Name______________________________________________ Date__________________ Period_______ A11-Quadratics in Vertex Form Find the axis of symmetry, vertex, direction opens, and the y-intercept for each quadratic function. Then use that information to graph and find the domain and range. 1. π¦π¦ = β(π₯π₯ + 2)2 β 2 Axis of symmetry:_____________ Vertex:________________ Direction opens:______________ y-intercept:____________ Domain:_____________________ Range:________________ 1 4 2. π¦π¦ = (π₯π₯ β 4)2 β 3 Axis of symmetry:_____________ Vertex:________________ Direction opens:______________ y-intercept:____________ Domain:_____________________ Range:________________ 3. π¦π¦ = β2(π₯π₯ + 1)2 β 5 Axis of symmetry:_____________ Vertex:________________ Direction opens:______________ y-intercept:____________ Domain:_____________________ Range:________________ 4. Given the vertex form of a quadratic function, how do you find the axis of symmetry? 1 2 5. π¦π¦ = β (π₯π₯ β 2)2 + 1 Axis of symmetry:_____________ Vertex:________________ Direction opens:______________ y-intercept:____________ Domain:_____________________ Range:________________ 1 2 6. π¦π¦ = (π₯π₯ + 4)2 Axis of symmetry:_____________ Vertex:________________ Direction opens:______________ y-intercept:____________ Domain:_____________________ Range:________________ 7. π¦π¦ = β2(π₯π₯ β 0)2 β 2 Axis of symmetry:_____________ Vertex:________________ Direction opens:______________ y-intercept:____________ Domain:_____________________ Range:________________ 8. π¦π¦ = (π₯π₯ β 5)2 β 7 Axis of symmetry:_____________ Vertex:________________ Direction opens:______________ y-intercept:____________ Domain:_____________________ Range:________________
© Copyright 2026 Paperzz