A11-Quadratics in Vertex Form

Name______________________________________________ Date__________________ Period_______
A11-Quadratics in Vertex Form
Find the axis of symmetry, vertex, direction opens, and the y-intercept for each quadratic function. Then use
that information to graph and find the domain and range.
1. 𝑦𝑦 = βˆ’(π‘₯π‘₯ + 2)2 βˆ’ 2
Axis of symmetry:_____________
Vertex:________________
Direction opens:______________
y-intercept:____________
Domain:_____________________
Range:________________
1
4
2. 𝑦𝑦 = (π‘₯π‘₯ βˆ’ 4)2 βˆ’ 3
Axis of symmetry:_____________
Vertex:________________
Direction opens:______________
y-intercept:____________
Domain:_____________________
Range:________________
3. 𝑦𝑦 = βˆ’2(π‘₯π‘₯ + 1)2 βˆ’ 5
Axis of symmetry:_____________
Vertex:________________
Direction opens:______________
y-intercept:____________
Domain:_____________________
Range:________________
4. Given the vertex form of a quadratic function, how do you find the axis of symmetry?
1
2
5. 𝑦𝑦 = βˆ’ (π‘₯π‘₯ βˆ’ 2)2 + 1
Axis of symmetry:_____________
Vertex:________________
Direction opens:______________
y-intercept:____________
Domain:_____________________
Range:________________
1
2
6. 𝑦𝑦 = (π‘₯π‘₯ + 4)2
Axis of symmetry:_____________
Vertex:________________
Direction opens:______________
y-intercept:____________
Domain:_____________________
Range:________________
7. 𝑦𝑦 = βˆ’2(π‘₯π‘₯ βˆ’ 0)2 βˆ’ 2
Axis of symmetry:_____________
Vertex:________________
Direction opens:______________
y-intercept:____________
Domain:_____________________
Range:________________
8. 𝑦𝑦 = (π‘₯π‘₯ βˆ’ 5)2 βˆ’ 7
Axis of symmetry:_____________
Vertex:________________
Direction opens:______________
y-intercept:____________
Domain:_____________________
Range:________________