2 - repository.​tudelft.​nl

St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Appendices Table of Content
Number
A
B
C
D
Title
Base of Design
A.1 Basic Assumptions
A.2 Kinetics
A.2.a Demineralization (Lactic acid)
A.2.b Enzymatic Deproteinization
A.2.c Chemical Demineralization (Hydrochloric acid)
A.2.d Chemical Deproteinization
A.2.e Chemical Deacetylation
A.3 Shrimp Shell Compositions
Thermodynamics
Process Structure, Description, and Balances
C.1 Process Flow Scheme Diagram
C.2 Utilities Summary
C.3 Process Stream Summary
Equipment Design
D.1 Integration by Process Simulation
D.2 Lactic Acid Fermentation (R101 a/b)
D.2.a Stoichiometry
D.2.b Mass Balance of Fermentation
D.2.c Reaction Condition Optimization
D.2.d Fermentation Simulation
D.2.e Dimensioning of Fermentor
D.2.f Cooling Requirement
D.2.g Microfilter Design
D.2.h Superpro Designer Simulation
D.3 Reactor Simulation (R301 a/b, R302, R401)
D.3.a Mean Conversion and Total Reactor volume for CSTRs in N series
D.3.b Residence Time Distribution
D.3.c Impeller
D.4 Rotary Drum Filter (S301, S302, S401)
D.4.a Sample Calculation (S301)
D.4.b Comparison to Aspen Plus Simulation
D.5 Shrimp Shell Crusher (A201) and Chitosan Grinder (A401)
D.5.a A201 Shrimp Shell Crusher Design
D.5.a.a Energy Utilization for Size Reduction
D.5.a.b Equipment Design
D.5.b A401 Chitosan Grinder
D.5.b.a Vessel Design
D.6 Evaporators and Heat Exchangers
D.6.a C201 Ethanol Evaporator
D.6.a.a Design of the Vessel
CPD 3264
I
A-1
A-2
A-3
A-3
A-5
A-6
A-7
A-8
A-9
B-1
C-1
C-2
C-7
C-10
D-1
D-2
D-11
D-12
D-13
D-14
D-15
D-18
D-19
D-19
D-19
D-22
D-23
D-23
D-25
D-27
D-28
D-32
D-33
D-34
D-34
D-34
D-37
D-38
D-39
D-40
D-40
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Appendices Table of Content (cont'd)
Number
E
F
Title
D.6.b Heat Integration and Heat Exchanger
D.6.b.a Design Heat Exchanger for Sterilization
D.6.b.b Design Heat Exchanger for Ethanol Evaporation System
D.7 Extractor, Dryer, Buffer and Mixing Tanks
D.7.a Benzoic Acid Extractor (S201)
D.7.a.a Number of Stages
D.7.a.b Equipment Design
D.7.a.b.a
Mass Transfer in Leaching Operations
D.7.b Product Dryer
D.7.c Buffer Tanks (T101 and T102)
D.7.d Mixing Tanks (V301 and V401)
D.8 Pump and Line Calculation
D.9 Equipment Data Summary Sheets and Specification Sheets
Waste Streams
Economics
CPD 3264
II
D-48
D-48
D-50
D-57
D-58
D-58
D-60
D-60
D-64
D-66
D-67
D-69
D-81
E-1
F-1
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Appendix A.1 Basic Assumptions
Table A.1.1 Summary of Basis Assumptions
Shrimp shell composition
Degree of deacetylation (Initially)
Ratio of bonded water to free water
25 % w/w
50 %
Benzoic acid recovery
Ethanol/water loss
99 %
5%
Benzoic acid extractor
Lactic acid fermentation
Innoculum concentration
Water
Lactobacillus sp.
Glucose concentration
Utilization of glucose
Glucose - lactate (Yield)
Glucose - growth (Yield)
Chitin Demineralization and Deproteinization
Demineralization
Deproteinization
Ratio of <24> to <3>
Chitin purification
Demineralization
Ratio of HCl solution to solid
Molar concentration of HCl
Chitin deacetylation
Degree of deacetylation
Deproteinization in deacetylation
Ratio of NaOH over solids
Concentration of NaOH
Drum filters (Filter 1, Filter2)
Chitin and solid loss
Liquid fraction
Drum filters (Filter 3)
Chitin and solid loss
Liquid fraction
Washing extraction water to cake
Product Dryer
Bounded Water Dried Out
Free Water Dried Out
CPD 3264
A-2
5 % w/w
85 %
15 %
15 % w/w
99.9 % w/w
0.871 Cmol/Cmol
0.123 Cmol/Cmol
90 % w/w
Occasionally
2 w/w
95 % w/w
5 w/w
0.5 N
90 % w/w
Occasionally
10 w/w
45 % w/w
1 % w/w
20 % w/w
1 % w/w
20 % w/w
3 w/w
90 % w/w
100 % w/w
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Appendix A.2 Kinetics
A.2.a Demineralization (Lactic acid)
Demineralization from shrimp shell takes place by fermentation with lactic acid.
described as equation A.2.1.
CaCO3 ( s )  2CH 3 HCOHCOOH ( aq )
 Ca (CH 3 HCOHCOO  ) 2 ( aq )  CO2 ( g )  H 2 O (aq )
This is
(A.2.1)
Configuration of ‘in-situ’ lactic acid production and demineralization with fed-batch reactor is
shown in Figure A.2.2.1. [1]
Figure A.2.1 Reactor Configuration of in-situ fermentation
In this experiment, lactic acid was produced from whey lactose in a batch-fed fermentation
process, using immobilized cells of Lactobacillus. Fermentation was carried out and
demineralization of chitinous material took place simultaneously. This fermentation process had
been studied to produce low-cost lactic acid ‘in-situ’ and to investigate its direct use for the
demineralization of crayfish chitinous fraction. In this figure MF cell represents micro-filtration
cell, 0.2 μm, and CF is chitinious fraction. First, lactic acid solution flows to fermentation circuit
(a), until a lactic acid concentration of 20 g/l is reached. At this stage demineralization is not
carried out. Second, when it reaches 20 g/l, lactic acid solution is fed through fermentation
circuit (b), and demineralization takes place. Results from this experiment are shown in Figure
A.2.2.
CPD 3264
A-3
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
1
80
70
0.8
60
0.7
50
0.6
0.5
40
0.4
30
0.3
Lactic Acid [kg/m^3]
Mineral Fraction
[kg-mineral/kg-mineral initial]
0.9
20
0.2
10
0.1
0
0
0
10
20
30
40
50
time (hours)
Figure A.2.2 Lactic acid Production and Demineralization
Trend curves are described as follows for lactic acid production and demineralization,
respectively.
Lactic acid production
(A.2.2)
L  0.0013t  0.0914t  0.1035t  0.1801
3
2
Demineralization
(A.2.3)
In which L represents lactic acid concentration [kg/m3], M is mineral fraction based on initial
mineral mass in chitinous material. [kg-mineral/kg-mineral initial], and t is reaction time [hour].
Reaction rate of demineralization is calculated by differentiation of equation A.2.2 and is
describes as equation A.2.4.
M  0.0012t - 0.0862t - 0.5483t  100.94
3
dM
dt
2
(A.2.4)
 0.0036t 2 - 0.1724t  0.5483
Demineralization depends on concentration of lactic acid and fraction of minerals in the reactor.
Therefore we can describe the reaction rate generally as follows.
dM
dt

  kd  L  M

(A.2.5)
Where kd is rate constant,  is degree of polynomial of lactic acid, and  is that of mineral.
As we mentioned before, we also assume that three periods (different three stages) exist for
demineralization of chitinous material. kd, , and  is calculated by iteration for three stages
using equation A.2.2, A.2.3, A.2.4, A.2.5. Solved values are listed below.
CPD 3264
A-4
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table A.2.1 In situ Lactic acid Production and Demineralization
First stage
(t:0-6 h, L:0-3 kg/m3 M:1-0.97)
Second stage
(t:6-40 h, L:3-68 kg/m3 M:0.97-0.20)
Third stage
(t:40-50 h, L:68-71 kg/m3 M:0.20-0.09)
k[1/hr]
0.9763

0.3100

0.0337
0.7232
0.4567
0.5840
45.37
-
1.744
k is converted from [1/hr] to [1/s] and the kinetics of three stages are listed below.
First stage
dM
dt
 2.71  104  L0.3100  M 0.0337
(A.2.6)
Second stage
dM
dt
 1.27  104  L0.4567  M 0.5840
(A.2.7)
Third stage
dM
dt
 0.0126  M
(A.2.8)
1.744
The third stage is assumed to be the function of mineral fraction only, because the high
concentration of lactic acid is assumed to be not rate limiting in this stage.
A.2.b Enzymatic Deproteinization
Deproteinization takes place during the fermentation by aid of proteases. Protein hydrolysis is
generally described generally as follows.
(A.2.9)
(Protein) n (aq)+(n-1)H 2 O(l)  n  Protein (l)
Experimental results of deproteinization through fermentation of shrimp shells with lactic acid,
are shown in Fig A.2.3
Trend of P fraction profile can be described as equation A.2.10. (Dash line in Figure A.2.3) This
equation is estimated through Michaelis-Menten equation.
P
0.1  0.24t
(A.2.10)
0.1  1.24t
In which P is the fraction of protein based on mass in the chitinous material initially. The
reaction rate is expressed in equation A.2.11.
dP
dt

0.1
(0.1  1.24t )
2
(A.2.11)
It is assumed that this reaction can be written as A.2.12, which is depending on protein fraction.
dP
dt
  ke  P

(A.2.12)
CPD 3264
A-5
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
1
Protein Fraction
[kg-protein/kg-protein initial]
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
10
20
30
40
50
time [hours]
Figure A.2.3 Enzymatic Deproteinization
In which k is rate constant,  is degree of polynomial of protein fraction. ke and  is calculated as
25.20 [1/hr] and 4.291 respectively. ke is converted to second base, and it is 0.0070 [1/s]
dP
dt
(A.2.13)
 0.0070  P 4.291
A.2.c Chemical Demineralization (Hydrochloric acid)
Shrimp shells contain 34 % of minerals (dry basis), and it consists of mainly calcium carbonate.
Demineralization from shrimp shell is accomplished by extraction of calcium carbonate with
dilute hydrochloric acid to form calcium chloride. It is described as equation. Pseudo first-order
reaction kinetics is observed [2]. The rate of reaction can be described as:
CaCO3 ( s)  2 HCl (aq)  CaCl2 (aq)  CO2 ( g )  H 2O(l )
dM
  ka M
dt
(A.2.14)
(A.2.15)
Where M represents mineral fraction [kg-mineral/kg-mineral initial], which calcium is dominant,
t is treatment time and ka [1/s] is the rate constant. Mineral fraction bases on amount of the
mineral that is bounded to chitin initially. ka is expressed by Arrhenius equation with amount of
hydrochloric acid, HCl, which reacts with the mineral to form soluble solid. HCl also controls
the pH of the reactor. The reaction rate is assumed to be proportional to the amount of hydrogen
chloride, A.
k a  Ak a 0  e

E
RT
.
(A.2.16)
In which A represents amount of HCl [N·l-solution/kg-solid] that is calculated by multiplying
solution to solid ratio [l-solution/kg-solid] and concentration of HCl [N] (N=mol/kg-solvent). ka0
is the Arrhenius rate constant, E is the activation energy, R is gas constant, and T is reaction
temperature.
CPD 3264
A-6
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Activation energy and the rate constant are calculated using experimental data, which is listed in
Table A.2.2. [3] They are calculated through Arrhenius plot. (lnka against 1/T) However some
experimental data shows negative activation energy, hence we calculate the average value
without these values. The experiments with lower solution to solid ratio (5.4) show negative
activation energies. It might involve another kinetic step, such as absorption or desorption. In
our process, 5 is taken as the solid-solution ratio for the chitin purification process (chemical
demineralization). However, our solid-solution ratio is wet basis, while the experiments had done
and based on dry basis (without H2O-bound). Therefore, if the wet basis solid-solution ratio is
converted to dry basis, our solid-solution ration becomes approximately 10 in dry basis.
Additionally, low concentration of hydrogen chloride, 0.5 N, is adopted for the chitin purification.
Therefore we extracted the kinetics data from the experiment with 12.6 solid-solution ratio, and
0.56 N of hydrogen chloride.
Table A.2.2 Demineralization condition
Solution to solid ratio
[ml/g]
Concentration
HCl [N]
5.4
5.4
5.4
5.4
12.6
12.6
9
9
Temperature
Rate constant ka
T [K]
ka[10
0.56
0.56
1.64
1.64
0.56
0.56
1.1
1.1
85.8
44.2
85.8
44.2
84
40
100
65
Ea[J/mol]
-3/min]
0.203
0.403
2.86
6.17
3.37
1.92
15
4.55
-15597.52971
-17488.77106
11878.45675
35725.63101
Activation energy, E, is calculated as 11.88 kJ/mol and Arrhenius rate constant ka0 is 3.3110-4
kg-solid/(s·N·l-solution).
Therefore the rate expression is described as follows,
dM
dt
 3.31  10
-4
 A M e

23800
(A.2.17)
RT
A.2.d Chemical Deproteinization (Sodium hydroxide)
Sodium hydroxide solution is used to remove protein from shrimp shell. Deproteinization from
shrimp shell appears to have two-stage first-order reaction kinetics. The change in reaction rates
occurs when the protein concentration becomes low. The protein concentration above 7% is taken
as the first stage and below 7 % is taken as the second stage. The rate of reaction is described as
follows,
dP
dt
(A.2.18)
  kb P
Where P represents fraction of protein based on mass in the chitinous material initially. Rate
constant kb is expressed by Arrhenius equation with amount of sodium hydroxide, NaOH, which
acts as a catalyst and controls the pH of the reaction.
kb  Bkb 0 e

E
RT
.
(A.2.19)
CPD 3264
A-7
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
In which B represents amount of NaOH [N·ml-solution/g-solid] that is calculated by multiplying
solvent to solid ratio and concentration of NaOH, and ka0 is the Arrhenius rate constant.
Experimental results are shown in Table A.2.3, where kb1 represents rate constant for high protein
contents (7 %), kb2 represents rate constant for low protein contents (<7 %). Experimental results
are shown in the table below. [4]
Table A.2.3 Deproteinization Experiment
Solution to solid ratio
[ml/g]
17
17
8
8
12.5
12.5
17
17
Concentration
HCl [N]
0.91
0.91
2.09
2.09
1.5
1.5
2.09
2.09
Total amount B
HCl [Nml/g]
15.47
15.47
16.72
16.72
18.75
18.75
35.53
35.53
Temperature
T [K]
84
40
84
40
99
62
84
40
Rate constant kb1
kb[10^-2/min]
1.68
0.314
9.42
1.39
8.79
3.76
5.7
0.712
Rate constant kb2
kb[10^-4/min]
3.97
13.5
8.66
2.68
4.17
6.42
6.07
10.8
Activation energy, E, and Arrhenius rate constant of the first stage, kb10, (higher protein
concentration) are calculated as 35.88 kJ/mol and 37.71 g/(s·N·ml·g) respectively. Those for
second stage (low concentration) are calculated as 24.76 kJ/mol and 3.62810-3 kg-solid/(s·N·lsolution), respectively.
First Stage
dP
dt
 37.7  B  P  e

35800
(A.2.20)
RT
Second Stage
dP
dt
 3.63  10
-3
 BPe

24760
(A.2.21)
RT
A.2.e Chemical Deacetylation
Chitosan is produced by deacetylation of chitin. The deacetylation of chitin also behaves as a
pseudo first order reaction. Chitin is treated with hot, concentrated solution of NaOH and
chitosan is produced as an insoluble precipitate. Therefore the reaction rate is described as the
function of D, which is degree of deacetylation in the system.
dD
dt
(A.2.22)
 kc (1  D )
kc is expressed by Arrhenius equation with amount of sodium hydroxide, NaOH.
k c  B  kc 0  e

E
RT
(A.2.23)
kc0 is the Arrhenius rate constant. Experimental results are shown in Table A.2.4. [5] 50 % NaOH
solution, (1:10 w/w) is used for the experiment.
CPD 3264
A-8
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table A.2.4 Deacetylation Experiment
Temperature
time
T [C]
60
60
75
80
85
115
115
115
[min]
90
180
15
15
15
30
20min 2times
20min 3times
Deacetylation Degree
Rate constant
kc
0.012923898
0.004863715
0.100271826
0.08539559
0.066216785
0.019592889
68
76
55
64
73
82
87
95
Activation energy, E, is calculated as 71.7 kJ/mol. B· kc 0 is calculated as 4.10 106 [1/s].
dD
dt
6
 4.10  10  (1  D )  e

71700
RT
(A.2.24)
Appendix A.3 Shrimp Shell Compositions
Table A.3.1 Shrimp Shell Compositions
Component
Mineral
Protein
Chitin
Lipid related
Other carbohydrate
[6]
36
41
20
3
-
[7]
32
50
18
-
[8]
40
35
25
-
[9]
28
40
23
-
[10]
35
18
-
Average
34.0
40.2
20.8
3.0
2.0
Note: First two sources [6] and [7] have been normalized.
Reference:
[1] J.Bautista, M.Jover, Process Biochemistry, 37, 2001, pp229-234
[2] Chang,k.L. Tsai,G., Journal of Agriculutral and Food Chemistry, 45, 1997, pp.1900-1904
[3] Chang,k.L. Tsai,G., Journal of Agriculutral and Food Chemistry, 45, 1997, pp.1900-1904
[4] Chang,k.L. Tsai,G., Journal of Agriculutral and Food Chemistry, 45, 1997, pp.1900-1904
[5] I Kolodziejska, A Wojtasz-Pajak, Bulletin of The Sea Fisheries Institute, 2 (150), 2000, 15-24
[6] Gilberg, A. Stenberg, E. Process Biochemistry, 36, 2001, p.809 – 812
[7] Legarreta, I.G. Zakaria, Z., Hall, G.M., Lactic Acid Fermentation of Prawn Waste; Comparison of
Commercial and Isolated Starter Culture, EUCHIS I, Drest, 1995
[8] No, H.K.,Hur, E.Y., Journal of Agricultural and Food Chemistry, 46, 1998, p. 3844 - 3846
[9] Ferrer, J., Paez, G., Biosource Technology, 57, 1996, p.55 – 60
[10] Cosio, et.al Journal of Food Science, 47, 1981, p. 901-905
CPD 3264
A-9
St-4931 Conceptual Process Design
from Shrimp Shells
Production of Chitin and Chitosan
Table B.1 Comparison of heat of formation (at 25 ºC)
Heat of formation
Heat of formation Heat of solid formation Heat of solution
kJ/mol (Literture)
kJ/mol (ASPEN)
Acetic acid
-412.2
-432.8
Ammonium sulfate
-1174.3
Benzoic acid
-228.5
-294.1
Calcium chloride
-877.1
-471.5
Calcium carbonate
-1220.0
-329.4
Calcium lactate
-
-1294.0
Chitin
-
-973.2
Chitosan
-
-953.3
Carbon dioxide
-393.5
-393.5
-413.8
Ethanol
-163.3
-235.0
-288.3
Glucose
-1264.0
-1140.5
Hydrochloric acid
-167.2
-92.3
Lactic acid
-621.1
-599.6
Lipids (Stearic acid)
-947.2 (s)
-764.0
Nitrogen
0.0
0.0
Oxygen
0.0
0.0
Protein(Leucine)
-648.9
-494.2
Sodium chloride
-411.1(s)
-181.4
-411.3
Sodium hydroxide
-469.6
-197.8
-425.8
Sulfuric acid
-735.1
-735.2
Water
-286.4
-241.8
kJ/mol (ASPEN)
kJ/mol (ASPEN)
-486.1
-1181.0
CPD 3264
B-1
-795.8
-167.2
-11.7
-909.3
-292.9
St-4931 Conceptual Process Design
from Shrimp Shells
Production of Chitin and Chitosan
Table B.2 Comparision of boiling point and heat capasity (at 25 ºC)
Heat capacity
Heat capacity
J/mol·K (Literature)
J/mol·K (ASPEN)
Acetic acid
129
62
Ammonium sulfate
187
195
Benzoic acid
217
201
Calcium chloride
72.9
59
Calcium carbonate
111
109
Calcium lactate
-
210
Chitin
-
130
Chitosan
-
-
Carbon dioxide
38
37
Ethanol
107
128
Glucose
-
370
Hydrochloric acid
98
29
Lactic acid
192
Lipids (Stearic acid)
502
610
Nitrogen
29
29
Oxygen
29
29
Protein (Leucine)
191
180
Sodium chloride
51
36
Sodium hydroxide
87
-53
Sulfuric acid
83.7
85
Water
76
70
CPD 3264
B-2
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
1
1
25
1
101
Innoculum
1
25
102
Glucose
4.2
3.9
25
43.2
103
104
P101
0.9
25
107
N-source
P102
E101
P103
6.1
25
43.3
43.3
108
109
E102
110
FC
Gas
106a
pHC
I
6.1
43.3
P104
115a
43.2
105
3.8
40
112a
6.3
43.2
4.4
45
40
6.3
5.1
TC
PC
FC
LC
RC
1.2
111a
40
114a
116a
S101a
PI
40
4.1
40
4.1
113a
R101a
1
116b
5
40
40
112b
6.3
40
P105a
LC
115b
43.2
FC
T101
106b
6.1
43.3
FC
111b
pHC
I
5.1
TC
PC
LC
40
114b
RC
1.2
40
PI
S101b
1.1
113b
R101b
25
P105b
117
4.3
25
FC
118
P106
Designers
PROCESS EQUIPMENT LIST
E101 Glucose sterilizer
P103
E102 N-source sterilizer P104
R101A-B feed pump P106
A.A.Khan
R301 feed pump
H. Shibata
R101A-B feed pump R101 a/b Lactic acid fermentor
P101 E101 feed pump
P105a S104A feed pump
S101 a/b Biomass recycle microfilter
M.T.A.P. Kresnowati
P102 E102 feed pump
P105b S104B feed pump
T 101
S.L.Tai
Lactic acid buffer tank
CPD3264
C-3
3
Process Flow Scheme - Improved Solution
Project
Plant Unit
:
:
Production of Chitin and Chitosan from Shrimp Shells
U1000 – Lactic Acid Fermentation Section
Proj. ID Number :
Completion Date :
CPD 3264
21 December 2001
Stream number
Temp. (K)
Pressure (Bara)
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
2
1
1.9
25
32.3
201
Shrimp shells
203
X201
1
1.1
MI
25
25
202
214
X202
P202
Ethanol
FC
3.4
25.7
25.7
A201
25
1
1
205
4
215
25.7
3.3
72.2
1
1
207
87.2
87.2
P201
206
35
213
E202
E201
2.6
77
PC
LC
RC
E203
T201
TC
208
1.1
32.3
FC
216
1.3
P203
87.2
LC
210
Benzoic acid
P204
C201
3
S201
1
FC
212
211
204
1.1
87.2
209
Designers
PROCESS EQUIPMENT LIST
A201 Shrimp shell crusher
P201 C201 feed pump
S201 Benzoic acid extractor
C201 Ethanol evaporator
P202 V201 feed pump
T 201 Ethanol buffer tank
E201 Feed C201 preheater
P203 S201 feed pump
X201 conveyer
A.A.Khan
H. Shibata
E202 Ethanol heat exchanger P204 C201 Bottom pump X202 conveyer
M.T.A.P. Kresnowati
E203 T op 201 condenser
S.L.Tai
CPD3264
C-4
Process Flow Scheme - Improved Solution
Project
Plant Unit
:
:
Production of Chitin and Chitosan from Shrimp Shells
U2000 – Shrimp Shells Pretreatment Section
Proj. ID Number :
Completion Date :
CPD 3264
21 December 2001
Stream number
Temp. (K)
Pressure (Bara)
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
3
4.3
LC
T101
FC
25
118
1
pHI
RC
1
Gas
1
TC
25
301
FC
25
4.2
25
R301a
204
2
303
PI
X301
pHI
1.1
TC
1.0
R301b
HCl
1
2.2
25
RC
305
304
P301
25
25
25
S301
302
307
1.7
1.1
25
25
PC
FI
Fermentation
broth
P303
306
FC
FC
308
X302
1
P302
LI
V301
pHI
2.3
1.0
25
309
39.9
3.5
311
39.9
25
39.9
312
P304
R302
313
1
310
TC
1
4
39.9
316
PI
S302
P305
1.1
39.9
314
PC
FI
1.7
39.9
315
PROCESS EQUIPMENT LIST
P301
S301 feed pump
R302 Chitin purification reactor
P302
HCl feed pump
S301
Fermentation broth drum filter
P303
S301 filtrate pump
S302
Chitin drum filter
P304
R302 feed pump
V301 HCl Chitin mixer
P305
S302 feed pump
X301 conveyer
P306
S302 filtrate pump
X302 conveyer
Designers
A.A.Khan
H. Shibata
M.T.A.P. Kresnowati
S.L.Tai
R301 a/b Enzymatic deproteinisation demineralisation reactor
CPD3264
C-5
Waste water
P306
Process Flow Scheme - Improved Solution
Project
Plant Unit
:
:
Proj. ID Number :
Completion Date :
Stream number
Production of Chitin and Chitosan from Shrimp Shells
U3000 – Enzymatic deproteinization and
demineralization + chitin purification
CPD 3264
21 December 2001
Temp. (K)
Pressure (Bara)
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
1
25
40
411
Water
X402
S401
5.8
RC
FC
25
P401
1
PC
40
D401
416
1
35
3.9
40
410
25
417
402
401
NaOH
TC
X401
FC
water
414
25
314
1.1
27
PI
1
415
1
FI
3
4
1
FC
LI
V401
1.1
4.6
6.6
28.0
28.0
43.8
404
409
403
PC
FI
1
A401
27
1.8
412
E403
Chitosan
27
P404
413
P402
Waste water
(NaOH rich)
E401
3.3
108
405
E402
pHI
3.0
TC
2.3
121
406
121
7.4
407
121
P403
408
R401
Designers
PROCESS EQUIPMENT LIST
A401 Chitosan grinder
P401 V401 feed pump
S401
D401 Product dryer
P402 R401 feed pump
V401 NaoH chitin mixer
Chitosan drum filter
E401 R401 heat exchanger P403 S401 feed pump
X401 conveyer
E402 Feed R401 preheater P404 S401 filtrate pump
X402 conveyer
A.A.Khan
H. Shibata
M.T.A.P. Kresnowati
S.L.Tai
E403 Product R401 cooler R401 Deacethylation reactor
CPD3264
C-6
Process Flow Scheme - Improved Solution
Project
Plant Unit
:
:
Production of Chitin and Chitosan from Shrimp Shells
U4000 – Chitin deacetylation
Proj. ID Number :
Completion Date :
CPD 3264
21 December 2001
Stream number
Temp. (K)
Pressure (Bara)
SUMMARY OF UTILITIES
EQUIPMENT
Nr.
Name
UTILITIES
Load
kW
A201
A401
C201
D401
E101
E102
E201
E203
E402
E403
P101
P102
P103
P104
P105A
P105B
P106
P201
P202
P203
P204
P301
P302
P303
P304
P305
P306
P401
P402
P403
P404
R101a
R101b
Crusher grinder
Chitosan crusher
Ethanol Flash destillation
Dryer
Glucose sterilizer
N-source sterilizer
Feed C201 preheater
Top C201 condenser
Feed R401 preheater
Product R401 cooler
E101 feed
E102 feed
R101A-B feed
R101A-B feed
S104A feed
S104B feed
R301 feed
C201 feed
V201 feed
S201 feed
C201 Bottom
S301 feed
HCl feed
S301 filtrate
R302 feed
S302 feed
S302 filtrate
V401 feed
R401 feed
S401 feed
S401 filtrate
Lactic acid fermentor
Lactic acid fermentor
Sub Total
Heating
Cooling
Consumption (kg/h)
Load
Steam
Hot
LP MP HP Oil
kW
14.1
70.8
36.8
12.3
0.3
23
118
25.4
42
Power
Consumption (kg/h)
Actual
Cooling Air Chilled Load
Water
Water
kW
0.27
0.04
Consumption (t/h, kWh/h)
Steam (t/h)
Electr.
HP
MP kWh/h
0.27
0.04
REMARKS
6.83
6.83
0.17
0.06
0.12
0.04
0.19
0.19
0.17
0.01
0.00
0.00
0.00
0.34
0.06
0.06
0.02
0.18
0.04
0.04
0.44
0.66
0.05
8.45
8.45
26.9
0.17
0.06
0.12
0.04
0.19
0.19
0.17
0.01
0.00
0.00
0.00
0.34
0.06
0.06
0.02
0.18
0.04
0.04
0.44
0.66
0.05
8.45
8.45
26.9
66
22
1
159.6 184.0 87.7
12.3
2095
15.0
2554
38.5
38.5
104.2
3288
3288
11225.1
Project ID Number :
Completion Date
:
CPD3264
Dec-01
SUMMARY OF UTILITIES
EQUIPMENT
Nr.
R301
R302
R401
S101A
S101B
S201
S301
S302
S401
T101
T201
V301
V401
X201
X202
X301
X302
X401
X402
Name
Enzymatic deprotreinisation demineralisation
Chitin purification
Deacetylation
Biomass recycle microfilter
Biomass recycle microfilter
Benzoic acid extractor
Fermentation broth drum filter
Chitin drum filter
Chitosan drum filter
Lactic acid buffer tank
Ethanol buffer tank
HCl chitin mixer
NaOH chitin mixer
conveyer
conveyer
conveyer
conveyer
conveyer
conveyer
subtotal
TOTAL
UTILITIES
Heating
Cooling
Load Consumption (kg/h) Load
Consumption (kg/h)
Steam
Hot
Cooling Air Chilled
kW LP MP HP Oil
kW
Water
Water
113.7
9708
0.0
0.0
15.4
658
Power
Actual
Load
kW
0.11
0.00
0.01
5.55
5.55
Consumption (t/h, kWh/h)
Steam (t/h)
Electr.
HP
MP kWh/h
0.11
0.00
0.01
5.55
5.55
REMARKS
0.14
0.09
0.19
0.14
0.09
0.19
0.00
0.00
0.00
0.00
n.a
n.a
n.a
n.a
n.a
n.a
13020.9 11.6
13020.9
38.5
11.6
38.5
n.a
38.8
3313
n.a
0.0
159.6 184.0 87.7
167.9
658.0
272.1 11883.1
Project ID Number :
Completion Date
:
CPD3264
Dec-01
St-4931 Conceptual Process Design
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
Production of Chitin and Chitosan from Shrimp Shells
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
101
Innoculum
tonnes/day
-
102
103
104
Glucose feed
Cold in E101
Hot Out E101
kmol/day tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day
8,777
0,049
8,777
0,049
8,777
0,049
39,221
2,177
39,221
2,177
39,221
2,177
kW
Bara
oC
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
liquid
1,00
25,00
Bara
oC
47,997
2,225
(7.936,832)
liquid
0,97
25,00
47,997
2,225
(7.936,832)
liquid
4,24
25,00
47,997
2,225
(7.900.058)
liquid
3,93
43,20
105
106a/b
107
108
Hot Press. Out E101
Glucose In R101a/b
N-source feed
Cold in E102
tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day
0,526
0,004
0,526
0,004
8,777
0,049
4,388
0,024
39,221
2,177
19,610
1,088
13,074
0,726
13,074
0,726
47,997
kW
-
2,225
(7.900.058)
liquid
6,26
43,20
23,999
1,113
(3.950.029)
liquid
6,26
43,20
13,599
0,729
(2.400,875)
liquid
0,87
25,00
Project ID Number :
Completion Date
:
CPD3264
C-11
13,599
0,729
(2.400,875)
liquid
4,37
25,00
CPD3264
21 Dec 2001
St-4931 Conceptual Process Design
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
Production of Chitin and Chitosan from Shrimp Shells
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
109
110
111a/b
112a/b
Hot Out E102
Hot Press. Out E102
N-source in R101a/b
Gas out R101a/b
tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day
0,526
0,004
0,526
0,004
0,263
0,002
0,039
0,001
13,074
0,726
13,074
0,726
6,537
0,363
13,599
kW
Bara
oC
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
0,729
(2.388.596)
liquid
3,80
43,33
Bara
oC
0,729
(2.388.596)
liquid
6,12
43,33
113a/b
114a/b
Out R101a/b
In S101a/b
tonnes/day kmol/day tonnes/day
0,035
0,000
0,035
0,004
0,000
0,004
5,094
0,057
5,094
2,203
0,090
2,203
0,234
0,002
0,234
35,056
1,945
35,056
42,628
kW
13,599
2,094
(6.979,117)
liquid
1,15
40,00
42,628
kmol/day
0,000
0,000
0,057
0,090
0,002
1,945
2,094
(6.979,117)
liquid
5,14
40,00
6,800
0,365
(1.194.298)
liquid
6,12
43,33
0,001
(4,072)
gas
1,00
40,00
115a/b
116a/b
Biomass recycle
Permeate S101a/b
tonnes/day kmol/day tonnes/day kmol/day
0,009
0,000
0,026
0,000
0,001
0,000
0,003
0,000
1,274
0,014
3,821
0,042
1,763
0,072
0,441
0,018
0,059
0,001
0,176
0,002
8,764
0,486
26,292
1,459
11,869
0,573
(1.800,416)
liquid
5,00
40,00
Project ID Number :
Completion Date
:
CPD3264
C-12
0,039
30,759
1,521
(5.178,699)
liquid
4,14
40,00
CPD3264
21 Dec 2001
St-4931 Conceptual Process Design
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
Production of Chitin and Chitosan from Shrimp Shells
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
117
Lactic acid
tonnes/day
0,053
0,007
7,642
0,881
0,351
52,584
kmol/day
0,000
0,000
0,085
0,036
0,004
2,918
61,518
kW
Bara
oC
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
3,043
(10.396,186)
liquid
1,15
25,00
61,518
3,043
(10.396,186)
liquid
4,31
25,00
203
204
Ethanol in S201
Out S201
tonnes/day kmol/day tonnes/day
0,000
0,000
0,003
3,978
1,825
0,608
1,021
0,022
0,051
0,234
0,351
4,703
0,333
0,018
18,005
1,354
kW
Bara
oC
118
201
202
Lactic acid in R301
Shrimp shells feed
Crushed shrimp shells
tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day
0,053
0,000
0,300
0,002
0,300
0,002
3,978
0,036
3,978
0,036
1,825
0,009
1,825
0,009
0,608
0,004
0,608
0,004
0,007
0,000
0,234
0,001
0,234
0,001
7,642
0,085
0,351
0,001
0,351
0,001
0,881
0,036
4,703
0,038
4,703
0,038
0,351
0,004
52,584
2,918
18,000
0,999
18,000
0,999
liquid
1,90
32,32
0,041
(131,970)
29,759
kmol/day
0,000
0,036
0,009
0,004
0,001
0,001
0,001
0,038
0,999
1,090
(3.878,760)
liquid
1,02
25,71
30,000
1,091
(3.885,959)
solid
1,00
25,00
1,091
(3.885,959)
solid
1,00
25,00
205
206
Solvent out S201
Cold in E202
tonnes/day kmol/day tonnes/day kmol/day
0,297
0,002
0,297
0,002
0,970
0,021
0,970
0,021
0,327
0,018
0,327
0,018
1,595
liquid
1,02
25,71
Project ID Number :
Completion Date
:
CPD3264
C-13
30,000
0,042
(138,175)
1,595
liquid
4,00
25,71
CPD3264
21 Dec 2001
0,042
(138,175)
St-4931 Conceptual Process Design
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
Production of Chitin and Chitosan from Shrimp Shells
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
207
208
209
210
Hot out E202
Hot out E208
Bottom C201
Benzoic acid slurry
tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day
0,297
0,002
0,297
0,002
0,297
0,002
0,297
0,002
0,970
0,021
0,970
0,021
0,196
0,004
0,196
0,004
0,327
0,018
0,327
0,018
0,105
0,006
0,105
0,006
1,595
0,042
(135,054)
kW
Bara
oC
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
liquid
3,30
72,22
211
Top C201
tonnes/day
0,000
0,774
0,223
0,997
Bara
oC
liquid
1,00
87,22
0,042
(134,733)
liquid
2,60
77,00
kmol/day
0,000
0,017
0,012
kW
1,595
0,029
(79,146)
0,598
0,012
(41,497)
liquid
1,10
87,22
0,598
0,012
(41,497)
liquid
1,31
87,22
212
213
214
Cold out E202
Cold out E203
Fresh Ethanol
tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day
0,000
0,000
0,000
0,000
0,774
0,017
0,774
0,017
0,247
0,005
0,223
0,012
0,223
0,012
0,110
0,006
0,997
0,029
(82,267)
liquid/vapour
1,00
87,22
0,997
liquid
1,00
35,00
Project ID Number :
Completion Date
:
CPD3264
C-14
0,029
(94,532)
0,357
liquid
1,13
25,00
CPD3264
21 Dec 2001
0,011
(37,436)
St-4931 Conceptual Process Design
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
Production of Chitin and Chitosan from Shrimp Shells
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
215
216
301
302
Fresh Ethanol in T201
Mixed Ethanol
Gas out R301
Out R301
tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day tonnes/day
0,053
0,000
0,000
0,003
0,400
7,801
1,511
0,034
0,062
1,825
0,608
0,247
0,005
1,021
0,022
0,051
0,241
1,201
0,351
0,881
4,703
0,351
0,110
0,006
0,333
0,018
71,234
0,357
0,011
(37,436)
kW
Bara
oC
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
liquid
3,37
25,00
303
In S301
tonnes/day
0,053
0,003
0,400
7,801
0,062
1,825
0,608
0,051
0,241
1,201
0,351
0,881
4,703
0,351
71,234
89,766
kW
Bara
oC
kmol/day
0,000
0,000
0,004
0,036
0,001
0,009
0,004
0,001
0,001
0,013
0,001
0,036
0,038
0,004
3,953
4,102
(14.232,212)
liquid
4,20
25,00
1,354
0,041
(131,970)
liquid
1,07
32,32
1,511
0,034
(156,394)
gas
1,00
25,00
kmol/day
0,000
0,000
0,004
0,036
0,001
0,009
0,004
0,001
0,001
0,013
0,001
0,036
0,038
0,004
3,953
89,766
4,102
(14.232,212)
liquid
1,02
25,00
304
305
306
Fermentation broth
Fermentation broth
Cake out S301
tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day
0,052
0,000
0,052
0,000
0,001
0,000
0,003
0,000
0,003
0,000
0,000
0,000
0,004
0,000
0,004
0,000
0,396
0,004
7,591
0,035
7,591
0,035
0,211
0,001
0,060
0,001
0,060
0,001
0,002
0,000
0,018
0,000
0,018
0,000
1,807
0,009
0,006
0,000
0,006
0,000
0,602
0,004
0,050
0,001
0,050
0,001
0,001
0,000
0,139
0,001
0,139
0,001
0,102
0,001
1,169
0,013
1,169
0,013
0,032
0,000
0,342
0,001
0,342
0,001
0,009
0,000
0,881
0,036
0,881
0,036
2,625
0,021
2,625
0,021
2,078
0,017
0,342
0,003
0,342
0,003
0,009
0,000
65,634
3,642
65,634
3,642
5,600
0,311
78,915
3,756
(12.911,449)
liquid
1,08
25,00
78,915
3,756
(12.911,449)
liquid
1,63
25,00
Project ID Number :
Completion Date
:
CPD3264
C-15
10,852
0,346
(1.320,757)
solid
1,00
25,00
CPD3264
21 Dec 2001
St-4931 Conceptual Process Design
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
Production of Chitin and Chitosan from Shrimp Shells
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
307
Fresh HCl
tonnes/day
0,820
44,210
308
309
310
HCl in V301
Mixed Chitin HCl
In R302
kmol/day tonnes/day kmol/day tonnes/day kmol/day tonnes/day
0,001
0,000
0,001
0,000
0,000
0,000
0,396
0,004
0,396
0,211
0,001
0,211
0,002
0,000
0,002
1,807
0,009
1,807
0,602
0,004
0,602
0,001
0,000
0,001
0,102
0,001
0,102
0,022
0,820
0,022
0,820
0,022
0,820
0,032
0,000
0,032
0,009
0,000
0,009
2,078
0,017
2,078
0,009
0,000
0,009
2,453
44,210
2,453
49,810
2,764
49,810
45,030
kW
Bara
oC
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
2,476
(8.140,755)
liquid
1,06
25,00
2,476
(8.140,755)
liquid
2,17
25,00
311
312
Gas out R302
Out R302
tonnes/day kmol/day tonnes/day
0,001
0,000
0,020
0,417
0,211
0,122
0,003
0,045
1,807
0,602
0,001
0,102
0,546
0,032
0,009
2,078
0,009
49,877
0,122
kW
Bara
oC
45,030
gas
0,97
39,88
0,003
(12,635)
55,759
kmol/day
0,000
0,000
0,000
0,004
0,001
0,001
0,009
0,004
0,000
0,001
0,015
0,000
0,000
0,017
0,000
2,768
2,819
(9.449,507)
liquid
0,97
39,88
55,882
2,822
(9.461,512)
liquid
1,02
25,00
313
In S302
tonnes/day
0,001
0,000
0,020
0,417
0,211
0,045
1,807
0,602
0,001
0,102
0,546
0,032
0,009
2,078
0,009
49,877
55,759
2,819
(9.449,507)
liquid
3,52
39,88
Project ID Number :
Completion Date
:
CPD3264
C-16
kmol/day
0,000
0,000
0,000
0,004
0,001
0,001
0,009
0,004
0,000
0,001
0,015
0,000
0,000
0,017
0,000
2,768
kmol/day
0,000
0,000
0,004
0,001
0,000
0,009
0,004
0,000
0,001
0,022
0,000
0,000
0,017
0,000
2,764
55,882
2,822
(9.461,512)
liquid
1,26
25,00
314
Filtrate S302
tonnes/day kmol/day
0,001
0,000
0,000
0,000
0,000
0,000
0,399
0,004
0,202
0,001
0,043
0,001
0,018
0,000
0,006
0,000
0,001
0,000
0,009
0,000
0,523
0,014
0,031
0,000
0,009
0,000
0,089
0,001
0,009
0,000
44,373
2,462
45,715
2,484
(8.189,107)
liquid
1,05
39,88
CPD3264
21 Dec 2001
St-4931 Conceptual Process Design
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
Production of Chitin and Chitosan from Shrimp Shells
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
315
Waste water
tonnes/day
0,001
0,000
0,000
0,399
0,202
0,043
0,018
0,006
0,001
0,009
0,523
0,031
0,009
0,089
0,009
44,373
kmol/day
0,000
0,000
0,000
0,004
0,001
0,001
0,000
0,000
0,000
0,000
0,014
0,000
0,000
0,001
0,000
2,462
45,715
kW
Bara
oC
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
2,484
(8.189,107)
liquid
1,68
39,88
Bara
oC
10,044
0,336
(1.260,400)
solid
1,00
39,88
67,310
2,812
(9.255,097)
liquid
1,08
25,00
67,310
2,812
(9.255,097)
liquid
3,90
25,00
403
404
405
406
Mixed chitin NaOH
Cold in E401
Hot out E401
Hot out E402
tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,020
0,000
0,020
0,000
0,020
0,000
0,020
0,000
0,017
0,000
0,017
0,000
0,017
0,000
0,017
0,000
0,000
0,009
0,000
0,009
0,000
0,009
0,000
0,009
0,002
0,000
0,002
0,000
0,002
0,000
0,002
0,000
1,789
0,009
1,789
0,009
1,789
0,009
1,789
0,009
0,596
0,004
0,596
0,004
0,596
0,004
0,596
0,004
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,093
0,001
0,093
0,001
0,093
0,001
0,093
0,001
0,023
0,001
0,023
0,001
0,023
0,001
0,023
0,001
0,001
0,000
0,001
0,000
0,001
0,000
0,001
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
1,989
0,016
1,989
0,016
1,989
0,016
1,989
0,016
30,290
0,757
30,290
0,757
30,290
0,757
30,290
0,757
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
42,525
2,360
42,525
2,360
42,525
2,360
42,525
2,360
77,354
kW
316
401
402
Cake out S302
Fresh NaOH
NaOH in V401
tonnes/day kmol/day tonnes/day kmol/day tonnes/day kmol/day
0,000
0,000
0,000
0,000
0,020
0,000
0,017
0,000
0,009
0,000
0,002
0,000
1,789
0,009
0,596
0,004
0,000
0,000
0,093
0,001
0,023
0,001
0,001
0,000
0,000
0,000
1,989
0,016
0,757
30,290
0,757
30,290
0,000
0,000
5,505
0,305
37,020
2,054
37,020
2,054
3,147
(10.515,497)
liquid
1,06
28,04
77,354
3,147
(10.515,497)
liquid
4,58
28,04
77,354
3,147
(10.383,721)
liquid
3,78
106,00
Project ID Number :
Completion Date
:
CPD3264
C-17
77,354
3,147
(10.358,366)
liquid
2,98
121,00
CPD3264
21 Dec 2001
St-4931 Conceptual Process Design
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
Production of Chitin and Chitosan from Shrimp Shells
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
407
Out R401
tonnes/day
0,464
0,000
0,000
0,020
0,017
0,009
0,002
0,220
1,840
0,000
0,093
0,000
0,001
0,000
1,989
0,037
30,265
0,000
42,397
kmol/day
0,008
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,016
0,001
0,757
0,000
2,782
77,354
kW
Bara
oC
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
3,563
(10.373,775)
liquid
2,29
121,00
Bara
oC
kmol/day
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,001
0,011
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,009
0,023
(10.373,775)
liquid
7,38
121,00
409
410
Cold in E403
Cold out E403
tonnes/day kmol/day tonnes/day kmol/day
0,464
0,008
0,464
0,008
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,020
0,000
0,020
0,000
0,017
0,000
0,017
0,000
0,009
0,000
0,009
0,000
0,002
0,000
0,002
0,000
0,220
0,001
0,220
0,001
1,840
0,011
1,840
0,011
0,000
0,000
0,000
0,000
0,093
0,001
0,093
0,001
0,000
0,000
0,000
0,000
0,001
0,000
0,001
0,000
0,000
0,000
0,000
0,000
1,989
0,016
1,989
0,016
0,037
0,001
0,037
0,001
0,757
30,265
0,757
30,265
0,000
0,000
0,000
0,000
42,397
2,353
42,397
2,353
77,354
3,147
(10.505,551)
liquid
6,58
43,76
411
412
413
Fresh water in S401
Filtrate S401
Waste water
tonnes/day kmol/day tonnes/day kmol/day tonnes/day
0,464
0,008
0,464
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,017
0,000
0,017
0,009
0,000
0,009
0,002
0,000
0,002
0,002
0,000
0,002
0,018
0,000
0,018
0,000
0,000
0,000
0,049
0,000
0,049
0,000
0,000
0,000
0,001
0,000
0,001
0,000
0,000
0,000
1,945
0,016
1,945
0,037
0,001
0,037
30,261
0,757
30,261
0,000
0,000
0,000
10,380
0,576
50,129
2,782
50,129
10,380
kW
408
Hot in E401
tonnes/day
0,464
0,000
0,000
0,020
0,017
0,009
0,002
0,220
1,840
0,000
0,093
0,000
0,001
0,000
1,989
0,037
30,265
0,000
42,397
77,354
0,576
(1.905,148)
liquid
1,00
25,00
82,935
3,563
(11.784,998)
liquid
1,03
27,03
82,935
3,563
(11.784,998)
liquid
1,79
27,03
Project ID Number :
Completion Date
:
CPD3264
C-18
kmol/day
0,008
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,016
0,001
0,757
0,000
2,782
77,354
3,147
(10.520,502)
liquid
5,78
35,00
414
Cake out S401
tonnes/day kmol/day
0,000
0,000
0,000
0,000
0,000
0,000
0,019
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,218
0,001
1,822
0,011
0,000
0,000
0,044
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,044
0,000
0,000
0,000
0,004
0,000
0,000
0,000
2,648
0,147
4,800
solid
1,00
27,03
CPD3264
21 Dec 2001
0,160
(640,651)
St-4931 Conceptual Process Design
STREAM Nr.
:
Name :
COMP
Acetic Acid
Ammonium sulphate
Benzoic Acid
Calcium carbonate
Calcium Cloride
Calcium Lactate
Carbon dioxyde
Chitin
Chitosan
Ethanol
Glucose
Hydrocloric Acid
Lactic Acid
Lipid
Lactobacillus sp.
Nitrogen
Oxygen
Protein
Sodium Cloride
Sodium Hydroxide
Sulphuric Acid
Water
Total
Enthalpy
Phase
Press.
Temp
Production of Chitin and Chitosan from Shrimp Shells
MW
60,05
132,16
122,12
100,09
110,99
218,22
44,01
203,19
161,16
46,07
180,16
36,46
90,08
284,48
24,60
14,01
32,00
123,54
58,44
40,00
98,07
18,02
415
Wet gas
tonnes/day
0,000
2,476
416
417
Dry chitosan
Dry product
kmol/day tonnes/day kmol/day tonnes/day
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,019
0,000
0,019
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,218
0,001
0,218
1,822
0,011
1,822
0,000
0,044
0,000
0,044
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,044
0,000
0,044
0,000
0,000
0,000
0,004
0,000
0,004
0,000
0,000
0,000
0,137
0,171
0,009
0,171
2,476
0,137
(383,918)
kW
Bara
oC
gas
1,00
40,00
CPD3264
C-19
2,323
solid
1,00
40,00
0,023
(185,951)
kmol/day
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,001
0,011
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,009
2,323
solid
1,00
40,00
0,023
(185,951)
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.1.1 ASPEN Feed Summary
1
13
21
22
24 FERMOUT
CRUSHER MIXER
MIXTANK WASHTANK MIXTANK2 ENZDMDP1
GAS
DRYER
LIQUID
VAPOR
Mass Flow tonne/day
ACETACID
AMMONSUL
BENZACID
CACL2
CACO3
CA-LACT
CHITIN
CHITOSAN
CO2
ETHANOL
GLUCO(L)
GLUCO(S)
H20BOND
H2OFREE
HCL
H2SO4
LACTACID
NACL
NAOH
N2
O2
PROTE(L)
PROTE(S)
STEAR-01
Total Flow tonne/day
Temperature C
Pressure atm
LIQUID
LIQUID
0
0
0
0
0.30
0
0
0
3.98
0
0
0
1.83
0
0.61
0
0
0
0
0.25
0
0
0.23
0
9.00
0
9.00 0.11000016
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.70
0
0.35
0
30.0
0.4
25.0
25.0
1.0
1.0
Table D.1.2
LIQUID
0
0
0
0
0
0
0
0
0
0
0
0
0
44.21
0.82
0
0
0
0
0
0
0
0
0
45.0
25.0
1.0
LIQUID
0
0
0
0
0
0
0
0
0
0
0
0
0
10.38
0
0
0
0
0
0
0
0
0
0
10.4
25.0
1.0
LIQUID
0
0
0
0
0
0
0
0
0
0
0
0
0
37.02
0
0
0
0
30.29
0
0
0
0
0
67.3
25.0
1.0
0
0.05
0
0
0
0
0
0
0
0
6.59E-03
0
0
52.63
0
0.35
7.65
0
0
0
0
0
0
0
60.7
25.0
1.0
0
0
0
0
0
0
0
0
0
0
0
0
0
3.81E-02
0
0
0
0
0
2.34
0.64
0
0
0
3.0
25.0
1.0
ASPEN Model Design Specifications
Design Specification Value
Manipulated
Variable
Limits
Mass flow rate of
CaCO3 in 4E-F
0.004616 kg/s
(Tol 0.00002)
Reactor volume of
EnzDMDP5
0.01 m3 – 1000 m3
Mass flow rate of
CaCO3 in 6E-F
0.0002285 kg/s
(Tol 0.000001)
Reactor volume of
ChemDM5
0.01 m3 – 1000 m3
Mass flow rate of
Protein (S) in 8A
0.010 kg/s
(Tol 0.0005)
Reactor volume of
ChemDA1
0.01 m3 – 1000 m3
Mass flow rate of
Chitosan in 8E-F
0.0213 kg/s
(Tol 0.0001)
Reactor volume of
ChemDA5
0.01 m3 – 1000 m3
CPD 3264
D-4
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Design Notes: The conversions of each reactor were controlled by the volume of reactors.
Design specification value is calculated by the feed and the conversion.
Tolerances are set as
0.05 % of the specification values.
Table D.1.3 ASPEN simulated results for Enzymatic deproteinization and
demineralization (R301)
Reactions
Reactor volume
Residence time
Heat duty
[m3]
[s]
[Watt]
EnzDMDP1
EnzDM, EnzDP
2.85
2865
-46068
EnzDMDP2
EnzDM, EnzDP
2.85
2868
-29529
EnzDMDP3
EnzDM, EnzDP
2.85
2869
-19303
EnzDMDP4
EnzDM, EnzDP
2.85
2871
-12662
EnzDMDP5
EnzDM, EnzDP
2.81
2823
-8223
14.21
14296
-115785
Total
Table D.1.4 ASPEN simulated results for Chitin purification (R302)
Reactions
Reactor volume
Residence time
Temperature
[s]
[K]
3
[m ]
CHEMDM1
ChemDM
0.31
485
305.0
CHEMDM2
ChemDM
0.31
480
309.0
CHEMDM3
ChemDM
0.31
478
311.2
CHEMDM4
ChemDM
0.31
476
312.4
CHEMDM5
ChemDM
0.31
484
313.0
1.55
2404
Total
Table D.1.5 ASPEN simulated results for Chitin deacetylation (R401)
Reactions
Reactor volume
Residence time
Heat duty
[m3]
[s]
[Watt]
CHEMDA1
ChemDA, ChemDP1, Neutral
0.18
163
-4277
CHEMDA2
ChemDA, ChemDP2
0.55
493
-5122
CHEMDA3
ChemDA, ChemDP2
0.55
493
-3037
CHEMDA4
ChemDA, ChemDP2
0.55
493
-1872
CHEMDA5
ChemDA, ChemDP2
0.51
458
-1103
2.34
2100
-15411
Total
CPD 3264
D-5
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.1.6 ASPEN simulation design specification for ‘SEP’
Benzoic acid Drum filter 1 Drum filter 2 Drum filter 3 Drum filter 3
extractor
(step 1)
(step 2)
Acetic acid
0
0.027
0.041928
0.01306
0.01
Ammonium sulfate
0
0.027
0.041928
0.01306
0.01
Benzoic acid
0.99
0.027
0.041928
0.01306
1
Calcium chloride
0
0.027
0.041928
0.01306
0.01
Calcium carbonate
0
0.99
0.99
0.99
1
Calcium lactate
0
0.027
0.041928
0.01306
0.01
Chitin
0
0.99
0.99
0.99
1
Chitosan
0
0.99
0.99
0.99
1
CO2
0
0.027
0.041928
0.01306
0.01
Ethanol
0.95
0.027
0.041928
0.01306
0.01
Glucose(L)
0
0.027
0.041928
0.01306
0.01
Glucose(S)
0
0.4355
0.9128
0.4783
1
H2O-Bound
0
0.4355
0.9128
0.4783
1
H2O-Free
HCL
Sulfuric acid
Lactic acid
Lipids
Sodium chloride
Sodium hydroxide
Nitrogen
Oxygen
Protein(L)
Protein(S)
0.03508
0
0
0
0
0
0
0
0
0
0
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0
0
0.027
0.99
0.041928
0.041928
0.041928
0.041928
0.041928
0.041928
0.041928
0
0
0.041928
0.99
0.01306
0.01306
0.01306
0.01306
0.01306
0.01306
0.01306
0
0
0.01306
0.99
Purge 1
Purge 2
0
0
0
0
0
0
0
0
0.9605
0
0
0
0
0
0
0
0
0
0
0
0
0.732
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0.9
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
0
0
0
1
1
0
0
0.086
0.01
0.01
0.01
0.01
0.01
0.01
0
0
0.01
1
Table D.1.7 ASPEN ‘HEATER’ design specifications
Temperature [ºC]
Pressure [atm]
Heat duty
E201
77
1
---
E202-3
35
1
---
P402
---
2.5
0
E402
121
2.5
---
E403
35
2.2
---
EDryer1
37
0.05
---
EDryer2
37
0.05
---
CPD 3264
D-6
DRYER
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.1.8 ASPEN Simulation Stream Summary a
1
2
3 4A
4B
CRUSHER EXTRACT ENZDMDP1 ENZDMDP2 ENZDMDP3
CRUSHER EXTRACT
ENZDMDP1 ENZDMDP2
LIQUID
LIQUID
LIQUID
LIQUID
LIQUID
Mass Flow tonne/day
ACETACID
AMMONSUL
BENZACID
CACL2
CACO3
CA-LACT
CHITIN
CHITOSAN
CO2
ETHANOL
GLUCO(L)
GLUCO(S)
H20BOND
H2OFREE
HCL
H2SO4
LACTACID
NACL
NAOH
N2
O2
PROTE(L)
PROTE(S)
STEAR-01
Total Flow kmol/day
Total Flow tonne/day
Total Flow m3/day
Temperature C
Pressure atm
Enthalpy J/kg
Enthalpy Watt
Density kg/m3
Average MW
0
0
0.30
0
3.98
0
1.83
0.61
0
0
0
0.23
9.00
9.00
0
0
0
0
0
0
0
0
4.70
0.35
1.1
30.0
26.4
25.0
1.0
-1.12E+07
-3.89E+06
1136.1
27.5
0
0
0.30
0
3.98
0
1.83
0.61
0
0
0
0.23
9.00
9.00
0
0
0
0
0
0
0
0
4.70
0.35
1.1
30.0
26.4
25.0
1.0
-1.12E+07
-3.89E+06
1136.1
27.5
0
0
3.00E-03
0
3.98
0
1.83
0.61
0
0.05
0
0.23
9.00
9.01
0
0
0
0
0
0
0
0
4.70
0.35
1.1
29.8
26.2
25.7
1.0
-1.13E+07
-3.88E+06
1134.1
27.3
0
0.05
3.00E-03
0
2.57
3.08
1.83
0.61
0.62
0.05
6.60E-03
0.23
9.00
61.89
0
0.35
5.11
0
0
0
0
1.35
3.35
0.35
4.1
90.4
85.9
25.0
1.0
-1.37E+07
-1.43E+07
1052.3
22.1
0
0.05
3.00E-03
0
1.65
5.08
1.83
0.61
1.02
0.05
6.60E-03
0.23
9.00
62.05
0
0.35
3.46
0
0
0
0
1.95
2.76
0.35
4.1
90.4
85.9
25.0
1.0
-1.37E+07
-1.43E+07
1053.3
22.1
4C
4D
ENZDMDP4ENZDMDP5
ENZDMDP3ENZDMDP4
LIQUID
LIQUID
0
0.05
3.00E-03
0
1.05
6.39
1.83
0.61
1.29
0.05
6.61E-03
0.23
9.00
62.16
0
0.35
2.37
0
0
0
0
2.29
2.41
0.35
4.1
90.4
85.8
25.0
1.0
-1.37E+07
-1.43E+07
1053.9
22.1
0
0.05
3.00E-03
0
0.65
7.25
1.83
0.61
1.46
0.05
6.62E-03
0.23
9.00
62.23
0
0.35
1.67
0
0
0
0
2.52
2.19
0.35
4.1
90.4
85.8
25.0
1.0
-1.37E+07
-1.44E+07
1054.4
22.1
CPD 3264
D-7
4E-F
PURGE1
ENZDMDP5
LIQUID
0
0.05
3.00E-03
0
0.40
7.80
1.83
0.61
1.57
0.05
6.62E-03
0.23
9.00
62.28
0
0.35
1.21
0
0
0
0
2.68
2.03
0.35
4.1
90.4
85.8
25.0
1.0
-1.37E+07
-1.44E+07
1054.6
22.1
4LIQIOD
FILTER1
PURGE1
LIQUID
0
0.05
3.00E-03
0
0.40
7.80
1.83
0.61
0.06
0.05
6.62E-03
0.23
9.00
62.28
0
0.35
1.21
0
0
0
0
2.68
2.03
0.35
4.1
88.9
84.5
25.0
1.0
-1.38E+07
-1.42E+07
1052.1
21.9
4VAPOR
PURGE1
VAPOR
0
0
0
0
0
0
0
0
1.51
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.0
1.5
840.3
25.0
1.0
-8.94E+06
-1.56E+05
1.8
44.0
5 5MIX
6A
6B
MIXTANK CHEMDM1 CHEMDM2 CHEMDM3
FILTER1
MIXTANK CHEMDM1 CHEMDM2
LIQUID
LIQUID
LIQUID
LIQUID
0
1.43E-03
8.11E-05
0
0.39
0.21
1.81
0.60
0.00
0.00
1.79E-04
0.10
3.92
1.68
0.00
9.49E-03
3.26E-02
0
0
0
0
0.07
2.01
0.01
0.3
10.9
8.9
25.0
1.0
-1.05E+07
-1.32E+06
1215.2
31.4
0
1.43E-03
8.11E-05
0
0.39
0.21
1.81
0.60
0.00
0.00
1.79E-04
0.10
3.92
45.89
0.82
9.49E-03
3.26E-02
0
0
0
0
0.07
2.01
0.01
2.8
55.9
54.3
25.0
1.0
-1.46E+07
-9.46E+06
1029.2
19.8
0
1.43E-03
8.11E-05
0.19
0.22
0.21
1.81
0.60
0.08
0.00
1.79E-04
0.10
3.92
45.92
0.70
9.49E-03
3.26E-02
0
0
0
0
0.07
2.01
0.01
2.8
55.9
55.2
31.9
1.0
-1.46E+07
-9.46E+06
1012.1
19.8
0
1.43E-03
8.11E-05
0.30
0.12
0.21
1.81
0.60
0.12
0.00
1.79E-04
0.10
3.92
45.94
0.62
9.49E-03
3.26E-02
0
0
0
0
0.07
2.01
0.01
2.8
55.9
55.7
35.8
1.0
-1.46E+07
-9.46E+06
1002.4
19.8
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.1.8 continued
6C
CHEMDM4
CHEMDM3
LIQUID
Mass Flow tonne/day
ACETACID
AMMONSUL
BENZACID
CACL2
CACO3
CA-LACT
CHITIN
CHITOSAN
CO2
ETHANOL
GLUCO(L)
GLUCO(S)
H20BOND
H2OFREE
HCL
H2SO4
LACTACID
NACL
NAOH
N2
O2
PROTE(L)
PROTE(S)
STEAR-01
Total Flow kmol/day
Total Flow tonne/day
Total Flow m3/day
Temperature C
Pressure atm
Enthalpy J/kg
Enthalpy Watt
Density kg/m3
Average MW
0
1.43E-03
8.11E-05
0.36
0.07
0.21
1.81
0.60
0.15
0.00
1.79E-04
0.10
3.92
45.95
0.58
9.49E-03
3.26E-02
0
0
0
0
0.07
2.01
0.01
2.8
55.9
56.0
38.0
1.0
-1.46E+07
-9.46E+06
997.1
19.8
6D
CHEMDM5
CHEMDM4
LIQUID
0
1.43E-03
8.11E-05
0.40
0.04
0.21
1.81
0.60
0.16
0.00
1.79E-04
0.10
3.92
45.96
0.56
9.49E-03
3.26E-02
0
0
0
0
0.07
2.01
0.01
2.8
55.9
56.2
39.2
1.0
-1.46E+07
-9.46E+06
994.1
19.8
6E-F
PURGE2
CHEMDM5
LIQUID
0
1.43E-03
8.11E-05
0.42
0.02
0.21
1.81
0.60
0.17
0.00
1.79E-04
0.10
3.92
45.96
0.55
9.49E-03
3.26E-02
0
0
0
0
0.07
2.01
0.01
2.8
55.9
56.3
39.9
1.0
-1.46E+07
-9.46E+06
992.5
19.8
6LIQUID
FILTER2
PURGE2
LIQUID
0
1.43E-03
8.11E-05
0.42
0.02
0.21
1.81
0.60
0.04
0.00
1.79E-04
0.10
3.92
45.96
0.55
9.49E-03
3.26E-02
0
0
0
0
0.07
2.01
0.01
2.8
55.8
56.2
39.9
1.0
-1.46E+07
-9.45E+06
992.2
19.8
6VAPOR
PURGE2
VAPOR
0
0
0
0
0
0
0
0
0.12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.0
0.1
71.2
39.9
1.0
-8.93E+06
-1.26E+04
1.7
44.0
7
MIXTANK2
FILTER2
LIQUID
0
0
0
0.02
0.02
8.83E-03
1.79
0.60
1.87E-03
5.78E-05
7.50E-06
0.09
3.58
1.93
0.02
3.98E-04
1.37E-03
0
0
0
0
3.03E-03
1.99
3.97E-04
0.3
10.0
8.6
39.9
1.0
-1.08E+07
-1.26E+06
1169.3
30.0
CPD 3264
D-8
7MIX
P402
MIXTANK2
LIQUID
0
6.00E-05
3.40E-06
0.02
0.02
8.83E-03
1.79
0.60
1.87E-03
5.78E-05
7.50E-06
0.09
3.58
38.95
0.02
3.98E-04
1.37E-03
0
30.29
0
0
3.03E-03
1.99
3.97E-04
3.1
77.4
93.5
28.0
1.0
-1.17E+07
-1.05E+07
827.4
24.6
7MIXHP
E401
P402
LIQUID
0
6.00E-05
3.40E-06
0.02
0.02
8.83E-03
1.79
0.60
1.87E-03
5.78E-05
7.50E-06
0.09
3.58
38.95
0.02
3.98E-04
1.37E-03
0
30.29
0
0
3.03E-03
1.99
3.97E-04
3.1
77.4
93.4
25.0
2.5
-1.18E+07
-1.05E+07
828.1
24.6
7MIXHPHT
CHEMDA1
E401
LIQUID
0
6.00E-05
3.40E-06
0.02
0.02
8.83E-03
1.79
0.60
1.87E-03
5.78E-05
7.50E-06
0.09
3.58
38.95
0.02
3.98E-04
1.37E-03
0
30.29
0
0
3.03E-03
1.99
3.97E-04
3.1
77.4
96.2
121.0
2.5
-1.16E+07
-1.04E+07
804.3
24.6
8A
CHEMDA2
CHEMDA1
LIQUID
0.00
6.00E-05
3.40E-06
0.02
0.02
8.83E-03
1.48
0.84
1.87E-03
5.78E-05
7.50E-06
0.09
3.58
38.93
2.50E-03
3.98E-04
1.37E-03
0.03
30.27
0
0
1.90E+00
0.09
3.97E-04
3.1
77.4
96.2
121.0
2.3
-1.16E+07
-1.04E+07
803.9
24.6
8B
CHEMDA3
CHEMDA2
LIQUID
0.09
6.00E-05
3.40E-06
0.02
0.02
8.83E-03
0.91
1.29
1.87E-03
5.78E-05
7.50E-06
0.09
3.58
38.88
9.75E-05
3.98E-04
1.37E-03
0.04
30.27
0
0
1.92E+00
0.07
3.97E-04
3.1
77.4
96.4
121.0
2.3
-1.16E+07
-1.04E+07
802.9
24.6
8C
CHEMDA4
CHEMDA3
LIQUID
0.26
6.00E-05
3.40E-06
0.02
0.02
8.83E-03
0.56
1.57
1.87E-03
5.78E-05
7.50E-06
0.09
3.58
38.85
9.75E-05
3.98E-04
1.37E-03
0.04
30.27
0
0
1.93E+00
0.06
3.97E-04
3.1
77.4
96.4
121.0
2.3
-1.16E+07
-1.04E+07
802.2
24.6
8D
CHEMDA5
CHEMDA4
LIQUID
0.36
6.00E-05
3.40E-06
0.02
0.02
8.83E-03
0.35
1.74
1.87E-03
5.78E-05
7.50E-06
0.09
3.58
38.83
9.75E-05
3.98E-04
1.37E-03
0.04
30.27
0
0
1.94E+00
0.05
3.97E-04
3.1
77.4
96.5
121.0
2.3
-1.16E+07
-1.04E+07
801.8
24.6
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.1.8 continued
8E-F
E403
CHEMDA5
LIQUID
Mass Flow tonne/day
ACETACID
AMMONSUL
BENZACID
CACL2
CACO3
CA-LACT
CHITIN
CHITOSAN
CO2
ETHANOL
GLUCO(L)
GLUCO(S)
H20BOND
H2OFREE
HCL
H2SO4
LACTACID
NACL
NAOH
N2
O2
PROTE(L)
PROTE(S)
STEAR-01
Total Flow kmol/day
Total Flow tonne/day
3
Total Flow m /day
Temperature C
Pressure atm
Enthalpy J/kg
Enthalpy Watt
Density kg/m3
Average MW
0.46
6.00E-05
3.40E-06
0.02
0.02
8.83E-03
0.22
1.84
1.87E-03
5.78E-05
7.50E-06
0.09
3.58
38.82
9.75E-05
3.98E-04
1.37E-03
0.04
30.27
0
0
1.95E+00
0.04
3.97E-04
3.1
77.4
96.5
121.0
2.3
-1.16E+07
-1.04E+07
801.6
24.6
8HPLT
VALVE
E403
LIQUID
0.46
6.00E-05
3.40E-06
0.02
0.02
8.83E-03
0.22
1.84
1.87E-03
5.78E-05
7.50E-06
0.09
3.58
38.82
9.75E-05
3.98E-04
1.37E-03
0.04
30.27
0
0
1.95E+00
0.04
3.97E-04
3.1
77.4
94.0
35.0
2.2
-1.18E+07
-1.05E+07
822.9
24.6
8LPLT
FILTER3
VALVE
LIQUID
0.46
6.00E-05
3.40E-06
0.02
0.02
8.83E-03
0.22
1.84
1.87E-03
5.78E-05
7.50E-06
0.09
3.58
38.82
9.75E-05
3.98E-04
1.37E-03
0.04
30.27
0
0
1.95E+00
0.04
3.97E-04
3.1
77.4
94.0
35.0
1.0
-1.18E+07
-1.05E+07
822.9
24.6
9
WASHTANK
FILTER3
LIQUID
6.05E-03
7.83E-07
4.44E-08
2.28E-04
0.02
1.15E-04
0.22
1.82
2.45E-05
7.55E-07
9.79E-08
0.04
1.71
0.51
1.27E-06
5.20E-06
1.78E-05
4.78E-04
0.40
0
0
2.54E-02
0.04
5.19E-06
0.1
4.8
3.7
35.0
1.0
-1.07E+07
-5.95E+05
1287.6
32.7
10
11
12
FILTER4
DRYER
WASHTANK FILTER4
EDRYER2
LIQUID
LIQUID
LIQUID
6.05E-03
7.83E-07
4.44E-08
2.28E-04
0.02
1.15E-04
0.22
1.82
2.45E-05
7.55E-07
9.79E-08
0.04
1.71
10.89
1.27E-06
5.20E-06
1.78E-05
4.78E-04
0.40
0
0
2.54E-02
0.04
5.19E-06
0.7
15.2
14.2
27.0
1.0
-1.42E+07
-2.50E+06
1072.0
21.0
6.05E-05
7.83E-09
4.44E-08
2.28E-06
0.02
1.15E-06
0.22
1.82
2.45E-07
7.55E-09
9.79E-10
0.04
1.71
0.94
1.27E-08
5.20E-08
1.78E-07
4.78E-06
0.00
0
0
2.54E-04
0.04
5.19E-08
0.2
4.8
3.6
27.0
1.0
-1.15E+07
-6.41E+05
1329.4
30.0
CPD 3264
D-9
6.05E-05
7.83E-09
4.44E-08
2.28E-06
0.02
1.15E-06
0.22
1.82
2.45E-07
0
9.79E-10
0.04
0.17
0.00
1.27E-08
5.20E-08
1.78E-07
4.78E-06
0.00
0
0
2.54E-04
0.04
5.19E-08
0.0
2.3
0.9
37.0
0.1
-6.92E+06
-1.86E+05
2646.7
102.1
12PRE
EDRYER2
DRYER
LIQUID
13
MIXER
LIQUID
6.05E-05
0
7.83E-09
0
4.44E-08
0
2.28E-06
0
0.02
0
1.15E-06
0
0.22
0
1.82
0
2.45E-07
0
0
0.25
9.79E-10
0
0.04
0
0.17
0
0.00 0.11000016
1.27E-08
0
5.20E-08
0
1.78E-07
0
4.78E-06
0
0.00
0
0
0
0
0
2.54E-04
0
0.04
0
5.19E-08
0
0.0
0.0
2.3
0.4
0.9
0.4
-1.4
25.0
0.1
1.0
-6.96E+06 -9.06E+06
-1.87E+05 -3.74E+04
2729.8
837.3
102.1
31.1
14
15
16 16HOT
EXTRACT E201
MIXER
E202-3
MIXER
EXTRACT E202-3
FLASH
LIQUID
LIQUID
LIQUID
VAPOR
0
0
4.90E-04
0
0
0
0
0
0
1.02
0
0
0
0.33
0
0
0
0
0
0
0
0
0
0
0.0
1.4
1.7
32.3
1.0
-8.42E+06
-1.32E+05
815.8
33.3
0
0
0.30
0
0
0
0
0
0
0.97
0
0
0
0.33
0
0
0
0
0
0
0
0
0
0
0.0
1.6
1.8
25.7
1.0
-7.49E+06
-1.38E+05
874.7
38.3
0
0
4.90E-04
0
0
0
0
0
0
0.77
0
0
0
0.22
0
0
0
0
0
0
0
0
0
0
0.0
1.0
1.2
35.0
1.0
-8.19E+06
-9.45E+04
808.0
34.2
0
0
4.90E-04
0
0
0
0
0
0
0.77
0
0
0
0.22
0
0
0
0
0
0
0
0
0
0
0.0
1.0
862.4
87.2
1.0
-6.86E+06
-7.91E+04
1.2
34.2
16HT
FLASH
E201
LIQUID
0
0
0.30
0
0
0
0
0
0
0.97
0
0
0
0.33
0
0
0
0
0
0
0
0
0
0
0.0
1.6
2.0
77.0
1.0
-7.30E+06
-1.35E+05
816.9
38.3
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.1.8 continued
17
FLASH
LIQUID
Mass Flow tonne/day
ACETACID
AMMONSUL
BENZACID
CACL2
CACO3
CA-LACT
CHITIN
CHITOSAN
CO2
ETHANOL
GLUCO(L)
GLUCO(S)
H20BOND
H2OFREE
HCL
H2SO4
LACTACID
NACL
NAOH
N2
O2
PROTE(L)
PROTE(S)
STEAR-01
Total Flow kmol/day
Total Flow tonne/day
3
Total Flow m /day
Temperature C
Pressure atm
Enthalpy J/kg
Enthalpy Watt
3
Density kg/m
Average MW
0
0
0.30
0
0
0
0
0
0
0.20
0
0
0
0.10
0
0
0
0
0
0
0
0
0
0
0.0
0.6
0.7
87.2
1.0
-6.00E+06
-4.15E+04
918.6
47.8
20
FILTER1
LIQUID
0
0.05
2.92E-03
0
3.99E-03
7.59
0.02
6.08E-03
0.06
0.05
6.44E-03
0.13
5.08
60.60
0
0.34
1.17
0
0
0
0
2.60
0.02
0.34
3.7
78.1
75.5
25.0
1.0
-1.43E+07
-1.29E+07
1034.0
21.0
21
22
MIXTANK WASHTANK
LIQUID
0
0
0
0
0
0
0
0
0
0
0
0
0
44.21
0.82
0
0
0
0
0
0
0
0
0
2.5
45.0
45.2
25.0
1.0
-1.56E+07
-8.14E+06
995.9
18.2
LIQUID
0
0
0
0
0
0
0
0
0
0
0
0
0
10.38
0
0
0
0
0
0
0
0
0
0
0.6
10.4
10.4
25.0
1.0
-1.59E+07
-1.91E+06
993.5
18.0
23
FILTER2
LIQUID
24
MIXTANK2
LIQUID
0
1.37E-03
7.77E-05
0.40
1.98E-04
0.20
0.02
6.02E-03
0.04
1.32E-03
1.71E-04
0.01
0.34
44.03
0.52
9.09E-03
0.03
0
0
0
0
0.07
0.02
9.08E-03
2.5
45.7
47.5
39.9
1.0
-1.55E+07
-8.19E+06
962.8
18.4
CPD 3264
D-10
25
FILTER4
LIQUID
26
FILTER3
LIQUID
0
5.99E-03
0.46
0 7.7553E-07 5.9199E-05
0
0 3.3573E-06
0
2.25E-04
1.72E-02
0
0
1.96E-04
0
1.14E-04
8.72E-03
0
0
2.20E-03
0
0
1.84E-02
0
2.42E-05
1.85E-03
0
7.47E-07
5.70E-05
0
9.69E-08
7.40E-06
0
0
0.05
0
0
1.87
37.02
9.95
38.31
0
1.26E-06
9.63E-05
0
5.14E-06
3.93E-04
0
1.77E-05
1.35E-03
0
4.73E-04
0.04
30.29
0.39
29.87
0
0
0
0
0
0
0
0.03
1.92
0
0
4.42E-04
0 5.1375E-06
3.92E-04
2.8
0.6
3.0
67.3
10.4
72.6
85.8
10.5
90.4
25.0
27.0
35.0
1.0
1.0
1.0
-1.19E+07 -1.55E+07 -1.18E+07
-9.26E+06 -1.86E+06 -9.93E+06
784.7
987.9
802.4
23.9
18.4
24.2
27 27PRE
FERMOUT
EDRYER1 ENZDMDP1
EDRYER1 DRYER
VAPOR
MIXED
LIQUID
0
0
0
0
0
0
0
0
0
7.55E-09
0
0
1.54
0.97
0
0
0
0
0
2.34
0.64
0
0
0
0.2
5.5
123839.8
37.0
0.1
-6.12E+06
-3.90E+05
0.0
22.6
0
0
0
0
0
0
0
0
0
7.55E-09
0
0
1.54
0.97
0
0
0
0
0
2.34
0.64
0
0
0
0.2
5.5
51867.6
-1.4
0.1
-7.21E+06
-4.59E+05
0.1
22.6
0
0.05
0
0
0
0
0
0
0
0
6.59E-03
0
0
52.63
0
0.35
7.65
0
0
0
0
0
0
0
3.0
60.7
59.8
25.0
1.0
-1.48E+07
-1.04E+07
1015.2
20.2
GAS
DRYER
VAPOR
0
0
0
0
0
0
0
0
0
0
0
0
0
3.81E-02
0
0
0
0
0
2.34
0.64
0
0
0
0.1
3.0
2589.4
25.0
1.0
-1.69E+05
-5.92E+03
1.2
28.6
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
10
22
9
16
FERMOUT
4VAPOR
13
MIXER
E202-3
FILTER1
4A
3
4B
4C
4E-F
4D
4LIQIOD
CRUSHER
15
16HOT
ENZDMDP1
ENZDMDP2
ENZDMDP5
ENZDMDP4
ENZDMDP3
EXTRACT
20
PURGE1
5
6VAPOR
FLASH
17
E201
PURGE2
5MIX
21
6A
6B
6C
6D
FILTER2
6E-F
6LIQUID
MIXTANK
CHEMDM1
CHEMDM2
CHEMDM3
CHEMDM4
23
CHEMDM5
24
7
7MIXHP
7MIXHPHT
7MIX
E401
P402
MIXTANK2
FILTER3
27PRE
FILTER4
8B
8A
8E-F
8D
8C
8HPLT
E403
CHEMDA1
CHEMDA3
CHEMDA2
CHEMDA4
8LPLT
VALVE
CHEMDA5
11
12PRE
DRYER
Figure D.1.1 ASPEN simulation flow scheme
CPD 3264
D-3
12
EDRYER2
WASHTANK
26
27
EDRYER1
25
GAS
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
D.2.a Stoichiometry
In the lactic acid fermentation substrate is converted to biomass (Lactic acid bacteria), product
(lactic acid), and for energy for maintenance. Lactic acid fermentation is anaerobe and considered
to be growth related product. Further, substrate conversion to biomass is called anabolic reaction
and substrate conversion to lactic acid is called catabolic reaction.
In this calculation we consider all the substrate to be glucose while the N-source used is
(NH4)2SO4. Calculation is based on C-mol substrate, product, and biomass.
Calculation for pH = 7 and T = 25C
Catabolic reaction
Glucose + H2O  lactate + H+ + HCO3-
(D.2.1)
Glucose = CH2O
Lactate = CH5/3O –1/3
CH2O + a H2O  b CH5/3O –1/3 + c H+ + d HCO3Balance:
C
:
H
:
O
:
Charge :
(D.2.2)
1–b–d=0
2 + 2a – 5/3 b – c – d = 0
1 + a – b – 3d = 0
-b(-1/3) –c(+1) –d(-1) = 1/3 b – c + d = 0
Complete reactions :
CH2O  CH5/3O –1/3 + 1/3 H+
Gcat = Glactate - Gglucose = 125.952 – 158.976 = - 33.024 kJ/C-mol glucose
(D.2.3)
(All the values used were taken form reference 1)
Overall Reaction
Glucose + N-source + H2O  biomass + lactate + H+ + HCO3- + Greaction
(D.2.4)
a CH2O + b NH4+ + c H2O  CH1.8O0.5N0.2 + d CH5/3O –1/3 + e H+ + f HCO3- + 1/YGXm
(D.2.5)
1/YGXm = 200 + 18 (6 - C)1.8 + exp(( (3.8-)2)0.16 ) (3.6+0.4C) )
C-source = glucose  C = 6,  = 4
 YGXm = 236.051 kJ/C-mol X
(All formulas and values used were taken from reference 1)
(D.2.6)
CPD 3264
D-12
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
a CH2O + b NH4+ + c H2O  CH1.8O0.5N0.2 + d CH5/3O –1/3 + e H+ + f HCO3- + 1/YGXm
balance :
C
:
H
:
O
:
N
:
Charge :
G
:
(D.2.5)
a–1–d–f =0
2a + 4b + 2c – 1.8 – 5/3d – e – f = 0
a + c – 0.5 – d – 3f = 0
b – 0.2 = 0
b(+1) – d(-1/3) – e(+1) – f(-1) = 0
a Gglucose - Gx – d Glactate - Greaction = 0
(Gx = Gibbs free energy of biomass formation, kJ/mol)
complete overall reaction :
7.447 CH2O + 0.2 NH4+  CH1.8O0.5N0.2 + 6.397 CH5/3O –1/3 + 2.382 H+ + 0.05 HCO3- + 0.4 H2O
+ 236.051 kJ/C-mol X
(D.2.7)
D.2.b Mass Balance of Fermentation
Fermentation will be done continuously in a chemostat (CSTR), equipped with Temperature
controller (for constant temperature operation) and pH controller (for constant pH operation).
Dilution factor : D 
L
(D.2.8)
V
Substrate specific rate : qS 
1
  mS
YSXm
(D.2.9)
 S

 
 X    S mS
m
P
  PYSX  P 
Product specific rate: qP  
(D.2.10)
Biomass recycle ratio = 1 - 
Substrate balance :
 rSV  L (CS 0  CS )  0 
  Cx 

rS  qS Cx
D(CS 0  CS )
qS
(D.2.11)
Biomass balance :
rxV  L  Cx  0 
L
 D
  
rx   Cx
V

(D.2.12)
Product balance :
rPV  L CP  0 
rP  qP Cx
Cx
 CP  q p
D

(D.2.13)
in chemostat, Cs is only determined by the microbes itself,
CS
 KS
 KS D
 CS 

   max
K S  CS
 max    max   D
CPD 3264
D-13
(D.2.14)
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
simplifying equations D.2.11, D.2.12, D.2.13 and D.2.14, we can write the three state variables
(CS,CX, and CP) in terms of D.
 KS D
( D.2.15)
CS 
 max   D
Cx 
D(CS 0  CS )
qS
C P  qP
( D.2.16)
CX
D
( D.2.17)
D.2.c Reaction Condition Optimization
Optimization was done to operating pH and temperature.
pH and T dependent variables :
 Gcat,
G cat

(D.2.18)
K (pH=7)
(pH new)
= G react (pH = 7) + RT ln
K (pH new)
(D.2.19)
K (pH=7)
maintenance
mS =

K (pH new)
Greact
G react

= G cat (pH = 7) + RT ln
(pH new)
m Gibbs
; m Gibbs  4.5 exp
G cat
 69000  1
1  


 8.314  Tnew 298  
(D.2.20)
specific growth
 max =
3  -G cat   4.5
G Gibbs
 69000  1
1  
exp 

 8.314  Tnew 298  
(D.2.21)
but as this process is a substrate level phosphorylation process, the calculation will under estimate
max. Therefore max from reference will be taken as standard, max = 0.4 /hour at pH = 6 and T =
30C [2].
The decision will be based on product efficiency, safety, and economic.
Product efficiency is defined as =  
qP
qS  q P
CPD 3264
D-14
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.2.1 : Reaction condition selection
pH
T
G
7
298
6
303
6
308
6
313
6
318
5.5
308
5.5
313
5.5
318
5
308
5
313
5
318
cat
-33.024
-27.223
-27.128
-27.032
-26.936
-24.180
-24.036
-23.892
-21.231
-21.040
-20.849
reaction
236.051
250.729
250.987
251.245
251.503
259.187
259.600
260.014
267.940
268.529
269.121
4.500
0.136
0.134
0.859
0.342
2.681
2.322
0.464
7.125
0.262
0.127
0.867
0.400
3.418
2.998
0.467
11.115
0.410
0.127
0.867
0.621
5.311
4.660
0.467
17.094
0.632
0.126
0.867
0.949
8.136
7.140
0.467
25.936
0.963
0.126
0.867
1.432
12.296
10.793
0.467
11.115
0.460
0.123
0.871
0.517
4.672
4.129
0.469
17.094
0.711
0.123
0.871
0.788
7.138
6.311
0.469
25.936
1.086
0.122
0.872
1.184
10.759
9.516
0.469
11.115
0.524
0.119
0.875
0.419
4.049
3.609
0.471
17.094
0.812
0.119
0.875
0.635
6.166
5.499
0.471
25.936
1.244
0.118
0.876
0.949
9.262
8.266
0.472
G
m
Gibbs
mS
Ysx m
Ysp m

qS
qP

Fermentation will be done at pH = 5.5 and T = 40C.
Reaction stoichiometry after optimization :
(D.2.22)
8.160 CH2O + 0.2 NH4+ 
CH1.8O0.5N0.2 + 7.110 CH5/3O –1/3 + 2.620 H++ 0.050 HCO3- + 0.4 H2O + 259.6 kJ/C-mol X
or
1.36 C6H12O6 + 0.1 (NH4)SO4 




CH1.8O0.5N0.2 + 2.370 C3H6O3 + 0.1 H2SO4 + 0.05 CO2 + 0.45 H2O

(D.2.23)
D.2.d Fermentation simulation
Fermentation simulation is done on Matlab.
Limitation :
Max glucose concentration in water 52 C-mol/L (=1562 g/L)
Max lactose concentration in water 40 C-mol/L (=1200 g/L)
Table D.2.2: Simulation results based on trials of different dilution factor rate.
D
/h
0.1200
0.2000
0.3040
0.4000
0.6000
Cp C-mol/L
4.9007
4.8171
4.7554
4.7162
4.6311
Cs
C-mol/L
0.0047
0.0088
0.0163
0.0268
0.0830
Cx C-mol/L
0.3758
0.4515
0.5031
0.5304
0.5581
CPD 3264
D-15
0.7040
4.5004
0.2179
0.5540
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Fig D.2.1 Graph of Cs/Cp against Dilution factor
D is chosen to be 0.60 /hour, quite safe Dcrit = max = 0.788/hour
D ± 20% = 0.48 - 0.72 / hour
Fig D.2.2 Graph of Cp against Dilution factor with different recycle ratios
CPD 3264
D-16
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Matlab M-File
n=100;
beta=0;
C0 = 5.3; % 5% glucose in feed in Cmol/L
Ks=0.026;
mumax=0.4;
ms=0.262;
gamS=4;
gamP=4;
gamX=4.2;
Ysxm=0.1267;
Yspm=0.8669;
F=gamS/gamP/Ysxm - gamX/gamP;
E=gamS/gamP;
for i=1:n
D(i)=0.4/n*i;
Cs(i)=beta*Ks*D(i)./(mumax-beta*D(i));
Cx(i)=D(i).*(C0-Cs(i))./(1/Ysxm*beta*D(i)+ms);
Cp(i)=F*beta*Cx(i)+E*ms.*Cx(i)./D(i);
end
It was decided to take 80% biomass recycle.
Cp = 4.9007 Cmol/L = 147.0210 g/L
Cx = 1.8791 Cmol/L = 46.2259 g/L
Cs = 0.0047 Cmol/L = 0.1410 g/L
Substrate utilization = 99.91 %
CPD 3264
D-17
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
D.2.e Dimensioning of Fermentor
Innoculum
N2 out
2
4
1
Cooling water in
Cooling water out
5
3
N2 in
Fig D.2.3 Fermentor layout
Amount of lactic acid required for demineralization process = 6.14 ton/day = 8.528 kC-mol/hour
Excess lactic acid availability 20%  10.660 kC-mol/hour
From the mass balance
Fermentor volume =
Q
in
D
% working volume  number of fermentor
(D.2.24)
Volume of (each) the fermentor should be 3.410 m3.
(assumption : Working volume = 75% and Total number of fermentor ‘online’ = 2, cleaning
every 40 days)
Dimensioning
H = 1.5 D
D2
1.5 D 3
H= p
4
4
V
4
Þ D= 3
1.5p
V= p
D = 1.425 m
H = 2.138 m
Operating times
shut down
Cleaning
Sterilization
start up
Total
operation day/fermentor
number of fermentor
cleaning every
number of fermentor 'on'
1.67hours
10hours
2hours
1.67hours
15.33hours
 1days
39days
2
40days
2
CPD 3264
D-18
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
D.2.f Cooling requirement
(D.2.25)
Heat balance =  H in   H out  H reaction
(enthalpy values were taken from aspen simulation, assuming biomass as solid protein)
From the heat balance, cooling requirement : 77 kWatt
Media used : cooling water (20C-30C)
Cooling water required =
Q
Cpcoolingwater  T
=6576 kg/h
D.2.g Microfilter design
Assumption :
Concentration factor (retentate / feed) = 4
Rejection of biomass = 80%
From Superpro Designer simulator, we get total area required is 55.62 m2 (per fermentor)
Using membrane filter (microfiltration), type : hollow fiber membrane with specification :
Fiber diameter 1.5 mm
Length 1 m
Number of fiber per tubes 3000
Total area available pertubes 14.13 m2
Tubes dimension, diameter 0.1 m, length 1 m
Number of tubes required per fermentor = 4
Total number of tubes required = 4 x (2 + 1) = 12
One set for each fermentor + one set for spare.
D.2.h Superpro Designer Simulation
Below is the output from a superpro designer simulation. A stoichiometry reactor is used based
on equation D.2.23. Input data based on amount of lactic acid required. The diagram represents
both R101 and R102.
T : 40.71 °C
Flow rate : 4.915 m3/h
Power requirement for fermentor = 16.9 kW (specific power 0.3 kW/m3)
For microfilter : 25.8 kW (specific power 0.2 kW/m2)
CPD 3264
D-19
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.2.3: Stream S-106 (Superpro Designer) vs 116A+116B Product stream
Component
Stream S-106
Mass flow kg/hr
2.11
36.72
3.28
0.32
318.41
14.63
2191.37
Amm. Sulfate
Biomass
Carb. Dioxide
Glucose
Lactic acid
Sulfuric Acid
Water
Stream 116A+116B
Mass flow kg/hr
2.21
36.72
3.28
0.27
318.40
14.63
2191.02
S-104
S-105
Stream S-106
Concentration kg/m3
0.08
1.43
0.13
0.01
12.40
0.57
85.37
S-102
S-103 P-3 / MX-101
Mixing
S-106
P-1 / V-101
S-101
Stoich. Fermentation
P-2 / MF-101
Microfiltration
Fig D.2.4 Superpro Designer Flowsheet for R101/R102 Fermentor
From Table D.2.3, it can be seen that the calculated results give similar results as that simulated
in Superpro Designer. Hence, the calculated results are acceptable. Heat duties obtained from
Superpro designer are used for the energy balances.
List of symbols :
C
CS0
CS
CX
CP
Cp
D
D
H
K
KS
mGibbs
mS
Q
qS
qP
T,Tnew
= amount of carbon atom per molecule of the substrate
= initial substrate concentration (C-mol/m3)
= final substrate concentration (C-mol/ m3)
= final biomass concentration (C-mol/ m3)
= final product concentration (C-mol/ m3)
= specific heat (kJ/kg°C)
= dilution factor
= fermentor diameter (m)
= fermentor height (m)
= reaction equilibrium constant
= specific affinity coefficient on substrate (Cmol/m3)
= maintenance coefficient on Gibbs free energy (kJ/C-mol biomass/h)
= maintenance coefficient on substrate (C-mol substrate/C-mol biomass/h)
= heat (kJ/h)
= substrate specific rate
= product specific rate
= reaction temperature, K
CPD 3264
D-20
St-4931 Conceptual Process Design
R
rS
rX
rP
YGXm
YSXm
V
Production of Chitin and Chitosan from Shrimp Shells
= gas constant = 8.314 J/L mol K
= rate of substrate consumption (C-mol/h)
= rate of biomass production (C-mol/h)
= rate of product formation (C-mol/h)
= Biomass yield on Gibbs free energy
= yield of biomass on substrate (C-mol biomass/C-mol substrate)
= fermentor volume (m3)

= %biomass not recycled
Gcat = Gibbs free energy for catabolic reaction, kJ/mol
Glactate = Gibbs free energy of lactate formation, kJ/mol
Gglucos = Gibbs free energy of glucose formation, kJ/mol
Greact = Gibbs free energy for reaction, kJ/mol
L
= flow rate out from fermentor (m3/h)
= specific growth rate of biomass (/h)

max
= maximal specific growth rate of biomass (/h)
= degree of reduction of substrate
,  S
P
= degree of reduction of product
Reference:
[1] Heijnen, J.J. Bioenergetic of Microbial Growth in Flickinger, M.C. Drew, S.W. Encyclopedia of
Bioprocess Technology : Fermentation, Biocatalyst, and Bioseparation. 1999 : 267 - 291
[2] C. Akerberg, et.al. Applied Microbiology and Biotechnology. 1998. 49 : 682 – 690
CPD 3264
D-21
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
D.3.a Mean conversion and total reactor volume for CSTRs in N series
Mean conversion for first order reaction with CSTRs in N series is theoretically described as
equation D.3.1.
Cout  1 


Cin  1  kti 
N
(D.3.1)
When the conversion is set at certain value, required working volume for each number of CSTRs
in series can be calculated.
Reactor Volume (Based on 1 CSTR)[-]
1
0.9
0.8
0.7
0.6
0.5
0.4
ASPEN simulation
0.3
0.2
Theoretical
0.1
0
0
2
4
6
8
10
12
14
16
18
Number of CSTRs
Figure D.3.1 Reactor volume and number of CSTRs
For reference, ASPEN plus simulation results are also shown in Figure D.3.1. It is observed that
following number of CSTRs in series increases, total reactor working volume decreases.
D.3.b Residence Time Distribution
Residence time distribution of CSTRs in series can be described as follows.
1 t
E (t )    
ti  ti 
( N 1)

 t 
1
 exp  
( N  1)!
 ti 
(D.3.2)
N and ti is described as follows by t and  , which are mean residence time and mean
deviation.
ti 
t
N
N
t
(D.3.3)
2
2
(D.3.4)
CPD 3264
D-23
20
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Mean Residence
Time
t
Fig D.3.2 Residence time distribution
t
 tCt
 Ct
 (t  t ) Ct

 Ct
(D.3.5)
2

2
(D.3.6)
Residence time distributions of CSTRs in series are drawn as Figure 8.2.3. In Figure 8.2.3 ,
mean residence times are normalized. It shows that with increasing number of CSTRs in series,
the residence time distributions become uniform and less distributed.
The cumulative residence time, F (t) is described as equation D.3.7. This function is the volume
fraction of material in the outlet stream, which has been in the system for times less than t is equal
to F(t).
t
F (t )   E (t )dt
(D.3.7)
0
Cumulative residence time, F(t), equals 0.10 shows that 10 % of the feed have left between time
0 and t (younger than t). When the number of CSTRs increases, ‘t’ for F(t)=0.10 increases. This
tendency can be seen in Figure D.3.3. As it is mentioned in Chapter 8.2.2, if tA (time required to
meet specification) is set as mean residence time of the reactor, 90 % of the particles should stay
longer than tB (time required for 10 % less conversion) to have conversion in the range of
10 % deviated from the specification. From the Table 8.2.1, 0.7 is taken for the design criteria of
‘t’ for F(t)=0.10.
From the figure D.3.3, we can conclude 16 CSTRs in series are needed to meet the specifications.
Therefore 15 baffles are installed for each reactor.
CPD 3264
D-24
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
1
0.9
Normalized Residence time
(time / mean residence time) [-]
0.8
0.7
0.6
0.5
F(t)=0.10
0.4
16 CSTRs
0.3
0.2
0.1
0
0
5
10
15
20
Numbers of CSTRs [-]
Figure D.3.3 Cumulative residence time (=0.10) and numbers of CSTRs
D.3.c Impeller
The mixing patterns in a CSTR are quite complex and play a key role in contacting the reactants.
To achieve high stage efficiency for reaction, it is necessary to provide fairly vigorous agitation.
From empirical correlations, which are listed below, it is possible to estimate the agitation power,
P [W].
N Po  N 3  Di   M
gc
5
P
Di  N   M
(D.3.8)
2
N Re 
M
(D.3.9)
In which, N Po represents a power number of rotating [-], N Re is an impeller Reynolds number [-],
N is the rate of impeller rotation [1/s], Di is the impeller diameter,  M is the density of liquid
[kg/m3],  M is viscosity of liquid [kg/m2], and g c is universal constant [m/s2].
Di is set to be one-third of the reactor diameter, D, and the parameters of the mixture are taken
for that of water,  M , and  M , because water is the dominant component in each reactor.
Calculated results are shown in Table D.3.1. N Re is calculated through equation D.3.9 and N Po
is interpreted from power correlations for turbine impellers. Correlation of N Re and N Po is
shown in Figure D.3.4.
CPD 3264
D-25
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Please refer to Table D.3.1 for impeller duty of agitation.
Table D.3.1 Impeller duty
D(Diamter of reactor)
Height
Di (D of Impller) [m]
N[rps]
Temperature [C]
viscosity(kg/ms)
Enzymatic
0.91
1.37
0.30
0.3
25
0.00100
Chemical DM
0.43
0.65
0.14
0.3
25-40
0.00063
Chemical DA
0.50
0.75
0.17
0.3
121
0.00028
Density [kg/m3]
Nre [-]
Np0 [-]
P [W]
995
27413
5.7
0.3932
995
9688
5.2
0.0085
995
29393
5.8
0.0200
P total [W]
18.9
0.406
0.962
Figure D.3.4 Impeller Reynolds number and impeller power
List of Symbol :
Cout
Cin
k
ti
= outlet concentration
= concentration of feed
= rate constant
= time
t
ti
= mean residence time

E
N
F
= residence time of each reactor
= mean deviation
= fraction flow
= number of CSTR
= cumulative residence time
CPD 3264
D-26
N Po
= power number of rotating
N Re
N
Di
= impeller Reynolds number
= rate of impeller rotation [1/s]
= impeller diameter
M
M
= liquiddensity [kg/m3]
gc
= universal constant [m/s2]
= liquid viscosity [kg/m2]
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
CPD 3264
D-23
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
D.4 S301, S302 & S401 Filter
Below are the specifications for each filter.
Table D.4.1: Rotary Vacuum Drum filter specifications
Rotation speed, rpm
Percentage area submerged
Pressure drop, -P N/m2
Time per rotation, s
Liquid fraction with cake, %
Voidage of cake, %
Zoning, %
Filtering
Washing
Dewatering
Zoning time, s
Filtering
Washing
Dewatering
Solid recovery percentage, %
Filter S301
0.25
37.5
4104
240
20
40
Filter S302
0.25
37.5
4 104
240
20
40
Filter S401
0.2
37.5
4  104
300
20
40
37.5
62.5
37.5
62.5
37.5
31.25
31.25
112.5
93.75
93.75
99
90
90
150
150
99
99
Incoming flow specifications
9.01
8.45
79.92
47.30
0.11
0.18
1135
1149
1050
970
110-3
110-3
1  10-4
5  10-4
Mass of solids, tonnes/day
Mass of liquids, tonnes/day
Mass Fraction
Solid density, kg/m3
Liquid density, kg/m3
Liquid viscosity, Ns/m2
Particle size, m
3.93
73.43
0.05
1110
990
110-3
5  10-5
Assumptions made:
1. Incompressible cake
2. The resistance to flow of a given volume of cake is not appreciably affected either by the
pressure difference across the cake or by the rate of deposition of material
3. Constant filtrate rate
4. Recovery of solids is 99 %
5. Porosity of cake is 40 % and liquid fraction is 20 %.
6. Values of filtrate and cake volumetric flow rate are taken from ASPEN PLUS.
7. Solids and liquid densities are taken from ASPEN PLUS simulation.
D.4.a Sample calculation (S301)
1. Volumetric flow rate of solids in =
Mass of solids 9.01 1000
m3

 7.94
Density
1135
day
2. Volumetric flow rate of liquids in =
Mass of liquids 79.92  1000
m3

 76.11
Density
1050
day
3. Assuming incompressible solids, and the particles are of spherical shape the specific
resistance is calculated
r
5(1  e) 2 S 2
e3
(D.4.1)
CPD 3264
D-28
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
e = 0.4
 Dp
Area of particle
  0.0052


Volume of particle 1/ 6 D p 3 1/ 6    0.0053
2
S=
S = 12000 m-1
r=
5(1  0.4) 2 120002
 4.05  109 m 2
0.43
4. The volume of cake per day is:
Vol of cake = 8.93 m3
5. Volume of filtrate per day:
Vol of filtrate = 75.52 m3
6.
Area of filtrate required for a day:
For a filtration at constant rate
t
V
-P

= 1 day
= 75.52 m3
= 40 000 N/m2
= 1  10-3 Ns/m2

=
t
r 
V
 2
V A (P )
(D.4.2)
Volume of cake
8.93

 0.12
Volume of filtrate 75.52
therefore the area for filtration needed per day
A=
r 
V2 
(P )t
4.05  109  1 103  0.12
75.522  261m 2
(40000)  1
7. Drum specifications
With 0.25 rpm, it takes 4 minutes to complete one round. 37.5 % of the wheel is
submerged in the feed suspension. Hence to calculate the drum filter area:
1440
 360 rotations
4
261
 0.73 m 2
Area of drum required per rotation =
360
0.73
Total drum area =
 1.94 m 2
0.375
Number of rotations per day =
Drum dimensions, with L = 2D
Area = 2D2
CPD 3264
D-29
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Area
1.94

 0.6 m
2
2
D
=
L
= 2  D = 1.2 m
(D.4.3)
8. Cake thickness
Cake thickness, l =
V
A

0.12  75.52
 0.034m
261
(D.4.4)
9. Pump requirement
Pumps are needed to create vacuum in the filter and also needed to pump the filtrate.
Drum
Filter
L+S
S
Vacuum
pump
Vacuum
receiver
Filtrate
pump
L
Fig D.4.1 Pumping device
A simple calculation for the pump duty is calculated below. The pumps are assumed to be
centrifugal.
Power 
P  Q p
(D.4.5)
Pump efficiency
Efficiency of the pump is assumed as 50 %. [1]
Filtrate pump
Flowrate through pump = 75.52 m3/day
Power =
40000  75.52
 6  106 J / day
0.5
= 0.07 kW
Vacuum pump
CPD 3264
D-30
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
To create the required vacuum pressure, some air is taken in from the atmosphere.
Ratio of air to filtrate = 1
Flowrate through pump = 75.52 m3/day
Power =
40000  75.52
 6  106 J / day
0.5
= 0.07 kW
Below is the summary for the three main filters on the plant.
Table D.4.2: Summary of Drum filters
Specifications
Specific resistance, r, m-2
Specific surface, S, m-1
Vol of cake, m3/day
Vol of filtrate, m3/day
Vol of washing water, m3/day
Volume of cake deposited by unit
volume of filtrate, v
Area of filtrate per day, A, m2
Rotations per day
Surface area of filtrate,m2
Total area of drum, m2
Filter diameter, D, m
Filter length, L, m
Cake thickness, l, m
Filtrate pump, kW
Vacuum pump, kW
S301
4.05109
12000
8.93
75.52
0.12
S302
1.01  1011
60000
8.59
47.48
0.18
S401
4.05  1011
120000
3.61
100.93
10.5
0.04
261
360
0.73
1.94
0.6
1.2
0.034
0.070
0.070
1020
360
2.82
7.53
1.1
2.2
0.008
0.044
0.044
1920
288
6.67
17.80
1.7
3.4
0.002
0.093
0.093
A simplified diagram of the drum filter can be seen on Fig. D.4.2:
CPD 3264
D-31
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
S301 & S302
S401
Air inlet for
filtrate
discharge
Dewatering zone
Washing
zone
Dewatering
zone
Air inlet
for filtrate
discharge
Cake
Discharge
scraper
Cake
Discharge
scraper
Filtrate
discharge
Filtrate
discharge
Figure D.4.2 : Drum filter with respective zones
D.4.b Comparison to Aspen Plus simulation
A simulation to determine the filter size is also carried out in Aspen Plus as a double check. The
same parameters and assumptions are used. Below are the results of the simulation.
Table D.4.3 Aspen Simulation check
Diameter, m
Length, m
S301
0.6
1.2
S301 Aspen
0.6
1.20
S302
1.1
2.2
S302 Aspen
1.0
2.0
S401
1.7
3.4
S401 Aspen
1.65
3.3
The results are reasonably similar. The calculated results are acceptable.
List of Symbol :
 = viscosity of filtrate
 = volume of cake deposited by unit volume of
filtrate
L = length of filter
D = diameter of filter
Qp = Flowrate through the pump, m3/day
r = specific resistance, m-2
S = Specific surface of particles, m-1
e = voidage, void fraction
t = time of filtration, day
V = Volume of filtrate
A = Area of filtration
-P = Pressure drop across the filter
Reference:
1 Sinnott “Coulson & Richardson Vol 6”, 2nd Edition p 478
CPD 3264
D-32
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
D.5.a A201 Shrimp Shell Crusher Design
The shrimp shells are initially crushed in order to reach a larger surface area and uniformed
particle size that will eventually determine the size and quality of the product. It is assumed that
the shrimp shells have an average length of 3 cm, for which the shells will be crushed to
approximately 1 mm (16 mesh) in size.
D.5.a.a Energy Utilization for size reduction
It is impossible to estimate accurately the amount of energy required in order to effect a size
reduction of a given material, but a number of empirical laws have been put forward. For our feed
size range, Bond Law is implemented. This law is usually used for feed particle sizes that range
from 5  10-2 m to 1  10-6 m [1].
Bond dictates:
 1
1 

E  100 Ei 

 x
x1 
 2
(D.5.1)
where E is the energy consumption, kWh/ton
Ei is the Bond work index, kWh/ton
x1 is the feed particle size, mm
x2 is the product particle size, mm
From Perry’s Chemical Engineering Handbook Table 20-4, p. 20-14, Ei is estimated to be 13.81
kWh/ton for an average for any material. x1 and x2 are 30 mm and 1 mm respectively. Therefore
E, the energy requirement is calculated as;
 1
1
E  100 Ei 

 x
x1
 2
 1
E  100  13.81

 1
E  1128.9 kWh / ton




1 

30 
Since the flowrates of solids is 20.7 tonnes/day, the energy requirement in kWh;
E  1128.9 
20.7
 973.6 kWh
24
D.5.a.b Equipment design
Before the size of the mill is determined, the residence time distribution is estimated. The mean
residence time is estimated at 22 min[2]. This value is based on the example given in Perry’s
Chemical Engineering Handbook.
1. Amount of feed in the vessel = 30
tonnes
1

 22 min  0.458 tonnes
day
24  60
2. Density of the feed = 1165 kg/m3
3. Volume of feed in the vessel = 0.458 
1000
 0.39 m3
1165
CPD 3264
D-34
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
4. Assume that the vessel is divided into 3 parts where each part consists of different ball
sizes. The ball size is determined by the size of the feed. It is assumed that the degree of
reduction for each section is in the order of 3. Hence, the feed size in Zone 1,2 and 3 are
30 mm, 10 mm and 3 mm respectively. The ball is estimated from literature [3]. The
formula obtain is:
0.469
(D.5.2)
Ball size  19.931 Feed size 
5. The proportions of the feed in each zone is also estimated. It is assumed that the feed is
85 % in zone 1, 10 % and 5 % in zone 2 and 3 respectively. Hence the residence time for
each zone is :
85
 22 min = 18.7 min
100
10
 22 min = 2.2 min
Residense time zone 2 =
100
5
 22 min = 1.1 min
Residense time zone 1 =
100
Residense time zone 1 =
6. The ratio of materials to be crushed over the volume of balls is inversely proportional to
the size of the balls. The larger the balls the less is required for each unit of feed. Again
from literature [3], the ratio of balls to material is estimated and the volume of balls is
determined.
Table D.5.2 : Ball size and volume
Ball size
Zone 1
98
Zone 2
59
Zone 3
35
Vol Ball: Vol Feed
35
150
200
Vol of Balls, m3
11.75
6
4
Total volume of balls = 21.75 m3
7. Percentage of balls in the vessel = 50 %
8. Total volume of vessel =
21.75
 43.5 m3
0.5
9. The volume of the cylinder and cone is then estimated by assuming that all balls in zone
1 and half the balls in zone 2 are resident in the cylinder while the other half of ball in
zone 2 and the balls in zone 3 are resident in the conical section.
Vol of balls (zone 1)
1
Vol of balls (zone 2)

Percentage of balls in vessel 2 Percentage of balls in vessel
11.75 1 6
Volume of cylinder =

 30 m3
0.5 2 0.5
Volume of conical section = Volume of vessel - Volume of cylinder
Volume of cylinder =
Volume of conical section = 43.5 - 30 = 13.5 m3
10. Design of cylindrical section
Ratio of Height to Diameter = 1
CPD 3264
D-35
(D.5.3)
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Diameter of cylinder =
Vol of cylinder  4


30  4

 3.4m
Height of cylinder = 3.4 m
Critical rotation speed is defined as =
42.3
D

42.3
3.4
 23 rpm
Normal percentage from critical speed = 65 %
Rotational speed of cylindrical = 0.65  23 = 15 rpm
11. Design of conical section
Diameter of base of cone,D1 = Diameter of cylinder = 3.4 m
Diameter of top of cone D2 = 0.5 Diameter of base of cone
Volume of conical section, Vcon =
1
1
 D12 H1   D2 2  H1  H 2 
12
12

D3 
1
 H1  D12  D2 2  2 
12
D1 

(D.5.4)
(D.5.5)
Vcon  12

   D12  D2 2 
Height of H1 =

D23 

D1 
13.5  12

   3.42  1.7 2 

1.73 

3.4 
h2
h1
 5.4m
D2
D1
D
1.7
Height of H2 = 2 H1 
5.4  2.7m
D1
3.4
Height of conical section, H1 – H2 = 5.4 – 2.7 = 2.7 m
Total length of vessel = 2.7 + 3.4 = 6.1 m
Final design of the vessel can be seen on Fig D.5.1.
CPD 3264
D-36
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
3.4 m
3.4 m
2.7 m
15 rpm
1.7 m
6.1 m
Fig D.5.1 A201 Shrimp Crusher dimensions
D.5.b A401 Chitosan Grinder
Basically the same procedure for selection and calculation methods are used for the A201
shrimp shell crusher design. Bond’s Law is again implemented for energy utilization
calculations.
 1
1 
E  100 Ei 


 x
x1 
 2
where Ei = 13.81 kWh/ton
x1 = 0.1 mm
x2 = 0.05 mm
E = 1810 kWh/ton
Amount of solids to be crushed = 1.78 ton/day = 0.0742 ton/hr
E = 1810  0.0742 = 134.8 kWh
CPD 3264
D-37
(D.5.6)
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
D.5.b.a Vessel design
1. Solids from dryer = 2.32 ton/day
2. With 70 % solids from the dryer that needs to be crushed and 10 % of the crushed
solids needs to be recrushed.
Solids needed to be crushed = 2.32  0.7  2.32  0.7  0.1  1.79ton / day
Density of feed = 600 kg/m3
Volume of solids =
1790
 2.98m3 / day
600
3. With the residence time of 10 minutes,
Solids in the vessel =
2.98
 10  0.021m3
24  60
4. Ratio of solids to ball volume = 250
Volume of balls in vessel = 0.021  250 = 5.2 m3
5.
With the assumptions that the vessel is 50 % filled with balls;
Volume of vessel = 5.2/0.5 = 10.4 m3
6. Vessel dimensions
The ratio of diameter to height is unity
Diameter, D =
3
4V


Height, H = D = 2.4 m
3
4  10.4

 2.4m
Critical rotation speed is defined as =
42.3
D

42.3
2.4
 27.5 rpm
Normal percentage from critical speed = 65 %
Rotational speed of cylindrical = 0.65  28 = 18 rpm
List of symbol :
E
Ei
x1
= energy consumption, kWh/ton
= Bond work index, kWh/ton
= feed particle size, mm
x2
D
H
= product particle size, mm
= diameter, m
= height, m
Reference:
[1]M. Rhodes, Introduction to Particle Technology, 2000, p. 248
[2] Robert H. Perry, “Perry’s Chemical Engineers’ Handbook, 7th ed., 1998, Chapter 20
[3] Synott R.K., Coulson and Richardson Chemical Engineering , 1999, Vol. 2, p. 83
CPD 3264
D-38
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
D.6.a C201 Ethanol evaporator
D.6.a.a Design of the vessel
The vessel consists of two parts, the vessel for evaporation and the heat exchanger to boil off the
solvent. Operating conditions are 87 C at 1 atm.
Vessel for evaporation
Solvent recovery vapour:
997.3 kg/day
Feed: 1595 kg/day
Liquid slurry: 597.7 kg/day
Fig. D.6.1 : Mass balance over evaporator
The column diameter is based on the velocity of the vapour. Based on Souders and Brown
equation, Lowenstein (1961), the maximum allowable superficial vapour velocity, umax[1]:
u
max
 (0.171l 2  0.27l  0.047) (    )  
L
v
v
(D.6.1)
where, l = vapour space, m
L = liquid phase density, kg/m3
v = vapour phase density, kg/m3
Assuming that l = 0.5 m, and with L = 918 kg/m3 and v = 1.16;
umax  (0.171  0.52  0.27  0.5  0.047) (918  1.16)  918  1.4m / s
The minimum column diameter can be calculated as:
Dc 
4Vw

v umax
4(997.3 / 86400)
 0.1m
 1.16 1.4
(D.6.2)
where, Vw = vapour flowrate, kg/s
This diameter is physically to small for a vessel. Hence, 10 % of the vapour velocity is taken.
u = 1.4  0.1 = 0.14 m/s
CPD 3264
D-40
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Therefore the column diameter is:
Dc 
4Vw

v u
4(997.3 / 86400)
 0.3m
 1.16  0.14
(D.6.3)
Taking the height of column as 2Dc, H = 0.6 m.
Liquid height is then calculated as: H – l = 0.6 – 0.5 = 0.1 m
Heat Exchanger Unit
Feed in
Feed out
T1 = 77 C
T2 = 87 C
Steam out
Steam in
t2 = 133.5 C
T1 = 190 C
Fig D.6.2: Heat Exchange diagram
The heat exchange is in countercurrent flow. Feed enters the vessel at 77 C and leaves as vapour
and slurry at 87 C. Steam used is low pressure steam at 3 bara. Description of the steam
properties are listed on Table D.6.1. Steam is superheated at 190 C.
Low pressure
Temperature of evaporation
Density of saturated liquid
Density of evaporate
Density of vapour
Enthalpy of saturated liquid
Enthalpy of evaporate
Enthalpy of saturated vapour
Specific heat capacity, Cp
Viscosity of steam[3]
a.
b.
Table D.6.1: Steam properties[2]
3 bar
133.5 C
931.97 kg/m3
1.66 kg/m3
1.65 kg/m3
561.4 kJ/kg
2163.3 kJ/kg
2724.7 kJ/kg
2.135 kJ/kg C
1.3  10-5 Ns/m2
The duty of the evaporator is obtained from ASPEN PLUS simulation. Heat duty is
14090 W.
The flow rate of steam required is calculated from;
Q = MCpT + Mhev
(D.6.4)
where, Q = duty, kJ/s
M = Mass flowrate of steam, kg/s
Cp = Specific heat capacity, kJ/kg C
T = Temperature difference of steam in and out, C
hev = Enthalpy of evaporate, kJ/kg
CPD 3264
D-41
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
therefore, M =
Q
14.09

 6.2  103 kg / s
C p T  hev 2.135  (190  133.5)  2163.3
Volumetric flow rate of steam =
c.
Mass flowrate of steam 6.2  103
m3

 3.7  103
s
Density of steam
1.65
Heat exchanger design
Following the design procedure in Coulson and Richardson Vol 6 for heat
exchangers, an iterative calculation is carried out. Steam is introduced in the tube side
while the shell side is filled with the benzoic acid/solvent mixture.
1. Estimate the inner tube diameter, di of 12 mm with 2 mm wall thickness.
Outside diameter, do is therefore 16 mm.
 di 2
2. Tube inner cross sectional area, Across =
 1.13  104 m 2
4
3. Guess for U, the overall heat transfer coefficient as 500 W/m2 C (for steamorganic solvent system)
4. Calculate the amount of tubes required.
Q  UATm
(D.6.5)
where, Q = Heat exchanger duty, W or J/s
U = Overall heat transfer coefficient, W/m2 C
A = Area required for heat transfer, m2
Tm = log mean temperature difference
Calculate Tm
Tm = FtTlm
Tlm =
(D.6.6)
(T1  t2 )  (T2  t1 ) (77  133.5)  (87  190)

 77.43C
(T1  t2 )
(77  133.5)
ln
ln
(87  190)
(T2  t1 )
(D.6.7)
The heat exchanger is only a 1 tube pass to 1 shell pass. Hence, a correction
factor, Ft is not required. Ft = 1.0
Tm = 1  77.43 = 77.43 C
Area required, A =
Q
14090

 0.364 m2
U Tm 500  77.43
With number of passes as 1, and the length of tubes, L as 1.0 m the amount of
area provided by 1 tube:
Area provided by one tube =  d o L  (no. of passes) =   0.016 1.0  1=0.05m 2
CPD 3264
D-42
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Number of tubes required, Nt =
0.364
 7.3  8 tubes
0.05
Area provided by tubes = 8  0.05 = 0.40 m2
Tube velocity, ut =
Volumetric flowrate of steam
3.7  103
m

 4.1
4
s
A cross  no. of tubes
1.13  10  8
5. Shell inside diameter
(D.6.8)
Bundle diameter, Db  d o ( N t / K1 )1/ n
where fore 1 pass tube exchanger with square pitch, K1 = 0.215, n1 = 2.207
1
Db = 0.02(8/0.215)1/2.207 = 82 mm
Take a distance of 5 mm shell from bundle diameter, inner shell diameter, Ds =
92 mm.
6. Tube side pressure drop
Tube side pressure drop is defined as:

Pt  N p 8 j f

 L   
 

 di   w 
m
 u 2
 2.5 t
 2
(D.6.9)
where, Pt = tube side pressure drop, N/m2 (Pa)
Np = number of tube side passes
ut = tube side velocity, m/s
L = length of one tube, m
 = viscosity of tube side material, Ns/m2
w = viscosity at the tube side wall due to temperature difference, Ns/m2
jf = Friction factor
The viscosity difference can be ignored. The friction factor can be determined from
Reynolds’ Number and from the chart provided in [4];
Retube =
 ut di 466.8  4.1  0.012

 45600
5.1  104

(D.6.10)
where density,  and viscosity,  are averaged from saturated steam and
saturated liquid steam.
 = (1.65 + 9.32)/2 = 466.8 kg/m3 and
 = (1.3  10-5 + 1  10-3)/2 = 5.1  10-4 Ns/m2
jf = 3.5  10-3
CPD 3264
D-43
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells

 466.8  4.12
N
 1.0   m
Pt  1 8  3.5  103 
1

2.5
 19200 2




2
m
 0.012 


Normally, maximum pressure drop for operating conditions at 3 bara is 0.4 
system gauge pressure. Hence, maximum pressure drop is 0.8 bara. From the
results obtained, tube side pressure drop is within specifications (0.2 bara).
7. Shell side pressure drop
Employing Kern’s Method;
 D   L  u 2   
Ps  8 j f  s    s 

 d e   lB  2   w 
0.14
(D.6.11)
where, Ps = Shell side pressure drop, N/m2
us = shell side linear velocity, m/s
L = length of one tube, m
 = viscosity of shell side material, Ns/m2
w = viscosity at the shell side wall due to temperature difference, Ns/m2
jf = Friction factor
lB = baffle spacing
Procedure:
a. Calculate area for cross-flow, As for the hypothetical row of tubes at the shell
equator, given by:
As 
( pt  d o ) Ds lB
pt
(D.6.12)
where, pt = tube pitch = 1.25  do = 0.02 m
taking Ds/lB =4, lB = 0.092/4 = 0.023 m
As = 4.2  10-4 m2
b. Calculate the shell side mass velocity, Gs and the linear velocity, us:
Gs =
WS
,
AS
(D.6.13)
where Ws = fluid flowrate on the shell side, kg/s = 1.88  10-2 kg/s
Gs = 1.88  10-2/4.2  10-4 = 44.14 kg/m2s
us = Gs/ = 44.14/875 = 5  10-2 m/s
Density of flow taken from ASPEN PLUS.
CPD 3264
D-44
(D.6.14)
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
c. Calculate the shell side equivalent diameter, de for a square pitch
arrangement.
A square pitch is chosen for its ease for cleaning.
 p 2   d o2
4 t
4
de  
 do



 0.022  0.022  
4

4

  1.58  102 m
0.02
(D.6.15)
d. Shell side Reshell, is given by:
Reshell =
GS d e


44.14  1.58  102
 700
1  103
(D.6.16)
friction factor from Reshell based on [5] = 0.095
(Baffle cutting of 15 %)
e. Shell side pressure drop
Ignoring temperature effects on viscosity change;
2
0.14
 0.092  1  875  0.05
Ps  8  0.095 
1  215 N / m2

2 
2
 1.58  10  0.023 
Shell side pressure drop is insignificant.
8. Check guessed U
Finally, U which was guessed in the beginning needs to be assessed if the value
is reasonable.
Overall heat transfer coefficient based on the outside area of a tube is:
d 
d o ln  o 
1
1
1
 di   d o 1  d o 1
(D.6.17)
 

U o ho h od
di hid d i hi
2k w
where UO = the overall coefficient based on the outside area of a tube, W/m2 C
ho = outside fluid film coefficient, W/m2 C
hi = inside fluid film coefficient, W/m2 C
hod = outside dirt coefficient (fouling factor), W/m2 C
hid = inside dirt coefficient, W/m2 C
kw = thermal conductivity of the tube wall material, W/m C
di = tube inside diameter, m
do = tube outside diameter, m
From Coulson and Richardson, Vol 6, Chapter 12, the following are given:
hod = 5000 W/m2 C (organic liquids)
CPD 3264
D-45
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
hid = 10000 W/m2 C (Steam oil free)
kw = 45 (steel)
Calculation of hi and ho:
Tube side film coefficient:
0.33
jh tube Retube Prtube
k f tube   
hi 


di
 w 
0.14
(D.6.18)
where, jh-tube = heat transfer factor
Retube = Reynolds number in tube
Prtube = Prandtl number in tube
kf-tube = fluid thermal conductivity in tube, W/m C
jh-tube is based on Retube. Retube = 45600, according to [6] jh-tube = 3.5 10-3
From [7], kf-tube = 0.6 W/m C
C 
2130  5  104
Pr = P 
 1.8
(D.6.19)
0.6
k f tube
Ignoring temperature dependence on viscosity change,
h i
3.5  103  45600  1.80.33
W
 9697.6 2
0.012
mC
(D.6.20)
Shell side film coefficient:
0.33
jh  shell Re shell Prshell
k f  shell   
ho 


di
 w 
0.14
(D.6.21)
where, jh-tube = heat transfer factor
Retube = Reynolds number in tube
Prtube = Prandtl number in tube
kf-tube = fluid thermal conductivity in tube, W/m C
jh-shell is based on Reshell. Reshell = 700, according to [8] jh-shell = 0.022
From [7], kf-shell = 0.3 W/m C, taking the properties of water,
C 
4200  1  103
Pr = P 
 14
(D.6.22)
0.3
k f  shell
Ignoring temperature dependence on viscosity change,
h o
0.022  700  140.33
W
 696 2
0.012
mC
CPD 3264
D-46
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
d
d o ln  o
1
1
1
 di
From:
 

2k w
U o ho h od


  do 1  do 1
di hid di hi
 0.016 
0.016ln 

1
1
1
 0.012   0.016 1  0.016 1



U o 696 5000
2  45
0.012 10000 0.012 9697.6
Uo = 510.5 W/m2 C
The guessed or estimated U of 500 W/m2 C is acceptable.
0.3 m
Solvent recovery
vapour
0.6 m
Steam in
Benzoic acid
slurry
1.0 m
Feed in
Steam out
0.1 m
0.4 m
Fig D.6.3: Forced-circulation evaporator with dimensions
CPD 3264
D-47
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
D.6.b Heat Integration and Heat Exchanger
D.6.b.a Design Heat exchanger for Sterilization
Table D.6.2 Composition of Stream <103> and <107>
STREAM Nr.
:
COMP
Ammonium sulphate
Glucose
Water
103
tonnes/day
8.777
39.221
Total
107
tonnes/day
0.526
13.074
47.997
Input
25°C
13.599
Output
40°C
Sterilization process
140°C, 3 bar, 2’min
Figure D.6.4 Outline of sterilization process
Sample calculation : Sterilization of glucose feed stream
Table D.6.3 Enthalphy profile of stream <103>
T
[°C]
25
25
40
40
90
125
140
P
[kPa]
101.3
261.8
261.8
101.3
261.8
261.8
261.8
H
[Watt]
-7936832
-7936832
-7907064
-7907064
-7801572
-7720736
-7683962
Output temperature is not necessary to be 25°C as the fermentation will be conducted at 40°C.
Setting T approach = 15°C, stream composite were plot as figure D.6.5.
160
145
130
T©
115
cold
100
hot
85
70
55
40
25
10
0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1000000
H (kJ/h)
Figure D.6.5 Stream Composite of stream 103 - 104
CPD 3264
D-48
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
From figure D.6.5 we see that it is only possible to preheat the feed stream until 120°C. After that
steam heating until 140° is required. And it is only possible to cool down the output until 43°C.
No further cooling will be conducted to cool down the stream until 40°C, to minimize number of
heat exchanger. But, higher cooling duty in the fermentor will be required, instead. Final
sterilization system design configuration is presented in figure D.6.6.
140oC
43°C
Steam,
HE 1
25oC
Holding :
2 min
HE 2
120°C
140oC
Figure D.6.6 Sterilization system design
For further heating,
Steam requirement =
Q = Hcold 140°C – Hhot 120°C = 132387 kJ/h
steam = 2013 kJ/kg (medium pressure steam, 10 bar at 180°C)
msteam =
Q
l steam
= 66 kg/h
(D.6.23)
steam = heat of condenstation of steam
msteam = mass flow of steam
Q
= heat duty
Dimensioning plate heat exchanger
Calculation were based on Number of Transfer Unit approaches [9].
Number of Tansfer Unit (NTU) =  =
ti - to
UA
=
D tm
mCp
(D.6.24)
ti = input temperature of fluid
to = ouput temperature of fluid
tm = mean logaritmic temperature difference = tLMTD x correction factor (F)
U = overall heat transfer coefficient
A = heat transfer area
m = mass flow rate of fluid
Cp = specific heat of fluid
As the correction factor were determined from NTU and type of pass system used, iterative
calculation method will be required here.
CPD 3264
D-49
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HE 1
Tin (°C)
Tout (°C)
Q (kJ/h)
mCp (kJ/h°C)
Cold Stream
25
125
Hot stream
140
43.2
777946.3
216.1
7915.9
First assumption F = 1  NTU = 6.868
For NTU = 6.868 and 4/4 pass system : F = 0.88 (table in [7])
Therefore NTU = 6.648
Since glucose % in stream is realtively small, we assumed the system to be water - water system
and U for water-water system were used in this calculation. U was set to be 6550 W/m2°C
(usually between 5700 – 7400 W/m2°C [7]).
From equation X.1.1 we got area needed = 2.31 m2.
Using plate with area = 0.1 m2, number of plate needed will be 48.
HE 2
Tin (°C)
Tout (°C)
Q (kJ/h)
mCp (kJ/h°C)
Cold Stream
125
140
Hot stream
180
180
132387.0
36.8
7915.9
First assumption F = 1  NTU = 0.318
For small NTU, F = 1
Therefore NTU = 0.318
Since glucose % in stream is realtively small, we assumed the system to be steam - water system
and U for steam-water system were used in this calculation. U was set to be 6550 W/m2°C
(usually between 5700 – 7400 W/m2°C [7]).
From equation X.1.1 we got area needed = 0.12 m2.
Using plate with area = 0.1 m2, number of plate needed will be 4.
D.6.b.b Design Heat Exchanger Network for Ethanol Evaporation System
Table D.6.4 Enthalpy profile for stream <206> and <211>
Cold
Hot
Stream
no.
<206>
<208>
<208>
<211>
H
T
m
[Kwatt]
[ton/day]
[C]
-138.2
25.71
1.595
-134.7
77.00
1.595
-79.1*
87.22
0.997
-92.5*
87.22
0.997
-94.5
35.00
0.997
* condensation process
CPD 3264
D-50
Cp average
[kJ/kgC]
3.636
mCp
[kJ/hC]
241.61
1,157
3.366
48,088
139.88
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
T(oC)
T approach = 15C
100
90
80
70
60
50
40
30
20
10
0
hot
cold
0
10000
20000
30000
40000
50000
60000
H (kJ/h)
Figure D.6.7 Grand Composite for Heat Exchanger Network
in Ethanol Evaporation System
From figure D.6.7, it was shown that most of the heat available in stream <211> is from its
condensation process. Maximum temperature of feed (preheated) can be achieved is 72.22C.
And further condensation for stream <211> is still required. Table D.6.5 shows detailed
calculation of heat duty for each heat exchanger.
Table D.6.5 Detailed calculation for Heat Exchanger Duty
HE 1
H1
C1
Tin
Tout
87.22
72.22
Q check
87.22
25.71
11236
total heat available in H1
total heat required to heat C1 (until T out)
55392kJ/h
11236kJ/h
additional cooling duty required
additional heating duty required
44156kJ/h
1156kJ/h
12.27kWatt
0.32kWatt
Since heat duty for each heat exchanger is quite low, type of heat exchanger used is double pipe
heat exchanger.
Dimensioning heat exchanger.
LP steam
0.32 kW
25oC
72.2oC
77oC
E201
87.2oC
87.2oC
E202
35oC
12.27 kW
E203
Cooling water
Figure D.6.8 Heat Exchanger Network Design for Ethanol Evaporation System
CPD 3264
D-51
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Q  m  Cp  T  U  A  TLMTD  F
(D.6.25)
Q = heat duty
M =mass flow
Cp=specific heat
T=delta temperature
TLMTD =logaritmic mean temperature different
U=overall heat transfer coefficient
A=heat exchanger area
F=correction factor
for double pipe heat exchanger, F = 1
Table D.6.6 Dimensioning E201
Tin [C]
Hot (LP steam)
Cold
Heat duty (Q) [kJ/h]
Heat duty (Q) [kW]
TLMTD [C]
133.5
72.22
1155.7
0.32
58.86
Tout [C]
133.5
77
(from table D.6.8)
(from table D.6.8)
As ethanol is an organic solvent, than we can take the overall heat transfer coefficient for steam
vs organic solvent system, which is usually range between 500 – 1000 W/m2C [10]. For this case
the U used is 750 W/m2C. Therefore the area required will be,
A
Q
0.32  1000

 0.727  10-2 m 2
U  TLMTD  F 750  58.86
The hotter stream will be placed inside.
Table D.6.7 Dimensioning E202
Tin [C]
Hot (top C201)
Cold (feed)
Heat duty (Q) [kJ/h]
Heat duty (Q) [kW]
TLMTD [C]
87.22
25
11236
3.12
33.19
Tout [C]
87.22
72.22
(from table D.6.8)
(from table D.6.8)
As ethanol is an organic solvent, than we can take the overall heat transfer coefficient for organic
solvent vs organic solvent system, which is usually range between 100 – 300 W/m2C [10]. For
this case the U used is 200 W/m2C. Therefore the area required will be,
A
Q
3.12  1000

 0.470 m 2
U  TLMTD  F 200  33.19
The hotter stream will be placed inside.
CPD 3264
D-52
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.6.8 Dimensioning E203
Tin [C]
87.22
20
44156.4
12.266
33.19
Hot (top C201)
Cold (feed)
Heat duty (Q) [kJ/h]
Heat duty (Q) [kW]
TLMTD [C]
Tout [C]
35
25
(from table D.6.8)
(from table D.6.8)
As ethanol is an organic solvent, than we can take the overall heat transfer coefficient for organic
solvent vs water system, which is usually range between 250 – 750 W/m2C [10]. For this case
the U used is 500 W/m2C. Therefore the area required will be,
A
Q
12.27 1000

 0.739 m 2
U  TLMTD  F 500  33.19
The hotter stream will be placed inside.
D.6.b.c Design Heat Exchanger Network for Chitin Deacetylation System
Table D.6.9 Enthalpy profile for stream <404> and <408>
Stream
no.
<404>
<406>
<408>
<410>
Cold
Hot
H
[Kwatt]
-10515.5
-10358.4
-10373.8
-10520.5
T
[C]
28.04
121.00
121.00
35.00
m
[ton/day]
77.354
77.354
77.354
77.354
Cp average
[kJ/kgC]
1.888
mCp
[kJ/hC]
6085.18
1.906
6142.06
T approach = 15C
140
120
T (oC)
100
80
hot
cold
60
40
20
0
0
100000
200000
300000
400000
500000
600000
700000
H (kJ/h)
Figure D.6.9 Grand Composite for Heat Exchanger Network in Chitin Deacetylation
System
Detailed calculation for heat exchanger duty is presented in Table D.6.10.
CPD 3264
D-53
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.6.10 Detailed calculation for Heat Exchanger Duty
Tin
HE 2
H2
C2
Tout
121.00
106.00
43.76
28.04
Q check
474394kJ/h
474394kJ/h
total heat available in H2
total heat required to heat C2 (until T out)
additional cooling duty required
additional heating duty required
528217kJ/h
474394kJ/h
146.73kWatt
131.78kWatt
53823kJ/h
91278kJ/h
14.95kWatt
25.35kWatt
for shell and tube heat exchanger, correction factor is calculated from Z, , and graphs in
reference [7].
Z
Tcold
Thot
D.6.26

Tcold
Thot in  Tcold in
D.6.27
Table D.6.11 Dimensioning E401
Hot (R401 output)
Cold (R401 feed)
Heat duty (Q) [kJ/h]
Heat duty (Q) [kW]
TLMTD [C]
Z

F
Tin [C]
121
28.04
474393.9
131.8
15.4
0.9907
0.8386
0.9
0.8
Tout [C]
43.8
106
(from table D.6.10)
(from table D.6.10)
4/8
3/6
From reference [10] we approximate the overall heat transfer coefficient to be 1750 W/m2C.
Since the correction factor is not much different from 3/6 and 4/8, we chosed 3 pass in shells and
6 pass in tubes shell and tube heat exchanger system. Therefore the area required will be,
A
Q
131.8  1000

 6.128 m 2
U  TLMTD  F 1750  15.4  0.8
The hotter stream will be placed in tubes.
CPD 3264
D-54
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.6.12 Dimensioning E402
Tin [C]
Hot (LP steam)
Cold
Heat duty (Q) [kJ/h]
Heat duty (Q) [kW]
TLMTD [C]
Z

F
133.5
106
91278
25.355
19
0
0.545
1
1
Tout [C]
133.5
121
(from table D.6.10)
(from table D.6.10)
1/2
2/4
From reference [10] we approximate the overall heat transfer coefficient to be 1250 W/m2C.
Therefore the area required will be,
A
Q
25.36  1000

 1.066 m 2
U  TLMTD  F 1250  19  1
The hotter stream will be placed in tubes.
Table D.6.13 Dimensioning E403
Hot (R401 output)
Cold (R401 feed)
Heat duty (Q) [kJ/h]
Heat duty (Q) [kW]
TLMTD [C]
Z

F
Tin [C]
43.8
20
53823.3
14.9
15.9
0.352
0.370
0.96
0.96
Tout [C]
35
25
(from table D.6.10)
(from table D.6.10)
1/2
2/4
From reference [10] we approximate the overall heat transfer coefficient to be 700 W/m2C.
Therefore the area required will be,
A
Q
14.9  1000

 1.398 m 2
U  TLMTD  F 700  15.9  0.96
The hotter stream will be placed in tubes.
CPD 3264
D-55
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
List of Symbols :
Ps = Shell side pressure drop, N/m2
Pt = tube side pressure drop, N/m2 (Pa)
Q = heat duty
Retube = Reynolds number in tube
A = Area required for heat transfer, m2
Across = Tube inner cross sectional area
Cp = Specific heat capacity, kJ/kg C
di = tube inside diameter, m
do = tube outside diameter, m
do = Outside diameter
Db = bundle diameter
F=correction factor
hev = Enthalpy of evaporate, kJ/kg
ho = outside fluid film coefficient, W/m2 C
hi = inside fluid film coefficient, W/m2 C
hod = outside dirt coefficient (fouling factor),
W/m2 C
hid = inside dirt coefficient, W/m2 C
jf = Friction factor
jh-tube = heat transfer factor
kf-tube = fluid thermal conductivity in tube, W/m
C
kw
= thermal conductivity of the tube wall
material, W/m C
l = vapour space, m
lB = baffle spacing
L = length of one tube, m
m = mass flow rate of fluid
msteam = mass flow of steam
M =mass flow
M = Mass flowrate of steam, kg/s
Nt = Number of tubes required
Np = number of tube side passes
pt = tube pitch
Prtube = Prandtl number in tube
ti = input temperature of fluid
to = ouput temperature of fluid
T=delta temperature
T = Temperature difference of steam in and
out, C
TLMTD =logaritmic mean temperature different
tm = mean logaritmic temperature difference =
tLMTD x correction factor (F)
us = shell side linear velocity, m/s
ut = tube side velocity, m/s
u = vapour velocity
umax = max. allowable superficial vapour velocity
U = Overall heat transfer coefficient, W/m2 C
UO = the overall coefficient based on the outside
area of a tube, W/m2 C
Vw = vapour flowrate, kg/s
Ws = fluid flowrate on the shell side, kg/s
 = viscosity of tube side material, Ns/m2
w = viscosity at the tube side wall due to
temperature difference, Ns/m2
steam
= heat of condenstation of steam
L = liquid phase density, kg/m3
v = vapour phase density, kg/m3
Reference:
[1] Coulson and Richardson, “Chemical Engineering Vol 6”, 2nd Edition, p 499
[2] www.connel.com/cgi-bin/steam1.pl
[3] pump.net/otherdata/viscsteamwater.htm
[4] Coulson and Richardson, “Chemical Engineering Vol 6”, 3rd Edition, p 667
[5] Coulson and Richardson, “Chemical Engineering Vol 6”, 3rd Edition, p 673
[6] Coulson and Richardson, “Chemical Engineering Vol 6”, 3rd Edition, p 665
[7] Perry’s Chemical Engineering Handbook, 7th Edition
[8] Coulson and Richardson, “Chemical Engineering Vol 6”, 3rd Edition, p 672
[9] Campbell, J.M. gas Conditioning and Processing Vol. 2. 1998 p:141-142
[10]Coulson and Richardson, “Chemical Engineering Vol 6”, 3rd Edition p:566-569
CPD 3264
D-56
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
D.7.a Benzoic acid Extractor (S201)
D.7.a.a Number of stages
In countercurrent washing, if the amount of solvent removed with the insoluble solid in the
underflow is constant, and independent of the concentration of the solution in the tank, then the
amount of solvent leaving each tank in the underflow will be the same, and therefore the amount
of solvent in the overflow will also be the same. Hence the ratio of the solvent discharged in the
overflow to that in the underflow is constant and is taken as R, where:
R
Amount of solvent discharged in the overflow
Amount of solvent discharged in the underflow
(D.7.1)
If perfect mixing occurs in each of the tanks and solute is not preferentially adsorbed on the
surface of the solid, the concentration of the solution in the overflow will be the same as that in
the underflow. If it is assumed that all the solute has been brought into solution in the agitators,
then:
R
Amount of solute discharged in the overflow
Amount of solute discharged in the underflow
(D.7.2)
R
Amount of solution discharged in the overflow
Amount of solution discharged in the underflow
(D.7.3)
L1
L2
w1
w2
Lh+1
Lh
wh+1
wh
Ln+1
wn+1
Ln
wn
Solvent for
washing
S0
S1
Sh-1
Sh
Sn-1
Sn
W0
W1
Wh-1
Wh
Wn-1
Wn
Washing tank 1
Washing tank 2
Washing tank 3
Fig D.7.1: Series of tanks arranged for countercurrent washing
Let L1,…., Lh,…., Ln be the amounts of solute in the overflows from washing tank 1 to n,
respectively.
Let w1,…., wh,…., wn be the corresponding quantities of solution.
An amount of wn+1 of wash liquid, fed to the nth tank, contains an amount Ln+1 of solute.
CPD 3264
D-58
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Let S1,…., Sh,…. Sn and W1,…., Wh,…., Wn be the amounts of solute and solution in the
underflows from the tanks.
Let S0 and W0 be the amounts of solute and solution with the solids which are fed to the system
for washing.
Taking a solute balance on tank h:
S h 1  S h  Lh  Lh 1
(D.7.4)
Taking a balance of solution:
Wh 1  Wh  wh  wh 1
Also: R 
(D.7.5)
Lh wh

S h Wh
(D.7.6)
Taking a balance on solute for each of the tank in turn:
Tank n:
S n 1 S n  Ln  Ln 1  RS n  Ln 1  RS n  Ln 1
(D.7.7)
Tank n-1
S n  2  S n 1  Ln 1  Ln  RS n 1  RS n  R 2 S n  RLn 1
(D.7.8)
Tank 2
S1  S2  L2  L3  RS2  RS3  R n 1 Sn  R n  2 Ln 1
(D.7.9)
Tank 1
S0  S1  L1  L2  RS1  RS 2  R n S n  R n 1 Ln 1
(D.7.10)
Adding over the whole system:
S0  Sn  ( R  R 2  ....  R n ) Sn  (1  R  ...  R n 1 ) Ln 1
and rearranging gives : S0 
(D.7.11)
R n 1  1
Rn 1
Sn 
Ln 1 and ( R  1) S0  ( R n 1  1) S n  ( R n  1) Ln 1 (D.7.12)
R 1
R 1
Assume the liquid fed to the washing system is pure solvent or the amount of solute is
insignificant, Ln+1 will be equal to zero and:
Sn
R 1
 n 1
So R  1
(D.7.13)
In this equation, (Sn/S0), f represents the fraction of the solute fed to the washing system which
remains associated with the washed solids. The minimum number of washing tanks,n required is
given by:
CPD 3264
D-59
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
R 1
R n 1  1

1
log 1  ( R  1) 
f

n
1
log R
f 
(D.7.14)
(D.7.15)
Hence from the system according to mass balances:
Overflow discharge
EtOH
Solvent for washing
: 1.26 t/d
EtOH
Benzoic acid : 0.285
: 1.33 t/d
Washing tank
Underflow discharge
Solid Feed
Solids
: 20.7 t/d
Benzoic acid : 0.015 t/d
H2O
: 9 t/d
Solids
: 20.7 t/d
EtOH
: 0.005 t/d
H2O
: 9.02 t/d
Benzoic acid : 0.3 t/d
Fig D.7.2: Leaching system
Amount of solvent discharged in the overflow
Amount of solvent discharged in the underflow
Calculating R:
0.297
R
 119
0.003
R
Calculating f : f 
S n 0.003

 0.01
So
0.3

1
1 

log 1  ( R  1) 
log 1  (119  1)

f
0.01 


Therefore the minimum number of stages : n 
1 
1
log R
log119
n 1
Therefore the extraction can be carried out in one washing tank.
D.7.a.b Equipment design
In order to design the equipment, the residence time and the flowrates are measured.
D.7.a.b.a Mass Transfer in Leaching Operations
Mass transfer rates are difficult to assess because it is impossible to define the shape of the
particles through which transfer must take place. It is possible, however, to obtain an approximate
indication of the rate of transfer from the particles to the bulk of the liquid. Using the concept of a
thin film as providing the resistance to transfer, the equation for mass transfer may be written as:
CPD 3264
D-60
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
dM k ' A(cs  c)

dt
b
(D.7.16)
where A is the area of the solid-liquid interface
b is the effective thickness of the liquid film surrounding the particles
c is the concentration of the solute in the bulk of the solution at time t
cs is the concentration of the saturated solution in contact with the particles
M is the mass of solute transferred in time t
k’ is the diffusion coefficient (this is approximately equal to the liquid phase diffusivity)
Expanding the equation for a constant total volume of solution V, dM = V dc
dc k ' A(cs  c)

dt
Vb
c
t k'A
dc
co cs  c  to Vb dt
ln
cs  co k ' A

t
cs  c
Vb
(D.6.17)
To determine the residence time of solvent needed for the removal of benzoic acid, first the
residence time of solids is assumed to be 1min.
0.3 tonnes / day 1min
 2.1 104 tonnes
60  24
30 tonnes / day  1min
 0.021tonnes
2. Amount of feed in tank =
24  60
1. Amount of benzoic acid in tank =
3. Density of solids = 1165 kg/m3
4. Volume of feed in tank =
0.021tonnes  1000 kg / tonnes
 0.018m3
1165 kg / m3
5. Ratio of feed to solvent = 1 v/v
6. Volume of solvent in tank = 0.018 m3
7. Amount of solvent in tank =
0.021 830 kg / m3
 0.0148 tonnes
1000 kg / tonnes
8. Percentage of benzoic acid removal = 99 %
9. Concentration of benzoic acid in tank to be removed =
Amount of Benzoic acid
 Percentage removed
Amount of solvent
2.1 10-4
kg  solute
=
 0.99  0.014
0.0148
kg  solvent
kg  solute
 0.0133  830  11.5 3
m  solvent
10. Concentration of benzoic acid in tank at steady state
To calculate the concentration of benzoic acid at steady state in the tank, the following
equation is taken:
Flow rate of solvent =
1.33  1000
m3
 1.6
830
day
Amount of benzoic acid to be removed in a day = 0.3  0.99 = 0.297 t/d
CPD 3264
D-61
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Concentration of benzoic acid at steady state in tank =
0.297  1000
kg  benzoic acid
 185.3
1.6
m3  solvent
11. From ln
cs  co k ' A

t , the time required for the mass transfer can be calculated.
cs  c
Vb
A, the area of the solid-liquid interface is calculated by estimating the particle size of
benzoic acid to be D = 1 mm.
Volume of benzoic acid solids = 0.3 m3/day
Volume of benzoic acid in tank at 1 min residence time = 2.1  10-4 m3
4 D3
= 5.24  10-10 m3

3 8
2.1 10 4
 398000
Number of benzoic particles in the tank =
5.24  1010
D2
Area of one benzoic acid particle = 4
 3.14  106 m 2
4
Volume of one benzoic acid particle =
Total area of benzoic acid particles , A = 3.14  10-6  398000 = 1.25 m2
cs = 299.7 kg-benzoic acid/m3-solvent
co = 177.86 kg-benzoic acid/m3-solvent
c = 177.86 + 9.5 kg-benzoic acid/m3-solvent
k’ = 1.21  10-9 m2/s
b = 1  10-6 m
V = 0.017 m3 (Volume of solvent)
Therefore the required time for mass transfer =
6
 299.7  185.3  0.017 1 10
 1.5s
t  ln 

9
 299.7  185.3  11.5  1.25 1.2110
Hence, the residence time of 1 minute is sufficient for the removal of benzoic acid as the mass
transfer is only 1.1 seconds, which is not rate limiting.
12. Residence time of solvent
Residence time,  i 
Therefore
Vi
where Vi = Volume in m3 and Fi = Flowrate m3/s
Fi
 i Vi Fj

, where i = solvent phase, and j = Solid phase
 j Fi V j
Since j = 1 minute and Vi = Vj;
CPD 3264
D-62
(D.7.18)
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
i 

Fj
Fi

30  1000 1.33  1000

1165
830
25.75
 16.1min
1.6
13. Design of the tank
The tank is design to enable the separation of liquid from solids. This can be
accomplished by using a rotary blade that scoops the solids from the liquid and by means
of a scraper, deposited out of the tank. Figure D.7.3 shows the leaching equipment.
Solids feed
Solvent feed
Extract
Solids flow
Liquid flow
Spend solids
Figure D.7.3: Leaching equipment
1. Tank volume
Total volume of solids + solvent in tank = 0.018 + 0.018 = 0.036 m3
Assume working volume of 40 % = 0.036/0.4 = 0.09 m3
If the tank is cubical, and the width x, length y, and depth z, are in ratio of 1:1:1,
Volume  xyz  x 3
(D.7.19)
0.09  x
x  0.5 m, y  0.5 m, z  0.5 m
3
CPD 3264
D-63
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
2. Radius of the impeller
Assume that the bowl is hemi-spherical, i.e. half the size of a spherical.
1 4
   r 3  0.036 m3
Volume of bowl = 2 3
r  0.25m
3. Speed of rotation
Since the residence time for the solids is 1 minute, and the shape of the bowl is hemispherical, the speed of rotation should be 0.5 rpm. This would allow sufficient time for
contact between the solids that needs to be extracted against the solvent.
D.7.b Product dryer (D401)
Calculation :
feed
steam
out
Vapour
out
steam
in
product
Figure D.7.4 Product dryer schematics
Mass balance :
Amount of water evaporated = mwater  xwfeed m feed  xwproduct m product
(D.7.20)
mwater  103.18 kg/h
where m = mass flow rate in kg/h
x = mass fraction of water in respective part
Energy balance :
H
in
  H out  Q  0
(D.7.21)
setting the reference temperature to be 25C, then we come into
40
32.98
mbounded water   Cpwater   40  25   H evaporation
   Cpwater   32.89  25  H evaporation

Hevaporation at 5 kPa (32.89°C) = 2423.84 kJ/kg
Hevaporation at 40°C = 2406.90 kJ/kg
CPD 3264
D-64
(D.7.22)
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
 Q = 254808 kJ/h
where, Q = heat duty, kg/hr
m = mass flow rate inkg/h
Cpwater = specific heat capacity, kJ/kg C
Hevaporation = Enthaply heat of evaporation at respective temperature
amount of steam required :
Q    msteam  H condensation  msteam 
Q
  H condensation
(D.7.23)
for low pressure steam (3 bar, 133.54C) Hcondenstaion = 2163.27 kJ/kg
 msteam = 117.8 kg/h = 43.58 m3/h (v = 0.37 m3/kg)
 = heat tranfer efficiency
Hcondensation = enthalpy heat of condensation, kJ/kg
msteam = mass flow rate of steam, kg/hr
where
Dimensioning
Typical evaporation rate (revap) =50 kg H2O/h m3
Amount of water evaporate (mwater ) = 103.18 kg/h
Working volume = 60%
Total volume required =
mwater
= 3.44 m3
revap  60%
(D.7.24)
Check :
Average flow rate of material =
Residence time =
tot flowin + tot flowout
= 1471.83 m3/h
2
Veff dryer
average flow rate of material
= 0.002 h  reasonable value
Assumption : H = 4 D
V 
D2
H   D3
4
D
3
V
(D.7.25)

D = 1.03 m
H = 4.12 m
V(check) = 3.44 m3
Total area available = A =  DH =13.35 m2
Effective area = Aeff = 60% A = 8.01 m2
Max. Effective area + paddle and center heating= Aeff2 = 68% A = 9.08 m2
Check :
Area required for heat transfer :
Q  U  Aheat transfer  T
(D.7.26)
heat transfer coefficient = U = 347.5 kJ/h m C
Taverage = 99.74 C
Aheat transfer = 7.35 m2
2
CPD 3264
D-65
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
 sufficient area is available for heat transfer.
Power consumption :
Power required is function of size of dryer, density of material and dryer capacity. It can be
approximated with equation D.7.27
(D.7.27)
P  L  D  0.2
while P in HP, L and D in feet
P = 9.16 HP = 6832.7 Watt
notes : water-vapor equilibrium and steam data were taken from ( 1).
D.7.c Buffer tanks (T101 and T102)
T101: Lactic acid buffer tank
The lactic acid buffer tank capacity is based on the storage of lactic acid for 1 day. Therefore the
amount of lactic acid required for enzymatic deproteinization and demineralization is 60.64
tonnes/day (Stream 118). The density of the fluid is 1015.24 kg/m3.
Volumetric flowrate =
60.64 1000
m3
 1.63
1015.24
day
Effective volume, Veffective = 1.63  1 day = 1.63 m3
Taking the effective volume as 75 % of the vessel volume,
Vessel volume = 1.63/0.75 = 2.17 m3
Take H = 2D , where H = height of vessel and D = diameter of vessel
D = 1.1 m, H = 2.2 m
The liquid height is then calculated as
4Veffective
D 2
 1.72m .
T201:Ethanol buffer tank
The same procedure carried out for T101 is done. The basis of storage for 1 day is assumed.
Volumetric flowrate = 60 m3/day
Effective volume, Veffective = 30 m3
Taking the effective volume as 80 % of the vessel volume,
CPD 3264
D-66
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Vessel volume = 37.5 m3
D = 2.9 m, H = 5.8 m and liquid height is 4.54 m.
D.7.d Mixing tanks (V301 and V401)
V301: HCl chitin mixer
This mixer is provided to ensure a heterogeneous mixture when solids and liquid enters the
reactor.
Total flow stream 303 + 305 = 54.15 m3/day
Taking a residence time of 5 minutes, Veffective = 0.188 m3
Take the effective volume as 75 % of the vessel volume,
Vessel volume = 0.25 m3
With H = 2D,
D = 0.55 m, H = 1.1 m
V401: NaOH chitin mixer
This mixer serves the same function as for V301.
Total flow stream 401 + 310 = 94.37 m3/day
Taking a residence time of 5 minutes, Veffective = 0.328 m3
Take the effective volume as 75 % of the vessel volume,
Vessel volume = 0.44 m3
With H = 2D,
D = 0.65 m, H = 1.3 m
Impeller calculations for V301 and V401:
For calculation details refer to Appendix D.3,
Table D.7.1: Impeller speed and power requirements.
Specification
V301
V401
Units
1032.1
819.7
kg/m3
m, mean density
0.001
0.001
kg/ms
m, mean viscosity
Di, diameter of impeller
0.18
0.22
m
N, Rotational speed
0.5
0.5
rps
NRe, Reynolds number
17340
19240
NPo, Power number
5.5
5.8
gc, dimensional constant
1
1
P, Power
0.146
0.284
W
List of symbols :
A = area of the solid-liquid interface
b = effective thickness of the liquid film surrounding the particles
Cpwater = specific heat capacity, kJ/kg C
c = concentration of the solute in the bulk of the solution at time t
cs = concentration of the saturated solution in contact with the particles
f = fraction of the solute fed to the washing system which remains associated with the washed solids
CPD 3264
D-67
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Hcondensation = enthalpy heat of condensation, kJ/kg
Hevaporation = Enthaply heat of evaporation at respective temperature
k’ = diffusion coefficient (this is approximately equal to the liquid phase diffusivity)
L = amount of solute overflow
M = mass of solute transferred in time t
m = mass flow rate in kg/h
msteam = mass flow rate of steam, kg/hr
n = minimum number of washing tanks
Q = heat duty, kg/hr
S = amount of solute
W= amount of solution
x = mass fraction of water in respective part
 = heat tranfer efficiency
Reference :
[1] Smith, J.M. Van Ness,H.C. Introduction to chemical engineering thermodynamics, 1996
CPD 3264
D-68
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Sample calculation for P305
CO2
2.5 m
Filter 2
12 m 315
Filter Cake
316
313
0.7 m
0.5 m
1.2 m
0.43 m
R302
S302
311
312
2.5 m 0.5 m
0.5 m
P305
314
P306
Waste
Water
Figure D.8.1 Piping diagram for P305
Given:
Pumping fluid
Mass flow rate , G
Temperature, T
Pipe material
Solution:
Density, 
Viscosity, 
=
=
=
=
HCl-Water-Chitin
0.64 kg/s
313 K
Stainless Steel
=
992 kg/cum
=
1 × 10-3 N s /m 2
6.50 × 10-4 m3 / s
Volumetric flow rate Q, =
Economic Pipe Diameter Calculation:
For Commercial SS pipe,
d , optimum  260 G 0.52  -0.37
d , optimum  260 0.640.52 992-0.37
(D.8.1)
d , optimum  16.1 mm
Taking Nominal Pipe Diameter = ¾ inch = 19.05 mm
Using Schedule 40S pipe
Inside pipe diameter = 0.824 inch = 20. 93 mm
Cross-sectional area
=
 d2

  20.932
4
4
-4
2
= 3.44  10 m
 344 mm 2
Pressure Drop Calculation:
Fluid Velocity , u 
flow rate 6.5  10-4

 1.89 m / s
Area
3.44  10-4
CPD 3264
D-70
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Reynold’s number, Re 
4G
4  0.64

 d
  1  10-3  20.93  10-3
 39, 260 (Turbulent Flow)
Using Genereaux’s formula for friction loss,
P  4.13  1010 G1.84  0.16  1d 4.84
(D.8.2)
10
1.84
3 0.16
1
4.84
 4.13  10 (0.64)  (1 10 ) (992) (20.93)
 2.49 kPa / m
Take the higher value, and design 20 % more pressure drop above the average
P  2.5  1.22 kPa / m
P  3.5 kPa / m
The loss through the bends and block valves can be included in line pressure-loss calculation as an
equivalent length of pipe. All the bends will be taken as 90 elbows of standard radius, equivalent
length= 30d, and the valves as plug values, fully open, equivalent length = 18 d. Line to pump suction:
Length  0.70 m
Bends, 2  30  20.93  10-3  1.26 m
Valves, 1  18  20.93  10-3  0.38 m
 2.33 m
Entry losses = 
u 2
2
At maximum design velocity 
992(1.6  1.2) ^ 2
 1.77 kPa
2
Control Valve pressure drop, allow normal
( 1.22 ) maximum
Heat exchanger, allow normal
( 1.22 ) maximum
Orifice, allow normal
( 1.22 ) maximum
Line from pump discharge
140 kPa
200 kPa
70 kPa
100 kPa
15 kPa
22 kPa
Length  2.20 m
Bends, 3  30  20.93  10-3  1.88 m
Valves, 1  18  20.93  10-3  0.38 m
 4.46 m
The line pressure-drop calculation is given in table D.8.1. The calculation for the discharge side is the
same as for suction side.
CPD 3264
D-71
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.8.1 Pump and line Calculation form
Pump and line Calculation Sheet
HCl-Water-Chitin
DISCHARGE CALCULATION
40
Line size mm
20.93
992
Flow
Norm
Max
1
u2
Velocity
1.89
2.27
f2
6.45E-01
Friction loss
2.5
3.5
7.74E01
L2
Line length
4.46
4.46
f2L2
Line loss
11.1
15.5
SUCTION CALCULATION
Orifice
15
21.6
Line Size mm
20.93
Control valve
140
202
Flow
Norm Max
Units
Equipment
(a) Heat ex.
u1
Velocity
1.89
2.27
m/s
(b)
f1
Friction loss
2.5
3.5
kPa/m
(c)
L1
Line length
2.33
M
f1L1
Line loss
5.82
8.14
kPa
(6) Dynamic loss 166.1
238.7
2
u1 /2
Entrance
1.77
2.55
kPa
z1
Static Head
Strainer
kPa
1.2
1.2
gz2
11.7
11.7
(1) Sub-total
7.89
10.7
kPa
Equip.press
101.3
101.3
(max)
z1
Static Head
0.7
0.7
m
Contigency
gz1
6.81
6.81
kPa
(7) Sub-total
113
113
Equip. press
101.3 101.3 kPa
(7)+(6)
Discharge press
279
352
(2) Sub.total
108
108
kPa
Suction press
101
97.4
(8) Diff. Press
179
254
(2)-(1) (3) Suction press 100.5 97.4
kPa
18.3
26.1
(8)/ g
(4) VAP.PRESS 3.24
3.24
kPa
(3)-(4) (5) NPSH
97.3
94.2
kPa
Valve/(6)
Control valve
% Dyn. loss
84%
(5)/ g
10.0
9.68
m
Fluid
Temperature ºC
Density kg/cum
Viscosity mNs/spqm
Normal flow kg/s
Design Max flow kg/s
CPD 3264
D-72
Units
m/s
kPa
m
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
m
kPa
kPa
kPa
kPa
kPa
kPa
KPa
m
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.8.2 Line Specification of all Streams
Stream
Number
101
102
103
104
105
106a
106b
107
108
109
110
111a
111b
112a
112b
113a
113b
114a
114b
115a
115b
116a
116b
117
118
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
301
302
303
304
305
306
307
308
309
Nominal Pipe
Diameter
in / mm
1/2 / 9.52
3/4 / 19.05
3/4 / 19.05
3/4 / 19.05
3/4 / 19.05
1/2 / 9.52
1/2 / 9.52
1/4 / 6.35
1/4 / 6.35
1/4 / 6.35
1/4 / 6.35
1/4 / 6.35
1/4 / 6.35
1/8 / 3.17
1/8 / 3.17
3/4 / 19.05
3/4 / 19.05
3/4 / 19.05
3/4 / 19.05
1/4 / 6.35
1/4 / 6.35
1/2 / 9.52
1/2 / 9.52
3/4 / 19.05
3/4 / 19.05
Schedule
Number.
40S
40S
40S
40S
40S
40S
40S
40S
40S
40S
40S
40S
40S
80S
80S
40S
40S
40S
40S
40S
40S
40S
40S
40S
40S
1/8 / 3.17
80S
1/8
1/8
1/8
1/8
1/8
1/8
1 /
1/8
1/8
1/8
1/8
1/8
1 /
1 /
1 /
1 /
1 /
/ 3.17
/ 3.17
/ 3.17
/ 3.17
/ 3.17
/ 3.17
25.40
/ 3.17
/ 3.17
/ 3.17
/ 3.17
/ 3.17
25.40
25.40
25.40
25.40
25.40
80S
80S
80S
80S
80S
80S
5S
80S
80S
80S
80S
80S
5S
5S
5S
5S
5S
3/4 / 19.05
3/4 / 19.05
3/4 / 19.05
40S
40S
40S
Inside
Diameter in /
mm
0.62 / 15.80
0.82 / 20.93
0.82 / 20.93
0.82 / 20.93
0.82 / 20.93
0.62 / 15.80
0.62 / 15.80
0.41 / 10.41
0.41 / 10.41
0.41 / 10.41
0.41 / 10.41
0.41 / 10.41
0.41 / 10.41
0.21 / 5.46
0.21 / 5.46
0.82 / 20.93
0.82 / 20.93
0.82 / 20.93
0.82 / 20.93
0.41 / 10.41
0.41 / 10.41
0.62 / 15.80
0.62 / 15.80
0.82 / 20.93
0.82 / 20.93
Conveyer
Conveyer
0.21 / 5.46
Conveyer
0.21 / 5.46
0.21 / 5.46
0.21 / 5.46
0.21 / 5.46
0.21 / 5.46
0.21 / 5.46
1.18 / 30.01
0.21 / 5.46
0.21 / 5.46
0.21 / 5.46
0.21 / 5.46
0.21 / 5.46
1.18 / 30.01
1.18 / 30.01
1.18 / 30.01
1.18 / 30.01
1.18 / 30.01
Conveyer
0.82 / 20.93
0.82 / 20.93
0.82 / 20.93
CPD 3264
D-73
Reynold’s
Number
Flow
Intermittent flow
33,795
Turbulent
33,795
Turbulent
33,795
Turbulent
33,795
Turbulent
22,400
Turbulent
22,400
Turbulent
19,200
Turbulent
19,200
Turbulent
19,244
Turbulent
19,244
Turbulent
9622
Turbulent
9622
Turbulent
6646
Turbulent
6646
Turbulent
30,014
Turbulent
30,014
Turbulent
30,014
Turbulent
30,014
Turbulent
16,795
Turbulent
16,795
Turbulent
28,700
Turbulent
28,700
Turbulent
43,300
Turbulent
43,300
Turbulent
4,237
Turbulent
5,816
5,816
5,816
5,816
1466
1466
40,687
3,203
3,203
1,035
1,035
4,237
46,243
43,518
43,518
38,205
38,205
Turbulent
Turbulent
Turbulent
Turbulent
Laminar
Laminar
Turbulent
Turbulent
Turbulent
Laminar
Laminar
Turbulent
Turbulent
Turbulent
Turbulent
Turbulent
Turbulent
31,705
31,705
41,175
Turbulent
Turbulent
Turbulent
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table D.8.2 continued
Stream
Number
310
311
312
313
314
315
316
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
Nominal Pipe
Diameter mm
Schedule
Number
Inside
Diameter mm
Reynold’s
Number
Flow
0.82 / 20.93
0.82 / 20.93
0.82 / 20.93
0.82 / 20.93
0.82 / 20.93
0.82 / 20.93
Conveyer
1.05 / 26.65
1.05 / 26.65
1.05 / 26.65
1.05 / 26.65
1.05 / 26.65
1.05 / 26.65
1.05 / 26.65
1.05 / 26.65
1.05 / 26.65
1.05 / 26.65
0.41 / 10.41
1.05 / 26.65
1.05 / 26.65
Conveyer
6.06 / 154.05
Conveyer
41,175
10812
39,260
39,260
32,187
32,187
Turbulent
Turbulent
Turbulent
Turbulent
Turbulent
Turbulent
37,200
37,200
42,800
42,800
42,800
42,800
42,800
42,800
42,800
42,800
14,688
459,00
459,00
Turbulent
Turbulent
Turbulent
Turbulent
Turbulent
Turbulent
Turbulent
Turbulent
Turbulent
Turbulent
Turbulent
Turbulent
Turbulent
18,500
Turbulent
3/4
3/4
3/4
3/4
3/4
3/4
/
/
/
/
/
/
19.05
19.05
19.05
19.05
19.05
19.05
40S
40S
40S
40S
40S
40S
1 /
1 /
1 /
1 /
1 /
1 /
1 /
1 /
1 /
1 /
1/4
1 /
1 /
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
/ 6.35
25.40
25.40
40S
40S
40S
40S
40S
40S
40S
40S
40S
40S
40S
40S
40S
6 / 152.4
40S
List of symbols :
d = pipe diameter, mm
G = mass flow rate, kg/s
Q = volumetric flow rate, m2/s
Re = Reynold’s number
u = fluid velocity, m/s
P = pressure drop kPa/m
 = density, kg/cum
 =viscosity, Ns/m2
CPD 3264
D-74
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
CRUSHERS AND GRINDERS
EQUIPMENT NR. :
NAME
:
Pressure [atm]
Temp.
[oC]
Volume [m3]
Diameter [m]
L or H [m]
Capacity [kg/day]
Duty
[kWh]
Internals
:
:
:
:
:
:
:
A201
Shrimp Shell
Crusher
Hardinage mill
1.0
25.0
43.2
3.4/1.7 (1)
6.1
20,700
973.6
- Ball sizes [mm] :
- Rotation [rpm] :
- Particle size [mm]:
Feed
:
Product
:
- Res. time [min] :
Number
- Series
- Parallel
Materials of
Construction
:
:
(3) :
SUMMARY
A401
Chitosan
Grinder
Ball mill
1.0
25.0
10.4
2.4
2.4
1,789
134.8
98/59/35 (2)
15
12
18
30
1
22
0.1
0.05
10
1
Lining: Rubber
Vessel: CS
Balls : Steel
Appendix D.5
–
1
Lining: Rubber
Vessel: CS
Balls : Steel
Appendix D.5
Other
:
Remarks:
(1) Hardinage mill consist of a cylindrical and conical section
(2) Three different ball sizes are used in the hardinage mill
(3) CS = Carbon Steel
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-82
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
FILTERS
EQUIPMENT NR. :
NAME
:
Pressure [atm]
Temp.
[oC]
Area
[m2]
Diameter [m]
L or H [m]
Capacity [kg/day]
Internals
:
:
:
:
:
:
- Rotation [rpm] :
- Particle size [mm]:
- Cake thick. [mm]:
S301
Filter 1
Drum
1.0/0.6
25.0
1.94
0.6
1.2
88,930
–
S302
Filter 2
Drum
1.0/0.6
40.0
7.53
1.1
2.2
55,750
SUMMARY
S401
Filter 3
Drum
1.0/0.6
27.0
17.80
1.7
3.4
77,360
S101 a/b
Microfilter
Microfilter
1.0
40.0
55.62
0.1 (1)
1.0
11,869
0.25
0.5
34
0.25
0.1
8
0.2
0.05
2
n.a.
n.a.
n.a.
0.07
0.07
0.044
0.044
0.093
0.093
n.a.
n.a.
Duty [kW]
- Filtrate pump
- Vacuum pump (2)
Number
- Series
- Parallel
Materials of
Construction (4)
:
:
:
1
Filter:
Polypropylene
Vessel: SS304
Appendix D.4
1
Filter:
Polypropylene
Vessel: SS316
Appendix D.4
1
Filter:
Polypropylene
Vessel: CS
Appendix D.4
3 (3)
Filter:
Hollow fibers
Vessel: SS304
Appendix D.2
Other
:
Remarks:
(1) 0.1 m is for one tube. Each microfilter consist of 4 tubes. Each tube has 3000 fibers.
(2) Assuming air to filtrate ratio of one
(3) One installed spare included
(4) SS = stainless steel
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-83
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
EQUIPMENT NR.
NAME
:
:
Pressure [atm]
Temp.
[oC]
Volume [m3]
Diameter [m]
L or H [m]
Internals
:
:
:
:
:
- Impeller sp. [rpm] :
- Catalyst
Type
:
Shape
:
Production of Chitin and Chitosan from Shrimp Shells
VESSELS & REACTOR
–
R101 a/b
Lactic acid
Fermentor
CSTR
1.0
40.0
3.41 (1)
1.43
2.14
T201
Ethanol
buffer tank
Tank
1.0
32.0
2.17 (6)
1.1
2.2
T101
Lactic acid
buffer tank
Tank
1.0
25.0
37.5 (5)
2.9
5.8
SUMMARY
S201
Benzoic acid
extractor
Tank
1.0
25.0
0.13 (2)
0.5
0.5/0.5 (3)
D401
Product
dryer
Rotary
0.05
40
3.44
1.03
4.12
n.a.
n.a.
n.a.
0.5
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
8.45
38.0
n.a.
n.a.
38.79
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
70.8 (4)
Duty [kW]
- Impeller
- Cooling water
- Steam
Number
- Series
- Parallel
Materials of
Construction (7)
Other
:
:
:
:
2
Vessel:
SS304
Appendix
D.2
1
Vessel:
SS304
Appendix
D.7
1
Vessel: CS
Appendix D.7
1
1
Vessel: SS304 Vessel:
SS304
Appendix D.7 Appendix
D.7
Remarks:
(1) R101/102 : effective volume = 2.56 m3 for residence time of 1.67 hours
(2) S201 : effective volume = 0.036 m3 for residence time of 16.1 min (liquid) and 1 min (solids)
(3) S201 : Structure of container is cubical.
(4) D401 : Steam at 3 bara
(5) T101 : effective volume = 30 m3 with liquid height of 4.54 m
(6) T201 : effective volume = 1.63 m3 with liquid height of 1.72 m
(7) CS = Carbon steel, SS = Stainless steel
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-84
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
VESSELS & REACTOR
EQUIPMENT NR.
NAME
:
:
Pressure [atm]
Temp.
[oC]
Volume [m3]
Diameter [m]
L or H [m]
Internals
:
:
:
:
:
- Impeller sp. [rpm] :
- Catalyst
Type
:
Shape
:
V301
HCl chitin
mixer
CSTR
1.0
25.0
0.25 (1)
0.55
1.1
V401
NaOH
chitin
mixer
CSTR
1.0
25.0
0.87 (2)
0.65
1.3
–
SUMMARY
R301a/R301b
R302
R401
Chitin
Chitin
Deacetylation
deproteinization purification
demineralization
PFR (3)
PFR (3)
PFR (3)
1.0
1.0
2.3
25.0
25/40
121.0
7.1 (4)
1.55 (5)
2.3 (6)
0.91
0.43
0.50
10.9
10.4
12.0
30
30
18
18
18
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
HCl
n.a.
NaOH
n.a.
1.5  10-4
n.a.
n.a.
2.8  10-4
n.a.
n.a.
0.019
113.7
n.a.
4.1  10-4
n.a.
n.a.
9.6  10-4
15.4
n.a.
Duty [kW]
- Impeller
- Cooling water
- Steam
Number
- Series
- Parallel
Materials of
Construction (8)
Other
:
:
:
:
1
Vessel:
SS316
Appendix
D.7
(7)
1
Vessel: CS
2
Vessel: SS304
Appendix
D.7
Appendix D.3
1
Vessel:
SS316
Appendix
D.3
1
Vessel:
SS304
Appendix D.3
Remarks:
(1) V301 : effective volume = 0.188 m3 for residence time of 5 mins
(2) V401 : effective volume = 0.655 m3 for residence time of 5 mins
(3) PFR installed with baffles and stirrers
(4) R301 : effective volume = 6 m3 for residence time of 1 hours 41 mins
(5) R302 : effective volume = 1.32 m3 for residence time of 34 mins
(6) R401 : effective volume = 1.96 m3 for residence time of 29 mins
(7) Chilled water (5-15 C) used instead of cooling water.
(8) SS = Stainless steel; CS = Carbon steel
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-85
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HEAT EXCHANGERS & EVAPORATOR
EQUIPMENT NR. :
NAME
:
Substance
- Tubes
- Shell
:
:
Duty
[kW] :
Heat Exchange
area
[m2] :
Number
- Series
:
- Parallel
:
Pressure
[bara]
- Tubes
:
- Shell
:
Temperature
In / Out
[oC]
- Tubes
:
- Shell
:
Special Materials of
Construction (1) :
Other
:
Remarks:
(1) CS = Carbon Steel;
Designers :
–
SUMMARY
C201
Ethanol
Evaporator
Forced
Evaporator
L.P. Steam
Benzoic acid +
Solvent
14.1
0.37
1
3.0
1.0
190.0/133.5
77.0/87.0
Tubes : SS304
Shell : SS304
Appendix D.6
SS = Stainless steel
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-86
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HEAT EXCHANGERS & EVAPORATOR
EQUIPMENT NR. :
NAME
:
Substance
- Side A
:
- Side B
:
Duty
[kW] :
Heat Exchange
area
[m2] :
Number
- Series
:
:
- Parallel
Pressure
[bara]
- Side A
:
- Side B
:
Temperature
In / Out
[oC]
- Side A
:
- Side B
:
Special Materials of
Construction (1) :
Other
:
Remarks:
(1) CS = Carbon Steel;
Designers :
E101A/B
Glucose
Sterilizer
Plate
Glucose
MP Steam
252.87
–
SUMMARY
E102A/B
N-source
Sterilizer
Plate
(NH4)2SO4
MP Steam
75.74
2.43
0.73
1
-
1
-
7.5
10.0
7.5
10.0
25.0 / 43.2
180.0 / 180.0
25.0 / 43.2
180.0 / 180.0
Tubes : SS
Shell : SS
Appendix D.6
Tubes : SS
Shell : SS
Appendix D.6
SS = Stainless steel
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-87
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HEAT EXCHANGERS & EVAPORATOR
EQUIPMENT NR. :
NAME
:
Substance
- Inner Tubes
:
- Outer Tubes
:
Duty
[kW] :
Heat Exchange
area
[m2] :
Number
- Series
:
:
- Parallel
Pressure
[bara]
- Inner Tubes
:
- Outer Tubes
:
Temperature
In / Out
[oC]
- Inner Tubes
:
- Outer Tubes
:
Special Materials of
Construction (1) :
Other
:
Remarks:
(1) CS = Carbon Steel;
Designers :
E201
Feed C201
Preheater
Double pipe
E202
Ethanol heat
exchanger
Double pipe
L.P. Steam
Ethanol
0.32
Ethanol
Ethanol
3.12
0.0073
0.47
–
E203
Top C201
condenser
Double pipe
Ethanol
Cooling water
12.27
0.74
1
-
1
-
1
-
3.0
3.2
1.0
4.0
1.0
1.0
133.5/133.5
72.2/ 77.0
InnerTubes: CS
Outer Tubes: CS
Appendix D.6
SUMMARY
87.2 /87.2
25.0 / 77.2
InnerTubes: CS
Outer Tubes: CS
Appendix D.6
87.2 / 35.0
20.0 / 25.0
InnerTubes: CS
Outer Tubes: CS
Appendix D.6
SS = Stainless steel
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-88
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HEAT EXCHANGERS & EVAPORATOR
EQUIPMENT NR. :
NAME
:
Substance
- Tubes
:
- Shell
:
Duty
[kW] :
Heat Exchange
area
[m2] :
Number
- Series
:
:
- Parallel
Pressure
[bara]
- Tubes
:
- Shell
:
Temperature
In / Out
[oC]
- Tubes
:
- Shell
:
Special Materials of
Construction (1) :
Other
:
Remarks:
(1) CS = Carbon Steel;
Designers :
E401
R401 heat
exchanger
Shell and tube
NaOH/Chitosan
NaOH/Chitin
131.78
E402
Feed R401
preheater
Shell and tube
L.P. Steam
NaOH/Chitin
25.35
–
SUMMARY
E403
Product R401
cooler
Shell and tube
NaOH/Chitosan
Cooling water
14.95
5.48
1.01
1.40
1
-
1
-
1
-
7.6
4.0
3.0
3.3
6.9
1.0
121.0/ 43.8
28.04 / 106.0
InnerTubes: CS
Outer Tubes: CS
Appendix D.6
133.5/133.5
106.0/121.0
InnerTubes: CS
Outer Tubes: CS
Appendix D.6
43.8/ 25.0
20.0 / 25.0
InnerTubes: CS
Outer Tubes: CS
Appendix D.6
SS = Stainless steel
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-89
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
PUMPS, BLOWERS & COMPRESSORS
EQUIPMENT NR. :
NAME
:
Type
Number
Medium
transferred
:
:
:
–
SUMMARY
P-102 A/B
R101 Feed
Pump
Diaphragm
2
Glucose /
Water
P-103 A/B
R101 Feed
Pump
Diaphragm
2
Ammonium
Sulphate/
Water
P-104A A/B
S101 Feed
Pump
Diaphragm
2
Lactic acid /
Water
P-104B A/B
S101 Feed
Pump
Diaphragm
2
Lactic acid /
Water
P-105 A/B
R301 Feed
Pump
Diaphragm
2
Lactic acid
4.79  10-4
803
1.60  10-4
912
4.26  10-4
1160
4.26  10-4
1160
4.79  10-4
1110
1.05 / 7.49
0.87/7.72
1.15/5.80
1.15/5.80
1.09/4.31
39.9/39.9
39.9/39.9
25.0/25.0
Capacity
[kg/s]
:
[m3/s]
:
3
Density [kg/m ] :
Pressure [bara]
Suct. / Disch.
:
Temperature
In / Out [oC]
:
Power
[kW]
- Theor.
:
- Actual
:
Number
- Theor.
:
- Actual
:
Special Materials of
Construction
:
Other
(2)
:
25.0
25.0/25.0
3.08  10-1
4.41  10-1
1.09  10-1
1.56  10-1
1.67  10-1
2.37  10-1
1.67  10-1
2.37  10-1
1.54  10-1
2.20  10-1
2
2
2
2
2
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
Remarks:
(1) One installed spare included.
(2) Appendix D.8
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-90
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
PUMPS, BLOWERS & COMPRESSORS
–
SUMMARY
EQUIPMENT NR. :
NAME
:
P-201 A/B
C201 Feed
Pump
P-202 A/B
V201 Feed
Pump
P-203 A/B
S201 Feed
Pump
Type
:
Number
:
Medium
transferred
:
Capacity
[kg/s]
:
[m3/s]
:
3
Density [kg/m ] :
Pressure [bara]
Suct. / Disch.
:
Temperature
In / Out [oC]
:
Power
[kW]
- Theor.
:
- Actual
:
Number
- Theor.
:
- Actual
:
Special Materials of
Construction
:
Other
(2)
:
Diaphragm
2
Ethanol /
Water
Diaphragm
2
Ethanol
Diaphragm
2
Ethanol /
Water
P-204 A/B
P-301 A/B
C201 Bottom
S301 Feed
Discharge
Pump
Pump
Diaphragm
Diaphragm
2
2
Benzoic acid / Chitin /
Water
Water
2.19  10-5
846
4.93  10-6
837
1.09  10-5
816
7.53  10-6
919
9.78  10-4
1050
1.02 / 4.0
1.09/3.37
1.07/1.90
1.10/1.31
1.02/4.2
32.3/32.3
87.2/87.2
25.0/25.0
51.4
25.0/25.0
6.52  10-3
7.25  10-3
1.12  10-3
1.25  10-3
1.60  10-3
1.77  10-3
1.60  10-4
1.78  10-4
3.1  10-1
3.44  10-1
2
2
2
2
2
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
Remarks:
(1) One installed spare included.
(2) Appendix D.8
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-91
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
PUMPS, BLOWERS & COMPRESSORS
EQUIPMENT NR. :
NAME
:
Type
:
Number
:
Medium
transferred
:
Capacity
[kg/s]
:
3
[m /s]
:
3
Density [kg/m ] :
Pressure [bara]
Suct. / Disch.
:
Temperature
In / Out [oC]
:
Power
[kW]
- Theor.
:
- Actual
:
Number
- Theor.
:
- Actual
:
Special Materials of
Construction
:
Other
(2)
:
P-302 A/B
V301 Feed
Pump
Diaphragm
2
–
SUMMARY
P-304 A/B
R302 Feed
Pump
Diaphragm
2
P-305 A/B
S302 Feed
Pump
Diaphragm
2
HCl
P-303 A/B
S301 Filtrate
Pump
Diaphragm
2
Protein
hydrolysate
P-306 A/B
S302 Filtrate
Pump
Diaphragm
2
HCl / Chitin
HCl / Chitin
HCl / Water
5.23  10-4
996
8.73  10-4
1000
6.28  10-4
1000
6.50  10-4
992
5.50  10-4
963
1.06/2.17
1.08/1.68
1.02/2.27
0.97/3.52
1.05/1.68
25.0/25.0
39.9/39.9
25.0/25.0
25.0/25.0
25.0/25.0
5.80  10-2
6.06  10-2
5.25  10-2
5.82  10-2
7.81  10-2
8.67  10-2
1.65  10-1
1.84  10-1
3.43  10-2
3.81  10-2
2
2
2
2
2
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
Remarks:
(1) One installed spare included.
(2) Appendix D.8
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-92
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
PUMPS, BLOWERS & COMPRESSORS
EQUIPMENT NR. :
NAME
:
Type
:
Number
:
Medium
transferred
:
Capacity
[kg/s]
:
3
[m /s]
:
3
Density [kg/m ] :
Pressure [bara]
Suct. / Disch.
:
Temperature
In / Out [oC]
:
Power
[kW]
- Theor.
:
- Actual
:
Number
- Theor.
:
- Actual
:
Special Materials of
Construction
:
Other
(2)
:
P-401 A/B
R401 Feed
Pump
Diaphragm
2
NaOH /
Chitin
P-402 A/B
V401 Filtrate
Pump
Diaphragm
2
–
SUMMARY
P-404 A/B
S401 Filtrate
Pump
Diaphragm
2
NaOH
NaOH
P-403 A/B
S401 Feed
Pump
Diaphragm
2
NaOH /
Chitosan
1.11  10-3
531
1.22  10-4
785
1.12  10-3
802
6.50  10-4
895
1.06/4.58
1.08/4.00
2.29/7.63
1.03/1.79
121.0/121.0
25.0/25.0
121.0/121.0
31.0/31.0
1.18  10-1
4.35  10-1
3.56  10-2
3.95  10-2
5.96  10-1
6.62  10-1
4.43  10-2
4.92  10-2
2
2
2
2
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
(1)
MS casing
Single
mechanical
seals
Remarks:
(1) One installed spare included.
(2) Appendix D.8
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-93
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
GRINDING – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
A201
In Series
Shrimp Shell Crusher
In Parallel
General Data
: - Crush / Grind / Pulverize
Type
: - Mill / Cutter / Dicer / Crusher
Position
: - Horizontal
- Vertical
: - Ball / Pebble / Rod / Cone
: 98/59/35
(2)
: 973.6
:
6.1
(3)
:
3.4
(4)
: 43.2
(5)
: 22.0
(6)
: 15.0
:
CS
(7)
: Rubber
: Steel
Internals
- Size
Energy consumption
Vessel Diameter (ID)
Vessel Height
Vessel Tot. Volume
Residence time
Rotational speed
Vessel Material
Lining Material
Lining Material
[mm]
[kWh]
[m]
[m]
[m3]
[min]
[rpm]
:
:
(1)
Process Conditions
Feed
Stream Data
1
none
Product
Temperature
[oC]
: 25.0
: 25.0
Pressure
[atm]
:
1.0
:
1.0
Particle size
[mm]
: 30.0
:
1.0
Mass Flow
[kg/s]
:
:
0.24
0.24
Remarks:
(1) Mill is of Hardinage type consisting of 3 zones with 3 different internal ball sizes.
(2) Zone 1 = 98 mm, Zone 2 = 59 mm, Zone 3 = 35 mm
(3) Cylindrical section = 3.4 m, conical section = 2.7 m
(4) Cylindrical section = 3.4 m. conical section = 1.7 m
(5) Internal ball volume = 21.6 m3, where 11.75 m3 for 98 mm balls, 6 m3 for 59 mm balls and 4 m3
for 35 mm balls
(6) Zone 1 = 18.7 mins, Zone 2 = 2.2 mins and Zone 3 = 1.1 min.
(7) CS = Carbon Steel
Appendix D.5 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-94
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
GRINDING – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
A401
In Series
Chitosan Grinder
In Parallel
General Data
: - Crush/ Grind / Pulverize
Type
: - Mill / Cutter / Dicer / Crusher
Position
: - Horizontal
- Vertical
: - Ball / Pebble / Rod / Cone
: 12.0
: 134.8
:
2.4
:
2.4
: 10.4
: 10.0
: 18.0
:
CS
(1)
: Rubber
: Steel
Internals
- Size
Energy consumption
Vessel Diameter (ID)
Vessel Height
Vessel Tot. Volume
Residence time
Rotational speed
Vessel Material
Lining Material
Lining Material
[mm]
[kWh]
[m]
[m]
[m3]
[min]
[rpm]
:
:
Process Conditions
Feed
Stream Data
1
none
Product
Temperature
[oC]
: 25.0
: 25.0
Pressure
[atm]
:
1.0
:
1.0
Particle size
[mm]
:
0.1
:
0.05
Mass Flow
[kg/s]
:
0.021
:
0.021
Remarks:
(1) CS = Carbon Steel
Appendix D.5 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-95
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
FILTER – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
S301
Filter 1
In Series
In Parallel
:
Type
: - Rotating Vacuum Drum
Position
: - Horizontal
- Vertical
[m]
[m]
[m2]
: 0.6
: 1.2
: 1.94
: SS316
: Polypropylene
: Filter / Wash / Dewater
: 0.25
: 0.07
[rpm]
[kW]
(1)
(2)
Process Conditions
Feed
Stream Data
Temperature
[oC]
Pressure
[atm]
1
none
General Data
- Buffer / Storage / Separation / Reaction
Service
Vessel Diameter (ID)
Vessel Length
Filter Total Area
Vessel Material
Filter Material
Zoning
Rotational speed
Vacuum pump
:
:
3
Solids
Filtrate
:
25.0
:
25.0
:
25.0
:
1.0
:
1.0
:
0.6
Density
[kg/m ]
: 1052
: 1135
: 1050
Mass Flow
[kg/s]
:
1.040
:
0.126
:
0.914
Particle size
[m]
:
5  10-4
:
5  10-4
:
n.a.
Composition
mol%
wt%
mol%
wt%
mol%
wt%
Calcium Carbonate
Calcium Lactate
Chitin/Chitosan
Lactic acid
Protein
Water
Others (Ammonium sulphate, CO2, ethanol,
lipids, glucose/carbohydrates, biomass, H2SO4)
Remarks:
(1) SS = Stainless steel
(2) Filter = 37.5 %, Dewater = 62.5 %
0.10
0.87
0.31
0.33
0.93
96.37
1.09
0.45
8.69
2.71
1.34
5.24
79.35
2.22
1.14
0.28
3.65
0.10
4.86
89.75
0.22
3.65
1.94
22.20
0.30
19.15
51.60
1.16
0.00
0.93
0.00
0.35
0.57
96.98
1.17
0.01
9.62
0.03
1.48
3.33
83.17
2.36
Appendix D.4 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-96
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
FILTER – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
S302
Filter 2
In Series
In Parallel
:
Type
: - Rotating Vacuum Drum
Position
: - Horizontal
- Vertical
[m]
[m]
[m2]
: 1.1
: 2.2
: 7.53
: SS316
: Polypropylene
: Filter / Wash / Dewater
: 0.25
: 0.044
[rpm]
[kW]
(1)
(2)
Process Conditions
Feed
Stream Data
Temperature
[oC]
Pressure
[atm]
1
none
General Data
- Buffer / Storage / Separation / Reaction
Service
Vessel Diameter (ID)
Vessel Length
Filter Total Area
Vessel Material
Filter Material
Zoning
Rotational speed
Vacuum pump
:
:
3
Solids
:
39.88
:
39.88
:
1.0
:
1.0
Filtrate
: 39.88
:
0.6
Density
[kg/m ]
: 992
: 1149
: 970
Mass Flow
[kg/s]
:
0.645
:
0.116
:
Particle size
[m]
:
1  10-4
:
1  10-4
: n.a.
Composition
mol%
wt%
Calcium Chloride
Chitin/Chitosan
Hydrochloric acid
Protein
Water
Others (Calcium carbonate, Calcium lactate, CO2,
lactic acid, lipids, glucose/carbohydrates,
biomass, H2SO4)
Remarks:
(1) SS = Stainless steel
(2) Filter = 37.5 %, Dewater = 62.5 %
0.14
0.00
0.58
0.03
99.14
0.11
0.75
4.32
0.98
3.73
89.45
0.77
mol%
0.05
3.72
0.19
4.80
91.0
0.24
wt%
0.17
23.75
0.23
19.8
54.8
1.25
0.529
mol%
wt%
0.14
0.00
0.58
0.03
99.14
0.11
0.87
0.05
1.14
0.20
97.06
0.68
Appendix D.4 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-97
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
FILTER – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
S401
Filter 3
In Series
In Parallel
:
Type
: - Rotating Vacuum Drum
Position
: - Horizontal
- Vertical
[m]
[m]
[m2]
: 1.7
: 3.4
: 17.80
: CS
: Polypropylene
: Filter / Wash / Dewater
: 0.2
: 0.093
[rpm]
[kW]
(1)
(2)
Process Conditions
Feed
Stream Data
Temperature
[oC]
Pressure
[atm]
1
none
General Data
- Buffer / Storage / Separation / Reaction
Service
Vessel Diameter (ID)
Vessel Length
Filter Total Area
Vessel Material
Filter Material
Zoning
Rotational speed
Vacuum pump
:
:
3
Solids
:
27.0
:
27.0
:
1.0
:
1.0
Filtrate
: 27.0
:
0.6
Density
[kg/m ]
: 995
: 1110
: 990
Mass Flow
[kg/s]
:
1.015
:
0.056
:
0.959
Particle size
[m]
:
5  10-5
:
5  10-5
:
n.a.
Composition
mol%
wt%
mol%
wt%
mol%
wt%
Acetic acid
Chitin/Chitosan
Protein
Sodium Hydroxide
Water
Others (Calcium Carbonate, Calcium lactate,
CaCl2, glucose/carbohydrates, NaCl)
0.21
0.33
0.43
20.32
78.66
0.05
0.53
2.35
2.27
34.50
60.16
0.19
0.00
7.73
0.22
0.06
91.71
0.28
0.00
42.51
0.92
0.08
55.16
1.33
0.22
0.00
0.44
21.23
78.07
0.04
0.56
0.02
2.34
36.49
60.44
0.15
Remarks:
(1) SS = Stainless steel
(2) Filter = 37.5 %, Wash = 31.25 %, Dewater = 31.25 %
Appendix D.4 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-98
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
VESSEL – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
S201
In Series
: 1
Benzoic acid extractor
In Parallel : none
General Data
: - Buffer / Storage / Separation / Reaction
Type
: - Kennedy Extractor
Position
: - Horizontal
- Vertical
: - Demister / Plate / Coil / Rotary blade
(1)
: - none / Open / Closed / External Hxgr /________
: n.a.
: n.a.
: n.a.
: 0.5
: 0.5
: 0.5
: 0.125
(2)
: SS304
(3)
:
Internals
Heating/Cooling medium
- Type
- Quantity
- Press./Temp.’s
Vessel Length
Vessel Height
Vessel Width
Vessel Tot. Volume
Vessel Material
Other
[kg/s]
[bara/oC]
[m]
[m]
[m]
[m3]
Process Conditions
Feed
Stream Data
Extract
Solvent flow
Spend solids
Temperature
[oC]
:
25.7
:
25.7
:
25.7
Pressure
[atm]
:
1.0
:
1.0
:
1.0
Density
[kg/m3]
: 1136
: 875
:1135
Mass Flow
[kg/s]
:
:
:
0.363
0.018
0.344
Composition
mol%
wt%
mol%
wt%
mol%
wt%
Benzoic acid
Ethanol
Shrimp shells
Water
0.2
2.0
8.2
89.6
1.0
3.3
37.2
58.5
5.8
50.5
0.0
43.7
18.7
60.8
0.0
20.5
0.0
0.1
8.5
91.4
0.0
0.2
39.3
60.5
Remarks:
(1) Rotary blade with 0.25 m radius at 0.5 rpm.
(2) Vessel is cubical. Effective volume of 0.036 m3.
(3) CS = Carbon Steel
Appendix D.7 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-99
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
VESSEL – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
R101 a/b
In Series
: none
Lactic acid fermentor
In Parallel : 2
General Data
: - Buffer / Storage / Separation / Reaction
Type
: -
Position
: - Horizontal
- Vertical
: - Demister / Plate / Coil / _________
: - none / Open / Closed / External Hxgr /________
: Cooling water
: 0.90
: 1 bara/20-30 C
: 1.43
: 2.14
: 3.41
: SS304
(1)
:
Internals
Heating/Cooling medium
- Type
- Quantity
- Press./Temp.’s
Vessel Diameter (ID)
Vessel Height
Vessel Tot. Volume
Vessel Material
Other
[kg/s]
[bara/oC]
[m]
[m]
[m3]
CSTR
Process Conditions
Feed
Stream Data
Top
Bottom
Temperature
[oC]
:
43.2
: 40.0
: 40.0
Pressure
[bara]
:
1.0
: 1.0
:
Density
[kg/m3]
: 1128
: 1.96
:1115
Mass Flow
[kg/s]
:
: 4.51  10-4
:
mol%
mol%
wt%
0.01
0.00
2.70
4.28
0.11
92.89
0.08
0.01
11.95
5.17
0.55
82.24
0.494
Composition
mol%
wt%
Ammonium Sulphate
Carbon dioxide
Glucose
Lactic acid
Lactobacillus sp.
Sulphuric acid
Water
0.10
1.19
0.69
3.49
0.03
94.50
0.64
10.29
2.98
4.13
0.14
81.82
100
-
wt%
100
-
1.0
0.493
Remarks:
(1) SS = Stainless steel
Appendix D.2 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-100
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
VESSEL – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
R301a/R301b
In Series
: 2
Chitin deproteinization and
In Parallel : none
demineralization
General Data
: - Buffer / Storage / Separation / Reaction
Type
: - PFR with baffles and stirrers
Position
: - Horizontal
- Vertical
: - Demister / Plate / Coil / _________
: - none / Open / Closed / External Hxgr /________
: Chilled water
: 2.7
: 1.0 bara /5-15 C
: 1.3
: 15.7
: 7.1
: SS304
:
Process Conditions
Feed
Top
Bottom
Internals
Heating/Cooling medium
- Type
- Quantity
- Press./Temp.’s
Vessel Diameter (ID)
Vessel Height
Vessel Tot. Volume
Vessel Material
Other
[kg/s]
[bara/oC]
[m]
[m]
[m3]
Stream Data
Temperature
[oC]
:
25.2
Pressure
[bara]
:
1.0
Density
[kg/m3]
Mass Flow
[kg/s]
: 25.0
:
25.0
:
1.0
:
1.0
: 1075
:
1.8
: 1052
:
:
0.017
:
1.056
Composition
mol%
wt%
Calcium Carbonate
Calcium lactate
CO2
Chitin/Chitosan
Lactic acid
Protein
Water
Others (Ammonium sulphate, lipids, glucose,
ethanol, H2SO4, Biomass)
Remarks:
0.96
0.31
2.05
0.92
94.71
1.05
4.36
2.67
8.37
5.15
77.34
2.11
mol%
100
-
wt%
100
-
1.039
mol%
wt%
0.10
0.87
0.03
0.31
0.33
0.93
96.37
1.06
0.45
8.69
0.07
2.72
1.34
5.24
79.35
2.14
Appendix D.3 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-101
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
VESSEL – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
R302
In Series
: 1
Chitin Purification
In Parallel : none
General Data
: - Buffer / Storage / Separation / Reaction
Type
: - PFR with baffles and stirrers
Position
: - Horizontal
- Vertical
: - Demister / Plate / Coil / _________
: - none / Open / Closed / External Hxgr /________
: n.a.
: n.a.
: n.a.
: 0.63
: 15.2
: 1.55
: SS316
:
Internals
Heating/Cooling medium
- Type
- Quantity
- Press./Temp.’s
Vessel Diameter (ID)
Vessel Height
Vessel Tot. Volume
Vessel Material
Other
[kg/s]
[bara/oC]
[m]
[m]
[m3]
Process Conditions
Feed
Stream Data
Top
Bottom
Temperature
[oC]
:
25.0
: 39.9
: 39.9
Pressure
[bara]
:
1.0
: 1.0
:
Density
[kg/m3]
: 1029
: 1.71
: 992
Mass Flow
[kg/s]
:
: 0.002
:
0.647
Composition
mol%
wt%
Calcium carbonate
CO2
Chitin/Chitosan
HCl
Protein
Water
Others (CaCl2, Ca lactate, Glucose, lactic acid,
lipids, H2SO4)
Remarks:
0.14
0.45
0.80
0.60
97.94
0.07
0.71
4.31
1.47
3.72
89.13
0.66
mol%
100
-
wt%
100
-
1.0
0.645
mol%
wt%
0.00
0.04
0.00
0.58
0.03
99.14
0.21
0.04
0.08
4.32
0.98
3.73
89.45
1.40
Appendix D.3 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-102
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
VESSEL – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
R401
In Series
: 1
Deacetylation
In Parallel : none
General Data
: - Buffer / Storage / Separation / Reaction
Type
: - PFR with baffles and stirrers
Position
: - Horizontal
- Vertical
: - Demister / Plate / Coil / _________
: - none / Open / Closed / External Hxgr /________
: Cooling water
: 0.18
: 1 bara/ 20-30 C
: 0.72
: 17.3
: 2.3
: SS304
:
Internals
Heating/Cooling medium
- Type
- Quantity
- Press./Temp.’s
Vessel Diameter (ID)
Vessel Height
Vessel Tot. Volume
Vessel Material
Other
[kg/s]
[bara/oC]
[m]
[m]
[m3]
Process Conditions
Feed
Stream Data
Top
Bottom
Temperature
[oC]
: 121.0
: -
: 121.0
Pressure
[atm]
:
: -
:
Density
[kg/m3]
: 804
: -
: 802
Mass Flow
[kg/s]
:
: -
:
2.3
0.895
Composition
mol%
wt%
Acetic acid
Chitin/Chitosan
Protein
NaOH
H2O
Others (CaCO3, Ca lactate, CaCl2, glucose, HCl,
NaCl)
Remarks:
0.40
0.51
24.06
74.98
0.05
3.08
2.57
39.16
54.97
0.22
mol%
-
2.3
0.895
wt%
mol%
-
0.22
0.00
0.44
21.23
78.07
0.04
wt%
0.60
2.66
2.57
39.13
54.81
0.83
Appendix D.3 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-103
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HEAT EXCHANGER – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
C201
In Series
: 1
Ethanol evaporator
In Parallel : none
General Data
Service
: - Heat Exchanger
- Vaporizer
- Cooler
- Reboiler
- Condenser (Air cooled)
Type
: - Fixed Tube Sheets - Plate Heat Exchanger
- Floating Head
- Finned Tubes
- Hair Pin
- Thermosyphon
- Double Tube
- Forced Evaporator
Position
: - Horizontal
- Vertical
Capacity
[kW]
:
14.09
(Calc.)
Heat Exchange Area
[m2]
:
0.37
(Calc.)
2o
500
(Approx.)
Overall Heat Transfer Coefficient
[W/m  C] :
Log. Mean Temperature Diff. (LMTD) [oC]
:
77.44
Passes Tube Side
Passes Shell Side
:
:
Correction Factor LMTD (min. 0.75)
Corrected LMTD
Medium
1
n.a.
(1)
(2)
:
1.0
[ C]
:
77.44
Process Conditions
Shell Side
: Ethanol/Benzoic acid
o
Tube Side
LP Steam
Mass Stream
Mass Stream to
- Evaporize
- Condense
[kg/s]
:
1.88  10-2
6.17  10-3
[kg/s]
[kg/s]
:
:
1.15  10-2
n.a.
Average Specific Heat
Heat of Evap. / Condensation
[kJ/kgoC]
[kJ/kg]
:
:
4.2
-
2.13
2163.3
Temperature IN
Temperature OUT
[oC]
[oC]
:
:
77.0
87.0
190
133.5
Pressure
[bara]
:
3.0
Atm.
Material (3)
:
CS
CS
Remarks:
(1) 8 tubes, 12 mm ID, 16 mm OD. 20 mm square pitch. Length = 1 m. 0.19 bar pressure drop
(2) 92 mm ID, 15 % baffle cut. 0.002 bar pressure drop
(3) CS = carbon steel
Appendix D.6 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-104
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HEAT EXCHANGER – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
E101A/B
In Series
: 1
Glucose Sterilizer
In Parallel : none
General Data
Service
: - Heat Exchanger
- Vaporizer
- Cooler
- Reboiler
- Condenser (Air cooled)
Type
: - Fixed Tube Sheets - Plate Heat Exchanger
- Floating Head
- Finned Tubes
- Hair Pin
- Thermosyphon
- Double Tube
- Forced Evaporator
Position
: - Horizontal
- Vertical
Capacity
[kW]
:
252.87
(Calc.)
Heat Exchange Area
[m2]
:
2.43
(Calc.)
2o
6550/5700
(1)
(Approx.)
Overall Heat Transfer Coefficient
[W/m  C] :
Log. Mean Temperature Diff. (LMTD) [oC]
:
16.55/47.1
(2)
No. of plates
Stream pass type
:
:
Correction Factor LMTD (min. 0.75)
Corrected LMTD
Medium
52
4/4
(3)
:
0.88/1
[ C]
:
14.56/47.1
Process Conditions
Side A
:
Glucose
o
Side B
MP Steam
Mass Stream
Mass Stream to
- Evaporize
- Condense
[kg/s]
:
[kg/s]
[kg/s]
:
:
Average Specific Heat
Heat of Evap. / Condensation
[kJ/kgoC]
[kJ/kg]
:
:
3.95
n.a.
n.a.
2013
Temperature IN
Temperature OUT
[oC]
[oC]
:
:
25.0
43.2
180.0
180.0
0.556
0.0183
0.0183
7.5
10.0
Pressure
[bara]
:
SS
SS
Material (4)
:
Remarks:
(1) 6550 for heat exchanger between glucose feed and glucose product and 5700 between glucose and
M.P steam.
(2) 16.55 for heat exchanger between glucose feed and glucose product and 47.1 between glucose and
M.P steam.
(3) Number of plates are 48 or feed-product exchanger while 4 for glucose and M.P steam.
(4) SS = Stainless steel
Appendix D.6 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-105
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HEAT EXCHANGER – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
E102A/B
In Series
: 1
N-Source Sterilizer
In Parallel : none
General Data
Service
: - Heat Exchanger
- Vaporizer
- Cooler
- Reboiler
- Condenser (Air cooled)
Type
: - Fixed Tube Sheets - Plate Heat Exchanger
- Floating Head
- Finned Tubes
- Hair Pin
- Thermosyphon
- Double Tube
- Forced Evaporator
Position
: - Horizontal
- Vertical
Capacity
[kW]
:
75.74
(Calc.)
Heat Exchange Area
[m2]
:
0.73
(Calc.)
2o
6550 /5700
(1)
(Approx.)
Overall Heat Transfer Coefficient
[W/m  C] :
Log. Mean Temperature Diff. (LMTD) [oC]
:
16.55/47.1
(2)
No. of plates
Stream pass type
:
:
Correction Factor LMTD (min. 0.75)
Corrected LMTD
19
4/4
(3)
:
0.88
[ C]
:
14.56
Process Conditions
Side A
:
(NH4)2SO4
Side B
MP Steam
Mass Stream
Mass Stream to
- Evaporize
- Condense
[kg/s]
:
0.157
6.1  10-3
[kg/s]
[kg/s]
:
:
n.a.
6.1  10-3
Average Specific Heat
Heat of Evap. / Condensation
[kJ/kgoC]
[kJ/kg]
:
:
4.18
n.a.
n.a.
2013
Temperature IN
Temperature OUT
[oC]
[oC]
:
:
Medium
o
25.0
43.2
180.0
180.0
7.5
Pressure
[bara]
:
10.0
SS
Material (4)
:
SS
Remarks:
(5) 6550 for heat exchanger between (NH4)2SO4 feed and (NH4)2SO4 product and 5700 between
(NH4)2SO4 and M.P steam.
(6) 16.55 for heat exchanger between (NH4)2SO4 feed and (NH4)2SO4 product and 47.1 between
(NH4)2SO4 and M.P steam.
(7) Number of plates are 16 or feed-product exchanger while 3 for (NH4)2SO4 and M.P steam.
(8) SS = Stainless steel
Appendix D.6 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-106
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HEAT EXCHANGER – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
E201
In Series
: 1
Feed C201 Preheater
In Parallel : none
General Data
Service
: - Heat Exchanger
- Vaporizer
- Cooler
- Reboiler
- Condenser (Air cooled)
Type
: - Fixed Tube Sheets - Plate Heat Exchanger
- Floating Head
- Finned Tubes
- Hair Pin
- Thermosyphon
- Double Tube
- Forced Evaporator
Position
: - Horizontal
- Vertical
Capacity
[kW]
:
0.321
(Calc.)
Heat Exchange Area
[m2]
:
0.0073
(Calc.)
2o
750
(Approx.)
Overall Heat Transfer Coefficient
[W/m  C] :
Log. Mean Temperature Diff. (LMTD) [oC]
:
58.86
Inner Tube Side
Outer Tube Side
:
:
Correction Factor LMTD (min. 0.75)
Corrected LMTD
Medium
1
1
:
1
[ C]
:
58.86
Process Conditions
Inner Side
:
LP Steam
o
Outer Side
Ethanol
Mass Stream
Mass Stream to
- Evaporize
- Condense
[kg/s]
:
1.47  10-4
0.018
[kg/s]
[kg/s]
:
:
1.47  10-4
n.a.
Average Specific Heat
Heat of Evap. / Condensation
[kJ/kgoC]
[kJ/kg]
:
:
2163.3
Temperature IN
Temperature OUT
[oC]
[oC]
:
:
133.5
133.5
72.2
77.0
Pressure
Material (1)
Remarks:
(1) CS = carbon steel
[bara]
:
:
3.0
CS
3.2
CS
3.73
-
Appendix D.6 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-107
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HEAT EXCHANGER – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
E202
In Series
: 1
Ethanol heat exchanger
In Parallel : none
General Data
Service
: - Heat Exchanger
- Vaporizer
- Cooler
- Reboiler
- Condenser (Air cooled)
Type
: - Fixed Tube Sheets - Plate Heat Exchanger
- Floating Head
- Finned Tubes
- Hair Pin
- Thermosyphon
- Double Tube
- Forced Evaporator
Position
: - Horizontal
- Vertical
Capacity
[kW]
:
3.12
(Calc.)
Heat Exchange Area
[m2]
:
0.47
(Calc.)
2o
200
(Approx.)
Overall Heat Transfer Coefficient
[W/m  C] :
Log. Mean Temperature Diff. (LMTD) [oC]
:
33.2
Inner Tube Side
Outer Tube Side
:
:
Correction Factor LMTD (min. 0.75)
Corrected LMTD
Medium
1
1
:
1
[ C]
:
33.2
Process Conditions
Inner Side
:
Ethanol
o
Outer Side
Ethanol
Mass Stream
Mass Stream to
- Evaporize
- Condense
[kg/s]
:
0.012
0.018
[kg/s]
[kg/s]
:
:
0.012
n.a.
Average Specific Heat
Heat of Evap. / Condensation
[kJ/kgoC]
[kJ/kg]
:
:
260.0
3.32
-
Temperature IN
Temperature OUT
[oC]
[oC]
:
:
87.2
87.2
25.0
77.2
Pressure
Material (1)
Remarks:
(1) CS = carbon steel
[bara]
:
:
1.0
CS
4.0
CS
Appendix D.6 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-108
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HEAT EXCHANGER – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
E203
In Series
: 1
Top C201Condenser
In Parallel : none
General Data
Service
: - Heat Exchanger
- Vaporizer
- Cooler
- Reboiler
- Condenser (Air cooled)
Type
: - Fixed Tube Sheets - Plate Heat Exchanger
- Floating Head
- Finned Tubes
- Hair Pin
- Thermosyphon
- Double Tube
- Forced Evaporator
Position
: - Horizontal
- Vertical
Capacity
[kW]
:
12.27
(Calc.)
Heat Exchange Area
[m2]
:
0.74
(Calc.)
2o
500
(Approx.)
Overall Heat Transfer Coefficient
[W/m  C] :
Log. Mean Temperature Diff. (LMTD) [oC]
:
33.2
Inner Tube Side
Outer Tube Side
:
:
Correction Factor LMTD (min. 0.75)
Corrected LMTD
Medium
1
1
:
1
[ C]
:
33.2
Process Conditions
Inner Side
:
Ethanol
o
Mass Stream
Mass Stream to
- Evaporize
- Condense
[kg/s]
:
[kg/s]
[kg/s]
:
:
Average Specific Heat
Heat of Evap. / Condensation
[kJ/kgoC]
[kJ/kg]
Temperature IN
Temperature OUT
Pressure
Material (1)
Remarks:
(1) CS = carbon steel
Outer Side
Cooling water
0.012
0.582
:
:
3.32
-
4.22
-
[oC]
[oC]
:
:
87.2
35.0
20.0
25.0
[bara]
:
:
1.0
CS
1.0
CS
Appendix D.6 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-109
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HEAT EXCHANGER – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
E401
In Series
: 1
R401 heat exchanger
In Parallel : none
General Data
Service
: - Heat Exchanger
- Vaporizer
- Cooler
- Reboiler
- Condenser (Air cooled)
Type
: - Fixed Tube Sheets - Plate Heat Exchanger
- Floating Head
- Finned Tubes
- Hair Pin
- Thermosyphon
- Double Tube
- Fixed Shell and tube
Position
: - Horizontal
- Vertical
Capacity
[kW]
:
131.78
(Calc.)
Heat Exchange Area
[m2]
:
5.48
(Calc.)
2o
1750
(Approx.)
Overall Heat Transfer Coefficient
[W/m  C] :
Log. Mean Temperature Diff. (LMTD) [oC]
:
15.4
No of Passes Tube Side
No of Passes Shell Side
:
:
Correction Factor LMTD (min. 0.75)
Corrected LMTD
Medium
3
6
:
0.8
[ C]
:
12.32
Process Conditions
Tube Side
:
NaOH/Chitosan
o
Mass Stream
Mass Stream to
- Evaporize
- Condense
[kg/s]
:
[kg/s]
[kg/s]
:
:
Average Specific Heat
Heat of Evap. / Condensation
[kJ/kgoC]
[kJ/kg]
Temperature IN
Temperature OUT
Pressure
Material (1)
Remarks:
(1) CS = carbon steel
Shell Side
NaOH/Chitin
0.895
0.895
:
:
1.90
-
1.90
-
[oC]
[oC]
:
:
121.0
43.8
28.04
106.0
[bara]
:
:
7.6
CS
4.0
CS
Appendix D.6 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-110
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HEAT EXCHANGER – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
E402
In Series
: 1
Feed R401 preheater
In Parallel : none
General Data
Service
: - Heat Exchanger
- Vaporizer
- Cooler
- Reboiler
- Condenser (Air cooled)
Type
: - Fixed Tube Sheets - Plate Heat Exchanger
- Floating Head
- Finned Tubes
- Hair Pin
- Thermosyphon
- Double Tube
- Fixed Shell and tube
Position
: - Horizontal
- Vertical
Capacity
[kW]
:
25.35
(Calc.)
Heat Exchange Area
[m2]
:
1.01
(Calc.)
2o
1250
(Approx.)
Overall Heat Transfer Coefficient
[W/m  C] :
Log. Mean Temperature Diff. (LMTD) [oC]
:
19.0
No of Passes Tube Side
No of Passes Shell Side
:
:
Correction Factor LMTD (min. 0.75)
Corrected LMTD
Medium
1
2
:
1.0
[ C]
:
19.0
Process Conditions
Tube Side
:
LP Steam
o
Shell Side
NaOH/Chitin
Mass Stream
Mass Stream to
- Evaporize
- Condense
[kg/s]
:
0.012
[kg/s]
[kg/s]
:
:
0.012
Average Specific Heat
Heat of Evap. / Condensation
[kJ/kgoC]
[kJ/kg]
:
:
2163.3
1.89
-
Temperature IN
Temperature OUT
[oC]
[oC]
:
:
133.5
133.5
106.0
121.0
Pressure
Material (1)
Remarks:
(1) CS = carbon steel
[bara]
:
:
3.0
CS
3.3
CS
0.895
Appendix D.6 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-111
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
HEAT EXCHANGER – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
E403
In Series
: 1
Product R401 cooler
In Parallel : none
General Data
Service
: - Heat Exchanger
- Vaporizer
- Cooler
- Reboiler
- Condenser (Air cooled)
Type
: - Fixed Tube Sheets - Plate Heat Exchanger
- Floating Head
- Finned Tubes
- Hair Pin
- Thermosyphon
- Double Tube
- Fixed Shell and tube
Position
: - Horizontal
- Vertical
Capacity
[kW]
:
14.95
(Calc.)
Heat Exchange Area
[m2]
:
1.40
(Calc.)
2o
700
(Approx.)
Overall Heat Transfer Coefficient
[W/m  C] :
Log. Mean Temperature Diff. (LMTD) [oC]
:
15.9
No of Passes Tube Side
No of Passes Shell Side
:
:
Correction Factor LMTD (min. 0.75)
Corrected LMTD
Medium
1
2
:
0.96
[ C]
:
15.26
Process Conditions
Tube Side
:
NaOH/Chitosan
o
Mass Stream
Mass Stream to
- Evaporize
- Condense
[kg/s]
:
[kg/s]
[kg/s]
:
:
Average Specific Heat
Heat of Evap. / Condensation
[kJ/kgoC]
[kJ/kg]
Temperature IN
Temperature OUT
Pressure
Material (1)
Remarks:
(1) CS = carbon steel
Shell Side
Cooling water
0.895
0.71
:
:
1.90
-
4.22
-
[oC]
[oC]
:
:
43.8
25.0
20.0
25.0
[bara]
:
:
6.9
CS
1.0
CS
Appendix D.6 for calculation details
Designers :
A.A. Khan
S.L.Tai
H. Shibata
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-112
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-101 A/B
E101 Feed Pump
1
1
Operating Conditions & Physical Data
:
Glucose-Water
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
25.0
803.0
0.001
0.0324
[m /s]
:
Power
4.79e-04
[bara]
[bara]
:
:
9.70e-01
4.24
:
1.57e-01
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
1.74e-01
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm]
Electrical
Discharge Nozzle [mm]
Standard
110/220
Cooled Bearings
Cooled Stuffing Box
Clock /
Smothering Gland
Counter Cl.
If yes
Combined /
- Seal Liquid
two parts
Yes
- Splash Rings
No
- Packing Type
Yes
- Mechanical Seal
- N.P.S.H.
[m]
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
HT Steel
Shaft Box
HT Steel
none
:
4.24
25.0
Test Pressure
:
:
:
:
:
38.1
38.1
Yes / No
Yes / No
Yes / No
:
:
:
:
:
Yes / No
Yes / No
Yes / No
9.38
:
:
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-113
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-102 A/B
E102 Feed Pump
1
1
Operating Conditions & Physical Data
:
Ammonium Sulphate-Water
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
25.0
912.0
0.001
0.0324
[m /s]
:
Power
1.60e-04
[bara]
[bara]
:
:
8.68e-01
4.37
:
5.59e-02
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
6.21e-02
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm]
Electrical
Discharge Nozzle [mm]
Standard
110/220
Cooled Bearings
Cooled Stuffing Box
Clock /
Smothering Gland
Counter Cl.
If yes
Combined /
- Seal Liquid
two parts
Yes
- Splash Rings
No
- Packing Type
Yes
- Mechanical Seal
- N.P.S.H.
[m]
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
HT Steel
Shaft Box
HT Steel
none
:
4.37
25.0
Test Pressure
:
:
:
:
:
38.1
38.1
Yes / No
Yes / No
Yes / No
:
:
:
:
:
Yes / No
Yes / No
Yes / No
42.1
:
:
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
CPD 3264
D-114
CPD3264
: December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-103 A/B
R101A-B Feed Pump
1
1
Operating Conditions & Physical Data
:
Glucose-Water
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
39.9
803.0
0.001
0.0324
[m /s]
:
Power
4.79e-04
[bara]
[bara]
:
:
3.93
6.26
:
1.12e-01
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
1.242e-01
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm]
Electrical
Discharge Nozzle [mm]
Standard
110/220
Cooled Bearings
Cooled Stuffing Box
Clock /
Smothering Gland
Counter Cl.
If yes
Combined /
- Seal Liquid
two parts
Yes
- Splash Rings
No
- Packing Type
Yes
- Mechanical Seal
- N.P.S.H.
[m]
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
HT Steel
Shaft Box
HT Steel
none
:
6.26
39.9
Test Pressure
:
:
:
:
:
38.1
38.1
Yes / No
Yes / No
Yes / No
:
:
:
:
:
Yes / No
Yes / No
Yes / No
49.4
:
:
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2)
MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
CPD 3264
D-115
CPD3264
: December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-104 A/B
R101A-B Feed Pump
1
1
Operating Conditions & Physical Data
:
Ammonium Sulphate-Water
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
39.9
912.0
0.001
0.0324
[m /s]
:
Power
1.60e-04
[bara]
[bara]
:
:
3.80
6.12
:
3.70e-02
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
4.11e-02
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm]
Electrical
Discharge Nozzle [mm]
Standard
110/220
Cooled Bearings
Cooled Stuffing Box
Clock /
Smothering Gland
Counter Cl.
If yes
Combined /
- Seal Liquid
two parts
Yes
- Splash Rings
No
- Packing Type
Yes
- Mechanical Seal
- N.P.S.H.
[m]
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
HT Steel
Shaft Box
HT Steel
none
:
6.12
39.9
Test Pressure
:
:
:
:
:
38.1
38.1
Yes / No
Yes / No
Yes / No
:
:
:
:
:
Yes / No
Yes / No
Yes / No
42.1
:
:
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
CPD 3264
D-116
CPD3264
: December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-105A A/B
S101A Feed Pump
1
1
Operating Conditions & Physical Data
:
Lactic Acid-Water
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
39.9
1160.0
0.001
0.0324
[m /s]
:
Power
4.26e-04
[bara]
[bara]
:
:
1.15
5.14
:
1.70e-01
3
:
:
:
:
:
[V]
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC]
5.14
39.9
{ = v( pd - ps)102 }
:
0.9
:
1.88e-01
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm] :
Electrical
Discharge Nozzle [mm] :
Standard
110/220
Cooled Bearings
:
Cooled Stuffing Box
:
Clock /
Smothering Gland
:
Counter Cl.
If yes
Combined /
- Seal Liquid
:
two parts
Yes
- Splash Rings
:
No
- Packing Type
:
Yes
- Mechanical Seal
:
- N.P.S.H.
[m] :
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
:
HT Steel
Shaft Box
:
HT Steel
none
:
:
Test Pressure
38.1
38.1
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
9.87
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
CPD 3264
D-117
CPD3264
: December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-105B A/B
S101B Feed Pump
1
1
Operating Conditions & Physical Data
:
Lactic Acid-Water
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
39.9
1160.0
0.001
0.0324
[m /s]
:
Power
4.26e-04
[bara]
[bara]
:
:
1.15
5.14
:
1.70e-01
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC]
5.14
39.9
{ = v( pd - ps)102 }
:
0.9
:
1.88e-01
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm] :
Electrical
Discharge Nozzle [mm] :
Cooled Bearings
:
Cooled Stuffing Box
:
Clock /
Smothering Gland
:
Counter Cl.
If yes
Combined /
- Seal Liquid
:
two parts
Yes
- Splash Rings
:
No
- Packing Type
:
Yes
- Mechanical Seal
:
- N.P.S.H.
[m] :
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
:
HT Steel
Shaft Box
:
HT Steel
none
:
:
Test Pressure
38.1
38.1
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
9.87
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
CPD 3264
D-118
CPD3264
: December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-106 A/B
R301 Feed Pump
1
1
Operating Conditions & Physical Data
:
Lactic Acid
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
25.0
1110.0
0.001
0.0324
[m /s]
:
Power
4.79e-04
[bara]
[bara]
:
:
1.15
4.31
:
1.51e-01
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC]
4.31
25.0
{ = v( pd - ps)102 }
:
0.9
:
1.68e-01
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm] :
Electrical
Discharge Nozzle [mm] :
Standard
110/220
Cooled Bearings
:
Cooled Stuffing Box
:
Clock /
Smothering Gland
:
Counter Cl.
If yes
Combined /
- Seal Liquid
:
two parts
Yes
- Splash Rings
:
No
- Packing Type
:
Yes
- Mechanical Seal
:
- N.P.S.H.
[m] :
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
:
HT Steel
Shaft Box
:
HT Steel
none
:
:
Test Pressure
38.1
38.1
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
10.2
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
CPD 3264
D-119
CPD3264
: December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-201 A/B
C201 feed Pump
1
1
Operating Conditions & Physical Data
:
Ethanol-Water
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
51.4
846
0.00074
0.0324
[m /s]
:
Power
2.19e-5
[bara]
[bara]
:
:
1.02
4.0
:
6.52e-3
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC]
4.0
51.4
{ = v( pd - ps)102 }
:
0.9
:
7.25e-3
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm] :
Electrical
Discharge Nozzle [mm] :
Standard
110/220
Cooled Bearings
:
Cooled Stuffing Box
:
Clock /
Smothering Gland
:
Counter Cl.
If yes
Combined /
- Seal Liquid
:
two parts
Yes
- Splash Rings
:
No
- Packing Type
:
Yes
- Mechanical Seal
:
- N.P.S.H.
[m]
:
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
:
HT Steel
Shaft Box
:
HT Steel
none
:
:
Test Pressure
12.7
12.7
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
11.9
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-120
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-202 A/B
V201 feed Pump
1
1
Operating Conditions & Physical Data
:
Ethanol
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
25.0
837
0.00093
0.065
[m /s]
:
Power
4.93e-6
[bara]
[bara]
:
:
1.09
3.37
:
1.12e-3
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
1.25e-3
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm] :
Electrical
Discharge Nozzle [mm] :
Standard
110/220
Cooled Bearings
:
Cooled Stuffing Box
:
Clock /
Smothering Gland
:
Counter Cl.
If yes
Combined /
- Seal Liquid
:
two parts
Yes
- Splash Rings
:
No
- Packing Type
:
Yes
- Mechanical Seal
:
- N.P.S.H.
[m] :
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
:
HT Steel
Shaft Box
:
HT Steel
none
:
3.37
25.0
Test Pressure
12.7
12.7
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
12.5
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-121
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-203 A/B
S201 feed Pump
1
1
Operating Conditions & Physical Data
:
Ethanol-Water
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
32.3
816.0
0.00093
0.0324
[m /s]
:
Power
1.092e-5
[bara]
[bara]
:
:
1.07
1.90
:
1.60e-3
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC] :
32.3
{ = v( pd - ps)102 }
:
0.9
:
1.77e-3
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm] : 12.7
Electrical
Discharge Nozzle […]
: 12.7
Standard
110/220
Cooled Bearings
: Yes / No
Cooled Stuffing Box
: Yes / No
Clock /
Smothering Gland
: Yes / No
Counter Cl.
If yes
Combined /
- Seal Liquid
: Yes / No
two parts
Yes
- Splash Rings
: Yes / No
No
- Packing Type
:
Yes
- Mechanical Seal
: Yes / No
- N.P.S.H.
[m] : 12.9
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
:
HT Steel
Shaft Box
:
HT Steel
none
:
1.90
Test Pressure
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
HT Steel = High Tensile Steel
Designers
:
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-122
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-204 A/B
C201 bottom discharge Pump
1
1
Operating Conditions & Physical Data
:
Benzoic Acid-Water
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
87.2
919.0
0.0011
0.0324
[m /s]
:
Power
7.53e-6
[bara]
[bara]
:
:
1.10
1.31
:
1.60e-4
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
:
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
1.78e-4
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm] :
Electrical
Discharge Nozzle [mm] :
Standard
110/220
Cooled Bearings
:
Cooled Stuffing Box
:
Clock /
Smothering Gland
:
Counter Cl.
If yes
Combined /
- Seal Liquid
:
two parts
Yes
- Splash Rings
:
No
- Packing Type
:
Yes
- Mechanical Seal
:
- N.P.S.H.
[m] :
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
:
HT Steel
Shaft Box
:
HT Steel
none
1.31
87.2
Test Pressure
12.7
12.7
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
11.8
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A.Khan
H. Shibata
M.T.A.P. Kresnowati
S.L.Tai
Project ID-Number :
Date
:
CPD 3264
D-123
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-301 A/B
S301 feed Pump
1
1
Operating Conditions & Physical Data
:
Chitin-Water
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
25.0
1050.0
0.001
0.0324
[m /s]
:
Power
9.78e-4
[bara]
[bara]
:
:
1.02
4.20
:
3.10e-1
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
3.44e-1
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm]
Electrical
Discharge Nozzle [mm]
Standard
110/220
Cooled Bearings
Cooled Stuffing Box
Clock /
Smothering Gland
Counter Cl.
If yes
Combined /
- Seal Liquid
two parts
Yes
- Splash Rings
No
- Packing Type
Yes
- Mechanical Seal
- N.P.S.H.
[m]
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
HT Steel
Shaft Box
HT Steel
none
:
4.20
25.0
Test Pressure
:
:
:
:
:
38.1
38.1
Yes / No
Yes / No
Yes / No
:
:
:
:
:
Yes / No
Yes / No
Yes / No
9.61
:
:
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-124
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-302 A/B
V301 feed Pump
Operating
:
Installed Spare :
Operating Conditions & Physical Data
:
HCl
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
[m /s]
:
Power
5.23e-4
Suction Pressure
Discharge Pressure
(ps)
(pd)
[bara]
[bara]
:
:
1.06
2.17
Theoretical Power
[kW]
:
5.80e-02
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
1
1
:
:
:
:
:
[bara]
25.0
996.0
0.001
0.0324
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
6.06e-2
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm]
Electrical
Discharge Nozzle [mm]
Standard
110/220
Cooled Bearings
Cooled Stuffing Box
Clock /
Smothering Gland
Counter Cl.
If yes
Combined /
- Seal Liquid
two parts
Yes
- Splash Rings
No
- Packing Type
Yes
- Mechanical Seal
- N.P.S.H.
[m]
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
HT Steel
Shaft Box
HT Steel
none
:
2.17
25.0
Test Pressure
:
:
:
:
:
38.1
38.1
Yes / No
Yes / No
Yes / No
:
:
:
:
:
Yes / No
Yes / No
Yes / No
10.5
:
:
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-125
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER : P-303 A/B
NAME
: S301 filtrate Pump
Service
: Discharge Pump
Type
: Diaphragm
Number
:
2
1
1
Operating Conditions & Physical Data
:
Protein hydrolysate, Asthaxanthin etc.
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
25.0
1000.0
0.001
0.0324
[m /s]
:
Power
8.73e-4
[bara]
[bara]
:
:
1.08
1.68
:
5.25e-02
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
5.82e-2
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm]
Electrical
Discharge Nozzle [mm]
Standard
110/220
Cooled Bearings
Cooled Stuffing Box
Clock /
Smothering Gland
Counter Cl.
If yes
Combined /
- Seal Liquid
two parts
Yes
- Splash Rings
No
- Packing Type
Yes
- Mechanical Seal
- N.P.S.H.
[m]
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
HT Steel
Shaft Box
HT Steel
none
:
1.68
25.0
Test Pressure
:
:
:
:
:
38.1
38.1
Yes / No
Yes / No
Yes / No
:
:
:
:
:
Yes / No
Yes / No
Yes / No
10.3
:
:
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-126
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-304 A/B
R302 feed Pump
:
:
1
1
Operating Conditions & Physical Data
:
HCl-Chitin
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
25.0
1000.0
0.001
0.0324
[m /s]
:
Power
6.28e-4
[bara]
[bara]
:
:
1.02
2.27
:
7.81e-02
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Operating
Installed Spare
:
:
:
:
:
[bara]
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
8.67e-2
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm]
Electrical
Discharge Nozzle [mm]
Standard
110/220
Cooled Bearings
Cooled Stuffing Box
Clock /
Smothering Gland
Counter Cl.
If yes
Combined /
- Seal Liquid
two parts
Yes
- Splash Rings
No
- Packing Type
Yes
- Mechanical Seal
- N.P.S.H.
[m]
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
HT Steel
Shaft Box
HT Steel
none
:
2.27
25.0
Test Pressure
:
:
:
:
:
38.1
38.1
Yes / No
Yes / No
Yes / No
:
:
:
:
:
Yes / No
Yes / No
Yes / No
9.81
:
:
[bara] :
Remarks:
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-127
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-305 A/B
S302 Feed Pump
Operating
Installed Spare
1
1
Operating Conditions & Physical Data
:
HCl-Chitin
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
[m /s]
:
Power
6.50e-04
Suction Pressure
Discharge Pressure
(ps)
(pd)
[bara]
[bara]
:
:
0.97
3.52
Theoretical Power
[kW]
:
1.65e-01
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
:
:
:
:
:
:
:
[bara]
39.9
992.0
0.001
0.0324
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
1.84e-01
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm] :
Electrical
Discharge Nozzle [mm] :
Standard
110/220
Cooled Bearings
:
Cooled Stuffing Box
:
Clock /
Smothering Gland
:
Counter Cl.
If yes
Combined /
- Seal Liquid
:
two parts
Yes
- Splash Rings
:
No
- Packing Type
:
Yes
- Mechanical Seal
:
- N.P.S.H.
[m]
:
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
:
HT Steel
Shaft Box
:
HT Steel
none
:
3.52
39.9
Test Pressure
38.1
38.1
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
9.68
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
HT Steel = High Tensile Steel
Appendix D.8 for calculation details
Designers
:
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-128
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER : P-306 A/B
NAME
: S302 Filtrate Pump
Service
: Discharge Pump
Type
: Diaphragm
Number
:
2
1
1
Operating Conditions & Physical Data
:
HCl rich waste water
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
39.9
963.0
0.001
0.0324
[m /s]
:
Power
5.50e-04
[bara]
[bara]
:
:
1.05
1.68
:
3.43e-02
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
3.81e-02
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm]
Electrical
Discharge Nozzle [mm]
Standard
110/220
Cooled Bearings
Cooled Stuffing Box
Clock /
Smothering Gland
Counter Cl.
If yes
Combined /
- Seal Liquid
two parts
Yes
- Splash Rings
No
- Packing Type
Yes
- Mechanical Seal
- N.P.S.H.
[m]
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
HT Steel
Shaft Box
HT Steel
none
:
1.68
39.9
Test Pressure
:
:
:
:
:
38.1
38.1
Yes / No
Yes / No
Yes / No
:
:
:
:
:
Yes / No
Yes / No
Yes / No
10.8
:
:
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-129
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-401 A/B
V401 Feed Pump
1
1
Operating Conditions & Physical Data
:
NaOH
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
25.0
785.0
0.001
0.0324
[m /s]
:
Power
1.22e-04
[bara]
[bara]
:
:
1.08
3.90
:
3.44e-02
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
3.81e-02
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm]
Electrical
Discharge Nozzle [mm]
Standard
110/220
Cooled Bearings
Cooled Stuffing Box
Clock /
Smothering Gland
Counter Cl.
If yes
Combined /
- Seal Liquid
two parts
Yes
- Splash Rings
No
- Packing Type
Yes
- Mechanical Seal
- N.P.S.H.
[m]
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
HT Steel
Shaft Box
HT Steel
none
:
4.00
25.0
Test Pressure
:
:
:
:
:
25.4
25.4
Yes / No
Yes / No
Yes / No
:
:
:
:
:
Yes / No
Yes / No
Yes / No
13.6
:
:
[bara] :
Remarks:
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-130
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-402 A/B
R401 Feed Pump
1
1
Operating Conditions & Physical Data
:
NaOH-Chitin
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
25.0
531.0
0.001
0.0324
[m /s]
:
Power
1.11e-03
[bara]
[bara]
:
:
1.06
4.58
:
3.92e-01
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
4.35e-01
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm] :
Electrical
Discharge Nozzle [mm] :
Standard
110/220
Cooled Bearings
:
Cooled Stuffing Box
:
Clock /
Smothering Gland
:
Counter Cl.
If yes
Combined /
- Seal Liquid
:
two parts
Yes
- Splash Rings
:
No
- Packing Type
:
Yes
- Mechanical Seal
:
- N.P.S.H.
[m] :
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
:
HT Steel
Shaft Box
:
HT Steel
none
:
4.0
121.0
Test Pressure
38.1
38.1
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
13.1
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-131
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER :
NAME
:
Service
: Feed Pump
Type
: Diaphragm
Number
:
2
P-403 A/B
S401 Feed Pump
1
1
Operating Conditions & Physical Data
:
Chitosan-NaOH
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
121.0
802.0
0.001
0.0324
[m /s]
:
Power
1.12e-03
[bara]
[bara]
:
:
2.29
7.38
:
5.69e-01
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Remarks:
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
6.32e-01
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm]
Electrical
Discharge Nozzle [mm]
Standard
110/220
Cooled Bearings
Cooled Stuffing Box
Clock /
Smothering Gland
Counter Cl.
If yes
Combined /
- Seal Liquid
two parts
Yes
- Splash Rings
No
- Packing Type
Yes
- Mechanical Seal
- N.P.S.H.
[m]
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
HT Steel
Shaft Box
HT Steel
none
:
7.63
121.0
Test Pressure
:
:
:
:
:
38.1
38.1
Yes / No
Yes / No
Yes / No
:
:
:
:
:
Yes / No
Yes / No
Yes / No
28.8
:
:
[bara] :
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-132
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
DIAPHRAGM PUMP – SPECIFICATION SHEET
EQUIPMENT NUMBER : P-404 A/B
NAME
: S401 Filtrate discharge Pump
Service
: Discharge Pump
Type
: Diaphragm
Number
:
2
1
1
Operating Conditions & Physical Data
:
NaOH rich waste water
Pumped liquid
[oC]
[kg/m3]
[Ns/m2]
[bara]
Temperature
Density
Viscosity
Vapour Pressure
(T)
()
()
(pv)
Capacity
(v)
Suction Pressure
Discharge Pressure
(ps)
(pd)
Theoretical Power
[kW]
Pump Efficiency
Power at Shaft
[-]
[kW]
RPM
Drive
Type electrical motor
Tension
Rotational direction
:
:
:
:
31.0
895.0
0.001
0.0324
[m /s]
:
Power
5.84e-04
[bara]
[bara]
:
:
1.03
1.79
:
4.43e-02
3
[V]
:
:
:
:
:
Foundation Plate
:
Flexible Coupling
Pressure Gauge Suction
Pressure Gauge Discharge
Min. Overpressure above
pv/pm
:
:
:
[bar]
Pump House
Pump Rotor
Shaft
Special provisions
Operating Pressure
Operating
:
Installed Spare :
:
:
:
:
:
[bara]
at Temperature [oC] :
{ = v( pd - ps)102 }
:
0.9
:
4.92e-02
Construction Details (1)
1725
Nominal diameter
Suction Nozzle
[mm] :
Electrical
Discharge Nozzle [mm] :
Standard
110/220
Cooled Bearings
:
Cooled Stuffing Box
:
Clock /
Smothering Gland
:
Counter Cl.
If yes
Combined /
- Seal Liquid
:
two parts
Yes
- Splash Rings
:
No
- Packing Type
:
Yes
- Mechanical Seal
:
- N.P.S.H.
[m] :
0.1
{ = pmg }
Construction Materials (2)
MS
Wear Rings
:
HT Steel
Shaft Box
:
HT Steel
none
:
1.79
31.0
Test Pressure
38.1
38.1
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
11.4
[bara] :
Remarks:
(1) Single mechanical and fluid seal required. Further details to be specified by Rotating Equipment
specialist.
(2) MS = Mild Steel;
Designers
:
HT Steel = High Tensile Steel
A.A. Khan H. Shibata
S.L.Tai
M.T.A.P Kresnowati
Project ID-Number :
Date
:
CPD 3264
D-133
CPD3264
December 21st 2001
St-4931 Conceptual Process Design
1.
Production of Chitin and Chitosan from Shrimp Shells
Stream CO2
Exit velocity
Volumetric flow rate of CO2 = 0.011 m3/s
Cross-sectional area of stack =
 D2
4
= 0.785 m2
Exit velocity of gas from stack = 0.011/0.785 = 0.014 m/s
2.
Stream 210 (Benzoic acid)
Amount of benzoic acid in stream = 300 kg/day
Amount of solvent = 300 kg/day (50 % ethanol, 50 % H2O)
From the solubility data on Table 4.4.1, solvent of 50 % ethanol has a solubility of benzoic
acid of about 200 kg/ton-solvent.
Hence, 300 kg of solvent dissolves 60 kg of benzoic acid. Hence, 240 kg/day of benzoic acid
are in solids.
3.
Stream 305 (HCl)
Acidity of the stream:
Amount of solution = 45.2 tonnes/day = 45.2 m3/day (density = 1000 kg/m3)
Amount of HCl = 520 kg/day
Concentration of H2SO4 =
Amount of HCl (kg/day)
520

 0.32kmol / m3
3
Molecular weight (kg/kmol)  Amount of solution (m /day) 36.5  45.2
pH = - log [H+] = - log [0.32] = 0.50
4.
Stream 413 (NaOH)
Alkalinity of the stream:
Stream 304 and Stream 309 are added together. In stream 304, the main acidic component is
H2SO4 while in stream 309, HCl. Therefore neutralization that takes place, ignoring the weak
acids which are in small quantities.
a. HCl (aq) + NaOH (aq)  NaCl (aq) + H2O (l)
b. H2SO4 (aq) + 2 NaOH (aq)  Na2SO4 (aq) + H2O (l)
Amount of HCl
= 0.32 kmol/m3  45.2 m3/day solution = 14.5 kmols/day
Amount of H2SO4 = 0.05 kmol/m3  74.6 m3/day solution = 3.73 kmols/day
CPD 3264
E-2
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Amount of NaOH required = 14.5 + 23.73 = 21.92 kmols
Amount of NaOH available = 30.26 tonnes/day
Amount of solution = 50 m3
Amount of NaOH (kg/day) 30260

 756.5kmol / day
Molecular weight (kg/kmol)
40
Amount of NaOH remaining after neutralization = 756.5 – 21.92 = 734.6 kmols/day
After addition, the total solution volume is the sum of the solution in each stream = 45.2 + 74.6 +
50 = 170 m3/day
Concentration of NaOH =
Amount of HCl (kmol/day) 734.6

 4.3kmol / m3
3
Amount of solution (m /day) 170
pOH = -log [OH-] = - log [4.3] = -0.6
pH = 14 + 0.6 > 14.
The pH range is from 0 to 14. Hence, the pH of the stream is 14.
CPD 3264
E-3
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Total Capital Investment = 9.51 million €
Year 1
Year 2
=
=
4.76 million € (Design + Construction)
4.76 million € (Construction + Working Capital)
Table F. 1 Summary of Data for the Cash Flow Diagram
End Year
No.
Capital Costs
Annual
Cumulative
€ million
0
1 4,76E+00
2 4,76E+00
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Net Annual
Cash Flow
€ million
€ million
4,76E+00
9,51E+00
-4,76E+00
-4,76E+00
3,40E+02
3,40E+02
3,40E+02
3,40E+02
3,40E+02
3,40E+02
3,40E+02
3,40E+02
3,40E+02
3,40E+02
3,40E+02
3,40E+02
3,40E+02
3,40E+02
3,40E+02
Cumulative
Cash Flow
(NFW)
€ million
0
-4,76E+00
-9,51E+00
3,30E+02
6,70E+02
1,01E+03
1,35E+03
1,69E+03
2,03E+03
2,37E+03
2,71E+03
3,05E+03
3,39E+03
3,73E+03
4,07E+03
4,41E+03
4,75E+03
5,09E+03
Disc. Cash
flow at 13%
€ million
Cumulative
DCF at 13%
(NPW)
€ million
-4,21E+00
-3,72E+00
2,35E+02
2,08E+02
1,84E+02
1,63E+02
1,44E+02
1,28E+02
1,13E+02
1,00E+02
8,86E+01
7,84E+01
6,94E+01
6,14E+01
5,43E+01
4,81E+01
4,25E+01
-4,21E+00
-7,93E+00
2,28E+02
4,36E+02
6,20E+02
7,84E+02
9,28E+02
1,06E+03
1,17E+03
1,27E+03
1,36E+03
1,44E+03
1,51E+03
1,57E+03
1,62E+03
1,67E+03
1,71E+03
Figure F.1 Project Cash Flow Diagram
Cumulative cash flow, million €
6000
5000
4000
NFW
NPW
NPW
NPW
NPW
3000
2000
1000
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17
-1000
Time, years
CPD 3264
F-2
at 15 %
at 100 %
at 500 %
at 751 %
St-4931 Conceptual Process Design
Production of Chitin and Chitosan from Shrimp Shells
Table F.1 continued
End
Year
No.
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Cumulative
DCF at 100%
(NPW)
Eu million
-2,38E+00
-3,57E+00
3,89E+01
6,01E+01
7,08E+01
7,61E+01
7,87E+01
8,00E+01
8,07E+01
8,10E+01
8,12E+01
8,13E+01
8,13E+01
8,14E+01
8,14E+01
8,14E+01
8,14E+01
Cumulative
Cumulative
DCF at300% DCF at 500%
(NPW)
(NPW)
Eu million
Eu million
-1,19E+00
-1,49E+00
3,82E+00
5,15E+00
5,48E+00
5,56E+00
5,59E+00
5,59E+00
5,59E+00
5,59E+00
5,59E+00
5,59E+00
5,59E+00
5,59E+00
5,59E+00
5,59E+00
5,59E+00
-7,93E-01
-9,25E-01
6,48E-01
9,10E-01
9,54E-01
9,61E-01
9,63E-01
9,63E-01
9,63E-01
9,63E-01
9,63E-01
9,63E-01
9,63E-01
9,63E-01
9,63E-01
9,63E-01
9,63E-01
Cumulative
DCF at 700%
(NPW)
Eu million
Cumulative
DCF at 750%
(NPW)
Eu million
Cumulative
DCF at 751%
(NPW)
Eu million
Cumulative
DCF at 752%
(NPW)
Eu million
-5,95E-01
-6,69E-01
-5,23E-03
7,77E-02
8,81E-02
8,94E-02
8,95E-02
8,96E-02
8,96E-02
8,96E-02
8,96E-02
8,96E-02
8,96E-02
8,96E-02
8,96E-02
8,96E-02
8,96E-02
-5,60E-01
-6,25E-01
-7,21E-02
-7,04E-03
6,16E-04
1,52E-03
1,62E-03
1,64E-03
1,64E-03
1,64E-03
1,64E-03
1,64E-03
1,64E-03
1,64E-03
1,64E-03
1,64E-03
1,64E-03
-5,59E-01
-6,25E-01
-7,33E-02
-8,48E-03
-8,70E-04
2,46E-05
1,30E-04
1,42E-04
1,43E-04
1,44E-04
1,44E-04
1,44E-04
1,44E-04
1,44E-04
1,44E-04
1,44E-04
1,44E-04
-5,58E-01
-6,24E-01
-7,44E-02
-9,92E-03
-2,35E-03
-1,46E-03
-1,35E-03
-1,34E-03
-1,34E-03
-1,34E-03
-1,34E-03
-1,34E-03
-1,34E-03
-1,34E-03
-1,34E-03
-1,34E-03
-1,34E-03
CPD 3264
F-3