or 1 C D# : 3 while equating constant coefficients yields The result is .x C 2/.x 2 1 # 1 x # 13 1 D 6 C 2 6 : xC2 x C 4x C 10 C 4x C 10/ 875 876 CHAPTER 7 TECHNIQUES OF INTEGRATION Thus, Z dx 1 D 6 .x C 2/.x 2 C 4x C 10/ Z dx 1 # xC2 6 Z .x C 2/ dx : x 2 C 4x C 10 For the second integral, let u D x 2 C 4x C 10. Then du D .2x C 4/ dx, and Z Z dx 1 1 .2x C 4/ dx D ln jx C 2j # 6 12 .x C 2/.x 2 C 4x C 10/ x 2 C 4x C 10 42. Z D 1 1 ln jx C 2j # ln jx 2 C 4x C 10j C C: 6 12 9 dx .x C 1/.x 2 # 2x C 6/ SOLUTION The partial fraction decomposition has the form: 9 .x C 1/.x 2 # 2x C 6/ A Bx C C C 2 : xC1 x # 2x C 6 D Clearing denominators gives us 9 D A.x 2 # 2x C 6/ C .Bx C C /.x C 1/: Setting x D #1 then yields or 9 D A.9/ C 0 A D 1: Expanding the right-hand side gives us 9 D .1 C B/x 2 C .#2 C B C C /x C .6 C C /: Equating x 2 -coefficients yields 0D1CB or B D #1; while equating constant coefficients yields 9D6CC or C D 3: The result is 9 1 #x C 3 D C 2 : xC1 .x C 1/.x 2 # 2x C 6/ x # 2x C 6 Thus, Z 9 dx D .x C 1/.x 2 # 2x C 6/ Z dx C xC1 Z .#x C 3/ dx : x 2 # 2x C 6 To evaluate the integral on the right, we first write Z Z Z Z .#x C 3/ dx .x # 1 # 2/ dx .x # 1/ dx dx D # D # C 2 : 2 2 2 2 x # 2x C 6 x # 2x C 6 x # 2x C 6 x # 2x C 6 For the first integral, use the substitution u D x 2 # 2x C 6, du D .2x # 2/ dx. Then Z Z .x # 1/ dx 1 .2x # 2/ dx 1 # D # D # ln jx 2 # 2x C 6j C C: 2 2 2 2 x # 2x C 6 x # 2x C 6 For the second integral, we first complete the square: Z Z Z dx dx dx 2 D 2 D 2 : x 2 # 2x C 6 .x 2 # 2x C 1/ C 5 .x # 1/2 C 5 Now let u D x # 1, du D dx. Then ! " " " ! ! Z Z dx du 1 2 u !1 !1 x # 1 2 D 2 D 2 p tan p C C D p tan p C C: .x # 1/2 C 5 u2 C 5 5 5 5 5 Collecting all the terms, we have ! " Z 1 2 9 dx 2 !1 x # 1 D ln jx C 1j # ln jx # 2x C 6j C p tan p C C: 2 .x C 1/.x 2 # 2x C 6/ 5 5 S E C T I O N 7.5 43. Z The Method of Partial Fractions 877 25 dx x.x 2 C 2x C 5/2 SOLUTION The partial fraction decomposition has the form x.x 2 25 A Bx C C Dx C E D C 2 C 2 : 2 x C 2x C 5/ x C 2x C 5 .x C 2x C 5/2 Clearing denominators yields: 25 D A.x 2 C 2x C 5/2 C x.Bx C C /.x 2 C 2x C 5/ C x.Dx C E/ D .Ax 4 C 4Ax 3 C 14Ax 2 C 20Ax C 25A/ C .Bx 4 C C x 3 C 2Bx 3 C 2C x 2 C 5Bx 2 C 5C x/ C Dx 2 C Ex: Equating constant terms yields or 25A D 25 A D 1; while equating x 4 -coefficients yields ACB D0 or B D #A D #1: Equating x 3 -coefficients yields 4A C C C 2B D 0 or C D #2; and equating x 2 -coefficients yields or 14A C 2C C 5B C D D 0 D D #5: Finally, equating x-coefficients yields 20A C 5C C E D 0 or E D #10: Thus, Z " 1 xC2 xC2 # 2 #5 2 dx x x C 2x C 5 .x C 2x C 5/2 Z Z xC2 xC2 D ln jxj # dx # 5 dx: x 2 C 2x C 5 .x 2 C 2x C 5/2 25 dx D x.x 2 C 2x C 5/2 Z ! The two integrals on the right both require the substitution u D x C 1, so that x 2 C 2x C 5 D .x C 1/2 C 4 D u2 C 4 and du D dx. This means: Z Z Z 25 dx uC1 uC1 D ln jxj # du # 5 du x.x 2 C 2x C 5/2 u2 C 4 .u2 C 4/2 Z Z Z Z u 1 u 1 D ln jxj # du # du # 5 du # 5 du: 2 2 2 2 2 u C4 u C4 .u C 4/ .u C 4/2 For the first and third integrals, we make the substitution w D u2 C 4, dw D 2u du. Then we have Z Z # $ 25 dx 1 1 5 du 2 !1 u D ln jxj # ln ju C 4j # tan C #5 2 2 2 x.x 2 C 2x C 5/2 2.u2 C 4/ .u2 C 4/2 ! " Z 1 1 5 du 2 !1 x C 1 D ln jxj # ln jx C 2x C 5j # tan C # 5 : 2 2 2 2.x 2 C 2x C 5/ .u2 C 4/2 For the remaining integral, we use the trigonometric substitution 2 tan w D u, so that u2 C 4 D 4 tan2 w C 4 D 4 sec2 w and du D 2 sec2 w dw. This means Z Z Z 1 1 1 1 2 du D sec w dw D cos2 w dw 8 8 .u2 C 4/2 sec4 w ! " ! " 1 1 w 1 w D sin 2w C CC D sin w cos w C CC 8 4 2 16 16 #u$ #u$ 1 u 2 1 1 u 1 D C tan!1 CC D C tan!1 CC p p 2 16 u2 C 4 u2 C 4 16 2 8u C4 16 2 " ! 1 xC1 1 !1 x C 1 D C tan : 8 x 2 C 2x C 5 16 2 878 CHAPTER 7 TECHNIQUES OF INTEGRATION Hence, the integral is Z 25 dx 1 1 D ln jxj # ln jx 2 C 2x C 5j # tan!1 2 2 x.x 2 C 2x C 5/2 ! xC1 2 " ! " 5 5 xC1 5 !1 x C 1 # # tan 2 2.x 2 C 2x C 5/ 8 x 2 C 2x C 5 16 ! " 15 # 5x 13 xC1 1 D ln jxj C # tan!1 # ln jx 2 C 2x C 5j C C: 2 2 8.x 2 C 2x C 5/ 16 C 44. Z .x 2 C 3/ dx .x 2 C 2x C 3/2 SOLUTION The partial fraction decomposition has the form: .x 2 x2 C 3 Ax C B Cx C D D 2 C 2 : C 2x C 3/2 x C 2x C 3 .x C 2x C 3/2 Clearing denominators gives us x 2 C 3 D .Ax C B/.x 2 C 2x C 3/ C C x C D: Expanding the right-hand side, we get x 2 C 3 D Ax 3 C .2A C B/x 2 C .3A C 2B C C /x C .3B C D/: Equating coefficients of like powers of x then yields AD0 2A C B D 1 3A C 2B C C D 0 3B C D D 3 The solution to this system of equations is A D 0; B D 1; C D #2; D D 0: Therefore x2 C 3 1 #2x D 2 C 2 ; .x 2 C 2x C 3/2 x C 2x C 3 .x C 2x C 3/2 and Z .x 2 C 3/ dx D .x 2 C 2x C 3/2 Z dx # x 2 C 2x C 3 Z 2x dx : .x 2 C 2x C 3/2 The first integral can be evaluated by completing the square: Z Z Z dx dx dx D D : 2 2 x C 2x C 3 x C 2x C 1 C 2 .x C 1/2 C 2 Now use the substitution u D x C 1, du D dx. Then ! " Z Z dx du 1 !1 x C 1 D D p tan p C C: x 2 C 2x C 3 u2 C 2 2 2 For the second integral, let u D x 2 C 2x C 3. We want du D .2x C 2/ dx to appear in the numerator, so we write Z Z Z Z 2x dx .2x C 2 # 2/ dx .2x C 2/ dx dx D D # 2 .x 2 C 2x C 3/2 .x 2 C 2x C 3/2 .x 2 C 2x C 3/2 .x 2 C 2x C 3/2 Z Z Z du dx 1 dx D # 2 D # # 2 u u2 .x 2 C 2x C 3/2 .x 2 C 2x C 3/2 Z #1 dx D 2 #2 : x C 2x C 3 .x 2 C 3x C 3/2 Finally, for this last integral, complete the square, then substitute u D x C 1, du D dx: Z Z Z dx dx du D D : .x 2 C 2x C 3/2 ..x C 1/2 C 2/2 .u2 C 2/2 The Method of Partial Fractions S E C T I O N 7.5 p p Now use the trigonometric substitution u D 2 tan !. Then du D 2 sec2 ! d!, and u2 C 2 D 2 tan2 ! C 2 D 2 sec2 !. Thus p Z p % p p & Z Z p du 2 sec2 ! d! 2 2 1 1 2 2 2 D D cos ! d! D ! C sin ! cos ! D ! C sin ! cos ! C C: 2 2 4 4 4 2 2 8 8 .u C 2/ 4 sec ! p We construct a right triangle with tan ! D u= 2: u2 + 2 u 2 p p p From this we see that sin ! D u= u2 C 2 and cos ! D 2= u2 C 2. Therefore ! p p ! " p ! " Z du 2 u 2 u 2 !1 D tan C CC p p p .u2 C 2/2 8 8 2 u2 C 2 u2 C 2 p p ! " ! " 2 u u 2 xC1 !1 !1 x C 1 D tan p C C C D tan p C C C: 2 C 2/ 2 C 2x C 3/ 8 8 4.u 4.x 2 2 Collecting all the terms, we have Z !# p ! " " ! " .x 2 C 3/ dx 1 #1 2 xC1 !1 x C 1 !1 x C 1 D tan # # 2 tan C CC p p p 8 .x 2 C 2x C 3/2 x 2 C 2x C 3 4.x 2 C 2x C 3/ 2 2 2 p ! ! " 1 2 xC1 2 C .x C 1/ D p C tan!1 p C CC 4 2.x 2 C 2x C 3/ 2 2 p ! " 3 2 xC1 xC3 D tan!1 p C C C: 4 2.x 2 C 2x C 3/ 2 In Exercises 45–48, evaluate by using first substitution and then partial fractions if necessary. Z x dx 45. x4 C 1 Use the substitution u D x 2 so that du D 2x dx, and Z Z x 1 1 1 1 dx D du D tan!1 u D tan!1 .x 2 / 2 2 2 x4 C 1 u2 C 1 Z x dx 46. .x C 2/4 SOLUTION SOLUTION 47. Z Use the substitution u D x C 2 and du D dx; then Z Z Z Z x u#2 1 1 dx D du D du # 2 du .x C 2/4 u4 u3 u4 D# e x dx # ex 1 2 2 1 C 3 CC D # CC 2u2 3u 3.x C 2/3 2.x C 2/2 e 2x SOLUTION Use the substitution u D e x . Then du D e x dx D u dx so that dx D Z e x dx D e 2x # e x Z u ! u1 du D u2 # u Z 1 u du. Then 1 du u.u # 1/ Using partial fractions, we have 1 B .A C B/u # A A D D C u.u # 1/ u u#1 u.u # 1/ Upon equating coefficients in the numerators, we have A C B D 0, A D #1 so that B D 1. Then Z Z Z 1 1 e x dx D # C du du D ln ju # 1j # ln juj C C D ln je x # 1j # ln e x C C u u#1 e 2x # e x 879 880 48. CHAPTER 7 Z TECHNIQUES OF INTEGRATION sec2 ! d! tan2 ! # 1 SOLUTION Let u D tan !; then du D sec2 ! d! and Z Z p sec2 ! d! D tan2 ! # 1 Z 1 du D # u2 # 1 Z 1 du D # tanh!1 .u/ C C D # tanh!1 .tan !/ C C 1 # u2 p x dx . Hint: Use the substitution u D x (sometimes called a rationalizing substitution). x #1 p p SOLUTION Let u D x. Then du D .1=2 x/ dx D .1=2u/ dx. Thus 49. Evaluate Z p Z Z 2 Z x dx u.2u du/ u du .u2 # 1 C 1/ du D D 2 D 2 2 2 x#1 u #1 u #1 u2 # 1 ! Z Z Z Z u2 # 1 1 2 du 2 du D2 C du D 2 du C D 2u C : u2 # 1 u2 # 1 u2 # 1 u2 # 1 The partial fraction decomposition of the remaining integral has the form: 2 2 A B D D C : .u # 1/.u C 1/ u#1 uC1 u2 # 1 Clearing denominators gives us 2 D A.u C 1/ C B.u # 1/: Setting u D 1 yields 2 D A.2/ C 0 or A D 1, while setting u D #1 yields 2 D 0 C B.#2/ or B D #1. The result is u2 2 1 #1 D C : u#1 uC1 #1 Thus, Z 2 du D u2 # 1 Z du # u#1 Z du D ln ju # 1j # ln ju C 1j C C: uC1 The final answer is 50. Evaluate SOLUTION Z Z p p p p x dx D 2u C ln ju # 1j # ln ju C 1j C C D 2 x C ln j x # 1j # ln j x C 1j C C: x#1 x 1=2 dx . # x 1=3 First use the substitution u D x 1=6 . Then du D 1 !5=6 x dx 6 ) 6x 5=6 du D dx ) 6u5 du D dx and we have (using long division) Z Z Z Z dx 6u5 u3 1 D du D 6 du D 6 u2 C u C 1 C du u#1 u#1 u3 # u2 x 1=2 # x 1=3 ! " 1 3 1 2 D6 u C u C u C ln ju # 1j C C D 2u3 C 3u2 C 6u C 6 ln ju # 1j C C 3 2 ˇ ˇ ˇ ˇ D 2x 1=2 C 3x 1=3 C 6x 1=6 C 6 ln ˇx 1=6 # 1ˇ C C Z dx 51. Evaluate in two ways: using partial fractions and using trigonometric substitution. Verify that the two answers agree. 2 x #1 SOLUTION The partial fraction decomposition has the form: A 1 1 B D D C : .x # 1/.x C 1/ x#1 xC1 x2 # 1 Clearing denominators gives us 1 D A.x C 1/ C B.x # 1/: The Method of Partial Fractions S E C T I O N 7.5 881 Setting x D 1, we get 1 D A.2/ or A D 12 ; while setting x D #1, we get 1 D B.#2/ or B D # 12 . The result is x2 1 # 12 1 D 2 C : x#1 xC1 #1 Thus, Z dx 1 D 2 x2 # 1 Z dx 1 # x#1 2 Z dx 1 1 D ln jx # 1j # ln jx C 1j C C: xC1 2 2 Using trigonometric substitution, let x D sec !. Then dx D tan ! sec ! d!, and x 2 # 1 D sec2 ! # 1 D tan2 !. Thus Z Z Z Z dx tan ! sec ! d! sec ! d! cos ! d! D D D tan ! sin ! cos ! x2 # 1 tan2 ! Z D csc ! d! D ln j csc ! # cot !j C C: Now we construct a right triangle with sec ! D x: x x2 − 1 1 p p From this we see that csc ! D x= x 2 # 1 and cot ! D 1= x 2 # 1. Thus ˇ ˇ ˇ ˇ Z ˇ ˇ ˇ ˇ dx 1 ˇp x ˇ C C D ln ˇ px # 1 ˇ C C: D ln # p ˇ ˇ ˇ ˇ 2 x #1 x2 # 1 x2 # 1 x2 # 1 To check that these two answers agree, we write ˇr ˇ ˇp ˇ ˇ ˇ ˇ ˇ ˇ x #1ˇ ˇ x # 1 px # 1 ˇ ˇ x #1 ˇ 1 1 1 ˇˇ x # 1 ˇˇ ˇ ˇ ˇ ˇ ˇ ˇ: ln jx # 1j # ln jx C 1j D ˇ D ln ˇ !p ˇ D ln ˇ p ˇ D ln ˇ p ˇ ˇ x C 1ˇ ˇ xC1 2 2 2 x C 1ˇ x # 1ˇ x2 # 1 52. Graph the equation .x # 40/y 2 D 10x.x # 30/ and find the volume of the solid obtained by revolving the region between the graph and the x-axis for 0 " x " 30 around the x-axis. SOLUTION The graph of .x # 40/y 2 D 10x.x # 30/ is shown below y 20 10 −20 20 30 x 40 Using the disk method, the volume is given by V D Z 30 0 2 " r dx D " Z 30 0 r 10x.x # 30/ x # 40 !2 dx D " Z 30 0 10x.x # 30/ dx : x # 40 To find the anti-derivative, expand the numerator and then use long division: 10x.x # 30/ 10x 2 # 300x 4000 D D 10x C 100 C : x # 40 x # 40 x # 40 Thus, " Z 30 0 " Z # Z 30 Z 30 30 10x.x # 30/ dx dx D " 10 x dx C 100 dx C 4000 x # 40 x # 40 0 0 0 # $ˇ30 ˇ D " 5x 2 C 100x C 4000 ln jx # 40j ˇ 0 '( ) ( )* D " 4500 C 3000 C 4000 ln.10/ # 0 C 4000 ln.40/ D .7500 # 4000 ln 4/": 882 TECHNIQUES OF INTEGRATION CHAPTER 7 In Exercises 53–66, evaluate the integral using the appropriate method or combination of methods covered thus far in the text. Z dx 53. p x2 4 # x2 SOLUTION Use the trigonometric substitution x D 2 sin !. Then dx D 2 cos ! d!, 4 # x 2 D 4 # 4 sin2 ! D 4.1 # sin2 !/ D 4 cos2 !; and Z dx p D 2 x 4 # x2 Z 2 cos ! d! D .4 sin2 !/.2 cos !/ 1 4 Z 1 csc2 ! d! D # cot ! C C: 4 Now construct a right triangle with sin ! D x=2: 2 x 4 − x2 From this we see that cot ! D 54. Z p 4 # x 2 =x. Thus Z dx 1 p D# 4 x2 4 # x2 p 4 # x2 x ! CC D # p 4 # x2 C C: 4x dx x.x # 1/2 SOLUTION Using partial fractions, we first write 1 A B C D C C : x x #1 x.x # 1/2 .x # 1/2 Clearing denominators gives us 1 D A.x # 1/2 C Bx.x # 1/ C C x: Setting x D 0 yields 1 D A.1/ C 0 C 0 or A D 1; while setting x D 1 yields 1D0C0CC or C D 1; 1 D 1 C 2B C 2 or B D #1: and setting x D 2 yields The result is 1 1 #1 1 D C C : x x#1 x.x # 1/2 .x # 1/2 Thus, 55. Z Z dx D x.x # 1/2 Z dx # x Z dx C x#1 Z dx 1 D ln jxj # ln jx # 1j # C C: x#1 .x # 1/2 cos2 4x dx SOLUTION Use the substitution u D 4x, du D 4 dx. Then we have Z cos2 .4x/ dx D D 1 4 Z cos2 .4x/4 dx D 1 4 Z cos2 u du D & % 1 1 1 u C sin u cos u C C 4 2 2 1 1 1 1 u C sin u cos u C C D x C sin 4x cos 4x C C: 8 8 2 8 The Method of Partial Fractions S E C T I O N 7.5 56. Z x sec2 x dx SOLUTION 57. Z 883 Use integration by parts, with u D x and v 0 D sec2 x. Then u0 D 1, v D tan x, and Z Z ( ) x sec2 x dx D x tan x # tan x dx D x tan x # # ln j cos xj C C D x tan x C ln j cos xj C C: dx .x 2 C 9/2 SOLUTION Use the trigonometric substitution x D 3 tan !. Then dx D 3 sec2 ! d!, x 2 C 9 D 9 tan2 ! C 9 D 9.tan2 ! C 1/ D 9 sec2 !; and Z dx D .x 2 C 9/2 Z 3 sec2 ! d! 3 D 81 .9 sec2 !/2 Z sec2 ! d! 1 D 27 sec4 ! Z cos2 ! d! D 1 27 ! " 1 1 ! C sin ! cos ! C C: 2 2 Now construct a right triangle with tan ! D x=3: x2 + 9 x 3 p p From this we see that sin ! D x= x 2 C 9 and cos ! D 3= x 2 C 9. Thus ! "! " Z # $ #x$ dx 1 1 x 3 1 x !1 x D tan C p p CC D tan!1 C C C: p 2 2 C 9/ 2C9 2C9 54 3 54 54 3 18.x 2 x x x C9 Z 58. ! sec!1 ! d! SOLUTION Use Integration by Parts, with u D sec!1 ! and v 0 D !. Then u0 D 1=! Z ! sec!1 ! d! D !2 sec!1 ! # 2 Z p ! 2 # 1, v D ! 2 =2, and ! 2 d! !2 1 p D sec!1 ! # 2 2 2 2! ! # 1 Z ! d! p : !2 # 1 To evaluate the remaining integral, use the substitution w D ! 2 # 1, dw D 2! d!. Then Z Z Z p ! d! 1 2! d! 1 dw 1( p ) p D p D p D 2 w C C D ! 2 # 1 C C: 2 2 2 w !2 # 1 !2 # 1 The final answer is 59. Z Z ! sec!1 ! d! D tan5 x sec x dx SOLUTION !2 1p 2 sec!1 ! # ! # 1 C C: 2 2 Use the trigonometric identity tan2 x D sec2 x # 1 to write Z Z # $2 tan5 x sec x dx D sec2 x # 1 tan x sec x dx: Now use the substitution u D sec x, du D sec x tan x dx: Z Z Z # $ tan5 x sec x dx D .u2 # 1/2 du D u4 # 2u2 C 1 du 60. Z D 1 5 2 3 1 2 u # u C u C C D sec5 x # sec3 x C sec x C C: 5 3 5 3 .3x 2 # 1/ dx x.x 2 # 1/ SOLUTION The denominator expands to x 3 # x, so if we let u D x 3 # x, then du D .3x 2 # 1/ dx, which is the numerator. Thus Z .3x 2 # 1/ dx D x.x 2 # 1/ Z du D ln juj C C D ln.x.x 2 # 1// C C u 884 61. Z ln.x 4 # 1/ dx SOLUTION Apply integration by parts with u D ln.x 4 # 1/, v 0 D 1; then u0 D Z 62. TECHNIQUES OF INTEGRATION CHAPTER 7 Z .x 2 and v D x, so after simplification, Z x4 1 4 dx D x ln.x # 1/ # 4 1C 4 dx x4 # 1 x #1 Z Z 1 D x ln.x 4 # 1/ # 4 1 dx # 4 dx x4 # 1 ! " Z 1 1 1 D x ln.x 4 # 1/ # 4x # 4 # dx 2 x2 # 1 x2 C 1 Z Z 1 1 D x ln.x 4 # 1/ # 4x # 2 dx C 2 dx 2 2 x #1 x C1 ln.x 4 # 1/ dx D x ln.x 4 # 1/ # 4 Z 4x 3 x 4 !1 D x ln.x 4 # 1/ # 4x C 2 tanh!1 x C 2 tan!1 x C C x dx # 1/3=2 Use the substitution u D x 2 # 1, du D 2x dx. Then we have Z Z Z x dx 1 2x dx 1 du 1 #1 #1 D D D .#2/u!1=2 C C D p C C D p C C: 2 2 2 u .x 2 # 1/3=2 .x 2 # 1/3=2 u3=2 x2 # 1 Z x 2 dx 63. 2 .x # 1/3=2 SOLUTION SOLUTION Use the trigonometric substitution x D sec !. Then dx D sec ! tan ! d!, x 2 # 1 D sec2 ! # 1 D tan2 !; and Z Z Z .sec2 !/ sec ! tan ! d! sec3 ! d! .tan2 ! C 1/ sec ! d! D D tan2 ! tan2 ! .tan2 !/3=2 Z Z Z Z tan2 ! sec ! d! sec ! d! D C D sec ! d! C csc ! cot ! d! tan2 ! tan2 ! x 2 dx D .x 2 # 1/3=2 Z D ln j sec ! C tan !j # csc ! C C: Now construct a right triangle with sec ! D x: x x2 − 1 1 From this we see that tan ! D 64. Z .x C 1/ dx C 4x C 8/2 .x 2 p p x 2 # 1 and csc ! D x= x 2 # 1. So the final answer is Z ˇ ˇ p x 2 dx x ˇ ˇ D ln ˇx C x 2 # 1ˇ # p C C: 2 .x 2 # 1/3=2 x #1 SOLUTION At first it might appear that one would use partial fractions to simplify this problem, but in fact it’s already in simplified form. Instead, use the substitution u D x 2 C 4x C 8, du D .2x C 4/ dx. Then we have Z Z Z .x C 1/ dx 1 .2x C 2/ dx 1 .2x C 2 C 2 # 2/ dx D D 2 2 2 2 2 2 .x C 4x C 8/ .x C 4x C 8/ .x 2 C 4x C 8/2 Z Z 1 .2x C 4/ dx dx D # 2 2 2 2 .x C 4x C 8/ .x C 4x C 8/2 Z Z Z 1 du dx dx #1 D # # D : 2 2 2 2 2 2u u .x C 4x C 8/ .x C 4x C 8/2 To evaluate the remaining integral, complete the square, then let w D x C 2, dw D dx: Z Z Z Z dx dx dx dw D D D : .x 2 C 4x C 8/2 .x 2 C 4x C 4 C 4/2 ..x C 2/2 C 4/2 .w 2 C 4/2 The Method of Partial Fractions S E C T I O N 7.5 885 Next, let w D 2 tan !, dw D 2 sec2 ! d!. Then w 2 C 4 D 4 tan2 ! C 4 D 4.tan2 ! C 1/ D 4 sec2 !; and we have Z dw D .w 2 C 4/2 Z 2 sec2 ! d! 1 1 D cos2 ! d! D 8 8 16 sec4 ! ! " 1 1 1 1 ! C sin ! cos ! C C D !C sin ! cos ! C C: 2 2 16 16 Now construct a right triangle with tan ! D w=2: w2 + 4 w 2 p p From this we see that sin ! D w= w 2 C 4 and cos ! D 2= w 2 C 4. Thus ! "! " Z # $ #w $ dw 1 1 w 2 1 w !1 w D tan C p p CC D tan!1 C C C: 2 2 2 2 16 2 16 16 2 .w C 4/ 8.w 2 C 4/ w C4 w C4 In terms of x, we have Z dx D .x 2 C 4x C 8/2 Z dw 1 D tan!1 16 .w 2 C 4/2 ! xC2 2 " C xC2 C C: 8..x C 2/2 C 4/ Collecting all the terms, we have ! " Z .x C 1/ dx #1 1 xC2 !1 x C 2 D # tan # CC 2 .x 2 C 4x C 8/2 2.x 2 C 4x C 8/ 16 8.x 2 C 4x C 8/ ! " 1 xC2 xC6 D # tan!1 # C C: 16 2 8.x 2 C 4x C 8/ p Z x dx 65. x3 C 1 SOLUTION 66. Z Use the substitution u D x 3=2 , du D 32 x 1=2 dx. Then x 3 D .x 3=2 /2 D u2 , so we have Z p Z x dx 2 du 2 2 D D tan!1 u C C D tan!1 .x 3=2 / C C: 3 3 3 x3 C 1 u2 C 1 x 1=2 dx x 1=3 C 1 SOLUTION Use the substitution u D x 1=6 , du D 16 x !5=6 dx. Then dx D 6x 5=6 du D 6u5 du, and we get Z x 1=2 dx D x 1=3 C 1 Z u3 .6u5 du/ D6 u2 C 1 Z u8 du : u2 C 1 By long division u8 1 D u6 # u4 C u2 # 1 C 2 ; u2 C 1 u C1 thus Z u8 du D 2 u C1 Z ! u6 # u4 C u2 # 1 C 1 2 u C1 " du D 1 7 1 5 1 3 u # u C u # u C tan!1 u C C: 7 5 3 The final answer is Z x 1=2 6 6 D x 7=6 # x 5=6 C 2x 1=2 # 6x 1=6 C 6 tan!1 .x 1=6 / C C: 1=3 7 5 x C1 67. Show that the substitution ! D 2 tan!1 t (Figure 1) yields the formulas cos ! D 1 # t2 ; 1 C t2 sin ! D 2t ; 1 C t2 d! D 2 dt 1 C t2 10 This substitution transforms the integral of any rational function Zof cos ! and sin ! into an integral of a rational function of t (which d! can then be evaluated using partial fractions). Use it to evaluate . cos ! C 34 sin ! 886 TECHNIQUES OF INTEGRATION CHAPTER 7 1 + t2 t /2 1 FIGURE 1 p p If ! D 2 tan!1 t, then d! D 2 dt=.1 C t 2 /. We also have that cos. "2 / D 1= 1 C t 2 and sin. "2 / D t= 1 C t 2 . To find cos !, we use the double angle identity cos ! D 1 # 2 sin2 . "2 /. This gives us SOLUTION ! "2 t 2t 2 1 C t 2 # 2t 2 1 # t2 cos ! D 1 # 2 p D1# D D : 1 C t2 1 C t2 1 C t2 1 C t2 To find sin !, we use the double angle identity sin ! D 2 sin. "2 / cos. "2 /. This gives us ! "! " t 1 2t sin ! D 2 p p D : 2 2 1 C t2 1Ct 1Ct With these formulas, we have Z d! D cos ! C .3=4/ sin ! Z 2 dt # 2 $ 1Ct # $ D 1!t 2 2t C 34 1Ct 2 1Ct 2 Z 8 dt D 4.1 # t 2 / C 3.2t/ Z 8 dt D 4 C 6t # 4t 2 Z 4 dt : 2 C 3t # 2t 2 The partial fraction decomposition has the form 4 A B D C : 2#t 1 C 2t 2 C 3t # 2t 2 Clearing denominators gives us 4 D A.1 C 2t/ C B.2 # t/: Setting t D 2 then yields 4 D A.5/ C 0 while setting t D # 12 yields 4D0CB ! " 5 2 or AD or 4 ; 5 BD 8 : 5 The result is 4 8 4 5 5 D C : 2#t 1 C 2t 2 C 3t # 2t 2 Thus, Z 4 4 dt D 5 2 C 3t # 2t 2 Z dt 8 C 2#t 5 Z dt 4 4 D # ln j2 # tj C ln j1 C 2tj C C: 1 C 2t 5 5 The original substitution was ! D 2 tan!1 t, which means that t D tan. "2 /. The final answer is then ˇ ˇ ! "ˇ ! "ˇ Z d! 4 ˇˇ ! ˇˇ 4 ˇˇ ! ˇˇ D # ln 2 # tan C ln 1 C 2 tan C C: ˇ ˇ ˇ 3 5 2 5 2 ˇ cos ! C 4 sin ! Z d! 68. Use the substitution of Exercise 67 to evaluate . cos ! C sin ! SOLUTION Using the substitution ! D 2 tan!1 t, we get Z d! D cos ! C sin ! Z 2 dt=.1 C t 2 / D .1 # t 2 /=.1 C t 2 / C 2t=.1 C t 2 / Z 2 dt D #2 1 # t 2 C 2t The partial fraction decomposition has the form #2 B A p C p : D t 2 # 2t # 1 t #1# 2 t #1C 2 Z dt : t 2 # 2t # 1 S E C T I O N 7.5 The Method of Partial Fractions 887 Clearing denominators gives us Setting t D 1 C Z p p 2/ C B.t # 1 # 2/: p , while setting t D 1 # 2 yields B D p1 . Thus, #2 D A.t # 1 C 2 then yields A D # p1 2 Z p 2 Z p p 1 dt 1 1 p #p p D p ln jt # 1 C 2j # p ln jt # 1 # 2j C C t #1C 2 2 t #1# 2 2 2 # $ ˇ ˇ p ˇ tan " # 1 C 2 ˇ ˇ ˇ 1 2 ˇ C C: # $ D p ln ˇˇ p ˇ 2 ˇ tan " # 1 # 2 ˇ 2 d! 1 D p cos ! C sin ! 2 dt Further Insights and Challenges 69. Prove the general formula Z dx 1 x#a D ln CC .x # a/.x # b/ a#b x #b where a; b are constants such that a ¤ b. SOLUTION The partial fraction decomposition has the form: 1 A B D C : .x # a/.x # b/ x#a x#b Clearing denominators, we get 1 D A.x # b/ C B.x # a/: Setting x D a then yields 1 D A.a # b/ C 0 or AD 1 ; a#b 1 D 0 C B.b # a/ or BD 1 : b#a while setting x D b yields The result is 1 1 1 D a!b C b!a : .x # a/.x # b/ x#a x#b Thus, Z dx 1 D .x # a/.x # b/ a#b Z dx 1 C x#a b#a Z dx 1 1 D ln jx # aj C ln jx # bj C C x #b a#b b#a ˇx # aˇ 1 1 1 ˇ ˇ D ln jx # aj # ln jx # bj C C D ln ˇ ˇ C C: a#b a#b a#b x#b 70. The method of partial fractions shows that Z ˇ 1 ˇ ˇ dx 1 ˇ D ln ˇx # 1ˇ # ln ˇx C 1ˇ C C 2 2 x2 # 1 The computer algebra system Mathematica evaluates this integral as # tanh!1 x, where tanh!1 x is the inverse hyperbolic tangent function. Can you reconcile the two answers? SOLUTION Let y D tanh x D e x # e !x : e x C e !x Solving for x in terms of y, we find .e x C e !x /y D e x # e !x e !x .1 C y/ D e x .1 # y/ 888 CHAPTER 7 TECHNIQUES OF INTEGRATION 1Cy 1#y ˇ ˇ 1 ˇ 1 C y ˇˇ x D ln ˇˇ 2 1#yˇ e 2x D Thus, tanh!1 x D so # tanh!1 x D as desired. ˇ ˇ 1 ˇˇ 1 C x ˇˇ ln ˇ ; 2 1#xˇ ˇ ˇ 1 ˇˇ 1 # x ˇˇ 1 1 ln ˇ D ln j1 # xj # ln j1 C xj; 2 1Cxˇ 2 2 71. Suppose that Q.x/ D .x # a/.x # b/, where a ¤ b, and let P .x/=Q.x/ be a proper rational function so that P .x/ A B D C Q.x/ .x # a/ .x # b/ P .a/ P .b/ and B D 0 . 0 Q .a/ Q .b/ (b) Use this result to find the partial fraction decomposition for P .x/ D 3x # 2 and Q.x/ D x 2 # 4x # 12. (a) Show that A D SOLUTION (a) Clearing denominators gives us P .x/ D A.x # b/ C B.x # a/: Setting x D a then yields P .a/ D A.a # b/ C 0 or AD P .a/ ; a#b P .b/ D 0 C B.b # a/ or BD P .b/ : b#a while setting x D b yields Now use the product rule to differentiate Q.x/: Q0 .x/ D .x # a/.1/ C .1/.x # b/ D x # a C x # b D 2x # a # bI therefore, Q0 .a/ D 2a # a # b D a # b Q0 .b/ D 2b # a # b D b # a Substituting these into the above results, we find AD P .a/ Q0 .a/ and B D P .b/ : Q0 .b/ (b) The partial fraction decomposition has the form: P .x/ 3x # 2 3x # 2 A B D 2 D D C I Q.x/ .x # 6/.x C 2/ x#6 xC2 x # 4x # 12 AD P .6/ 3.6/ # 2 16 D D D 2I 0 Q .6/ 2.6/ # 4 8 BD 3.#2/ # 2 #8 P .#2/ D D D 1: 0 Q .#2/ 2.#2/ # 4 #8 The result is 3x # 2 1 2 C : D x#6 xC2 x 2 # 4x # 12 S E C T I O N 7.5 The Method of Partial Fractions 889 72. Suppose that Q.x/ D .x # a1 /.x # a2 / ! ! ! .x # an /, where the roots aj are all distinct. Let P .x/=Q.x/ be a proper rational function so that P .x/ A1 A2 An D C C !!! C Q.x/ .x # a1 / .x # a2 / .x # an / (a) Show that Aj D P .aj / for j D 1; : : : ; n. Q0 .aj / (b) Use this result to find the partial fraction decomposition for P .x/ D 2x 2 # 1, Q.x/ D x 3 # 4x 2 C x C 6 D .x C 1/.x # 2/.x # 3/. SOLUTION (a) To differentiate Q.x/, first take the logarithm of both sides, and then differentiate: ( ) ' * ln Q.x/ D ln .x # a1 /.x # a2 / ! ! ! .x # an / D ln.x # a1 / C ln.x # a2 / C ! ! ! C ln.x # an / ( ) d Q0 .x/ 1 1 1 ln Q.x/ D D C C !!! C dx Q.x/ x # a1 x # a2 x # an Multiplying both sides by Q.x/ gives us % & 1 1 Q0 .x/ D Q.x/ C !!! C x # a1 x # an D .x # a2 /.x # a3 / ! ! ! .x # an / C .x # a1 /.x # a3 / ! ! ! .x # an / C ! ! ! C .x # a1 /.x # a2 / ! ! ! .x # an!1 /: In other words, the ith product in the formula for Q0 .x/ has the .x # ai / factor removed. This means that Q0 .aj / D .aj # a1 / ! ! ! .aj # aj !1 /.aj # aj C1 / ! ! ! .aj # an /: Now clear denominators in the expression for P .x/=Q.x/: P .x/ D A1 Q.x/ A2 Q.x/ An Q.x/ C C !!! C x # a1 x # a2 x # an D A1 .x # a2 / ! ! ! .x # an / C .x # a1 /A2 .x # a3 / ! ! ! .x # an / C ! ! ! C .x # a1 /.x # a2 / ! ! ! .x # an!1 /An : Setting x D aj , we get P .aj / D .aj # a1 /.aj # a2 / ! ! ! .aj # aj !1 /Aj .aj # aj C1 / ! ! ! .aj # an /; so that Aj D P .aj / P .aj / D 0 : .aj # a1 / ! ! ! .aj # aj !1 /.aj # aj C1 / ! ! ! .aj # an / Q .aj / (b) Let P .x/ D 2x 2 # 1 and Q.x/ D .x C 1/.x # 2/.x # 3/, so that Q0 .x/ D 3x 2 # 8x C 1. Then a1 D #1, a2 D 2, and a3 D 3, so that A1 D P .#1/=Q0 .#1/ D 1 I 12 7 A2 D P .2/=Q0 .2/ D # I 3 17 A3 D P .3/=Q0 .3/ D : 4 Thus P .x/ 1 7 17 D # C : Q.x/ 12.x C 1/ 1 D 3.x # 2/ 4.x # 3/
© Copyright 2026 Paperzz