Lesson 3 Part 3 Remember that r t fti gtj htk represnts a curve in the space. Read the pages 849-851 and note that if ft, gt, ht are twice differentiable functions of t then v dr dt and a d2 r dt 2 are the velocity at acceleration vectors at time t The speed is given by v Let us look at exercise #16 on the page 854 To find the velocity, speed and the acceleration of the object that travels along r 〈e t cos t, e t sin t, e t First note that x e t cos t 1 y e t sin t z et gives x 2 y 2 e 2t cos 2 t e 2t sin 2 t or x 2 y 2 e 2t cos 2 t sin 2 t or x 2 y 2 z 2 which means that the curve is contained on the cone 2 3 The velocity vector v ddtr dtd e t cos ti e t sin tj e t ke t cos t − e t sin ti e t sin t e t cos tj e t k v e t cos t − e t sin ti e t sin t e t cos tj e t k v e t cos t − e t sin t 2 e t sin t e t cos t 2 e t 2 e 2t cos 2 t e 2t sin 2 t − 2e 2t cos t sin t e 2t cos 2 t e 2t sin 2 t 2e 2t cos t sin t e 2t e 2t cos 2 t e 2t sin 2 t e 2t cos 2 t e 2t sin 2 t e 2t e 2t cos 2 t sin 2 t e 2t cos 2 t sin 2 t e 2t 4 e 2t e 2t e 2t 3e 2t e t 3 The acceleration vector is a ddtv e t cos t − e t sin t − e t sin t − e t cos ti e t sin t e t cos t e t cos t − e t sin tj e t k a −e t sin ti e t cos tj e t k APPLICATION: Let us consider the following motion in a plane with the path described by the position vector r 5 cos 1 4 t i 5 sin 1 4 t j Note that x 5 cos 1 4 y 5 sin t x 2 y 2 25 cos 2 x 2 y 2 25 cos 2 1 4 t 25 sin 2 1 4 t sin 2 1 4 1 4 1 4 t t t x 2 y 2 25 The path is slong the circle 5 5 P 4 3 rG r 2 1 -5 -4 -3 -2 θ -1 1 2 3 4 5 -1 -2 -3 -4 -5 Where Note that 1 4 d dt t 1 4 rad/per unit time Note that v ddtr dtd 5 cos 1 4 t i 5 sin 1 4 t j − 5 4 sin 1 4 t i 5 cos 1 4 t j You can easily note that rv 0 6 5 v 4 3 r 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 6 -1 -2 -3 -4 5 7 The acceleration vector is a a − 165 cos Note that 1 4 a 5 i − 16 sin t 1 4 dv dt d dt − 5 4 sin 1 4 t i 5 cos 1 4 t j j t 5 16 and also a − 161 5 cos 1 4 t i 5 sin 1 4 t j or a − 161 r 8 5 v r 4 a 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 6 -1 -2 -3 4 9 In general if a particle moves along a circle given by r b coswti b sinwtj then v ddtr −wbsinwti wbcoswtj v bw −sinwti coswtj v |bw| a ddtv a −bw 2 coswti sinwtj a −w 2 r ................. On the other hand we know the acceleration vector, d2 r dt 2 we can integrate twice and find the position vector function r t Let us take up #22 on the page 854 Given that 10 a −cos ti − sin tj GIVEN THAT v 0 j k dv dt r 0 i −cos ti −sin tj Integrate with respect to t v −sin ti cos tj C Given that v 0 j k Therefore −sin 0i cos 0j C j k j C j k Therefore C k v −sin ti cos tj C → dr −sin ti cos tj k dt integrate with respect to t r cos ti sin tj tk D Given that 11 r 0 i cos 0i sin 0j 0k D i i D i → D 0 r cos ti sin tj 2tj tk r cos ti sin tj tk 12 13 A nice example of obtaining the position vector function r by integrating a twice is the example where a −gj where g is the acceleration due to gravity, is described on the pages 852-853 of the text I am going to show you the steps using an exercise in the text book: #34 on the page 855 Even though you can just use the summary formulas, let us still work on it from scratch. 14 35 degrees 7 feet 4 feet Considering this as a motion in the i-j plane Note that the acceleration vector is d2 r dt 2 ddtv −g j 15 where g 32 ft/ sec 2 dv dt −g j → v −gt j C If the speed at the time of release is v ∘ feet per second the inital velocity v ∘ as a vector is v ∘ v ∘ cos 35 ∘ i v ∘ sin 35 ∘ j that is, when t 0, v v ∘ cos 35 ∘ i sin 35 ∘ j v ∘ cos 35 ∘ i v ∘ sin 35 ∘ j −g0 j C therefore C v ∘ cos 35 ∘ i v ∘ sin 35 ∘ j v −gt j v ∘ cos 35 ∘ i v ∘ sin 35 ∘ j v v ∘ cos 35 ∘ i −gt v ∘ sin 35 ∘ j dr dt v ∘ cos 35 ∘ i −gt v ∘ sin 35 ∘ j 16 Integrate r v ∘ tcos 35 ∘ i −g t2 v ∘ t sin 35 ∘ j D 2 Since, the ball was project initially from a height of 7 feet, taking the position of the Quarter back as the origin, the position of the ball at time t 0 sec is r ∘ 7j When t 0, we have r r ∘ 7j 7j v ∘ 0cos 35 ∘ i −g 02 v ∘ 0 sin 35 ∘ j D 2 D 7j r v ∘ tcos 35 ∘ i −g t2 v ∘ t sin 35 ∘ j 7j 2 r v ∘ tcos 35 ∘ i 7 − g t2 v ∘ t sin 35 ∘ j 2 Compare this with the equation 2 r t v ∘ tcos i h − g t2 v ∘ t sin j on the page 853 of the text book let us work on the problems now, We have x v ∘ tcos 35 ∘ and y 7 − g t2 v ∘ t sin 35 ∘ 2 a) 17 35 degrees R 7 feet 4 feet Origin 30 yards=90feet Note that (300,4) is a point on the curve that is given by x v ∘ tcos 35 ∘ and y 7 − g t2 v ∘ t sin 35 ∘ 2 At the point, where the ball is received v ∘ tcos 35 ∘ 90 .......... (1) 18 7 − g t2 v ∘ t sin 35 ∘ 2 4 .......... (2) Equation (1) gives t 90 v ∘ cos 35 ∘ at R Substitute the value is (2) 7 − 32 90 v ∘cos 35 ∘ 2 v∘ 2 90 v ∘ cos 35 ∘ sin 35 ∘ 4 → 7 − 32 90 v ∘cos 35 ∘ 2 2 90 cos 35 ∘ sin 35 ∘ 4 → 7 − 16 90 v ∘ cos 35 ∘ 2 90 cos 35 ∘ sin 35 ∘ 4 → −16 90 v ∘ cos 35 ∘ 2 4 − 7 − cos9035 ∘ sin 35 ∘ → 19 90 v ∘ cos 35 ∘ 2 −3− 90 cos 35 ∘ sin 35 ∘ −16 → v ∘ cos 35 ∘ 90 2 16 3 90 cos 35 ∘ sin 35 ∘ → v 2∘ 16 390 tan 35 ∘ 900 cos 35 ∘ 2 → v∘ 16 390 tan 35 ∘ 54. 088 feet/sec 90 cos 35 ∘ b) The height is given by y 7 − g t2 v ∘ t sin 35 ∘ 7 − 16t 2 tsin 35 ∘ 2 16 390 tan 35 ∘ 90 cos 35 ∘ The max occurs at t sin 35 ∘ 16 390 tan 35 ∘ 32 90 cos 35 ∘ 0. 969 5 sec 20 Therefore, the max height is y 7 − 16 sin 35 ∘ 16 390 tan 35 ∘ 32 90 cos 35 ∘ 2 16 390 tan 35 ∘ 90 cos 35 ∘ sin 35 ∘ 16 390 tan 35 ∘ 32 90 cos 35 ∘ sin 35 ∘ 22. 038 750 873 585 077 962 feet c) The time that it takes the football to reach the position R is (as calculated in part a) 90 t v ∘ cos 35 ∘ or t 90 16 390 tan 35 ∘ 90 cos 35 ∘ cos 35 ∘ 2. 031 296 975 439 489 377 1 sec Section 12.3: 3,5,7,11,13,15,17,19,21,27,29,31,35,41,45,49 21 22 23
© Copyright 2026 Paperzz