Workshop #5 Professor D. Olles 1. Evaluate arccos − 12 . 2. Evaluate sin(cos−1 2 3) . 3. Evaluate arctan(−1). 4. Find the exact value of the expressions: a. log4 64 b. log5 1 125 5. Solve for x: a. 3x−7 = 8 b. ln(x2 − 2e − 1) = 2 c. e2x + 2e2 = 15 6. Find the domain of the following functions, then sketch the their graphs labeling two point and the equations of any asymptotes. a. f (x) = − ln(x − 1) − 2 b. ln(−x) + 2 7. Find the inverse of y = 8. Let f (x) = a. f −1 4x+1 3x−2 . √ 1 − x, x ≤ 1. Find: (x) b. The domain of f (x) in interval notation. c. The domain of f −1 (x) in interval notation. d. The range of f (x) in interval notation. e. The range of f −1 (x) in interval notation. 9. Prove that the inverse of a linear function is also linear and the slopes of the two are reciprocals of each other. 1 Solutions 1. Evaluate arccos − 12 . 1 θ = arccos − 2 1 2 cos θ < 0 in the second and third quadrants. But, 0 ≤ θ ≤ π for inverse cosine. cos θ = − So, we will only examine the second quadrant. cos θ = 2. Evaluate sin(cos−1 1 π if θ = . 2 3 2π . In the second quadrant, θ = 3 1 2π arccos − = 2 3 2 3) . 2 −1 θ = cos 3 cos θ = √ 2 3 3 5 θ 2 a2 + 22 = 32 a2 + 4 = 9 a2 = 5 √ a= 5 √ 2 5 sin cos−1 = sin θ = 3 3 2 3. Evaluate arctan(−1). θ = arctan (−1) tan θ = −1 π π < θ < for inverse tangent. 2 2 So, we will only exam the fourth quadrant. π π tan = 1 in the first quadrant so, tan − = −1 in the fourth quadrant. 4 4 π arctan (−1) = − 4 tan θ < 0 in the second and fourth quardants. But, − 4. Find the exact value of the expressions: a. log4 64 b. log5 = log4 43 = 3 1 125 = log5 1 53 = log5 5−3 = −3 5. Solve for x: a. 3x−7 = 8 log3 3x−7 = log3 8 x − 7 = log3 8 x = 7 + log3 8 b. ln(x2 − 2e − 1) = 2 eln (x 2 −2e−1) = e2 x2 − 2e − 1 = e2 x2 = e2 + 2e + 1 x2 = (e + 1) 2 x = ± (e + 1) c. e2x + 2e2 = 15 e2x = 15 − 2e2 ln e2x = ln 15 − 2e2 2x = ln 15 − 2e2 1 ln 15 − 2e2 2 p x = ln (15 − 2e2 ) x= 3 6. Find the domain of the following functions, then sketch the their graphs labeling two point and the equations of any asymptotes. a. f (x) = − ln(x − 1) − 2 x−1>0 x>1 (1, ∞) 2 0 −2 −4 2 4 6 8 10 b. ln(−x) + 2 −x > 0 x<0 (−∞, 0) 4 2 0 −2 −4 −10 −8 −6 −4 −2 4 0 7. Find the inverse of y = √ 1 − x, x ≤ 1. √ y = 1−x p x= 1−y x2 = 1 − y x2 − 1 = −y y = 1 − x2 0 −20 −40 −60 −80 −100 −60 −40 −20 8. Let f (x) = 4x+1 3x−2 . 0 20 40 60 Find: a. f −1 (x) 4x + 1 3x − 2 4y + 1 x= 3y − 2 y= x(3y − 2) = 4y + 1 3xy − 2x = 4y + 1 3xy − 4y = 2x + 1 y(3x − 4) = 2x + 1 2x + 1 3x − 4 2x + 1 f −1 (x) = 3x − 4 y= b. The domain of f (x) in interval notation. 2 [ 2 −∞, ,∞ 3 3 5 c. The domain of f −1 (x) in interval notation. 4 [ 4 −∞, ,∞ 3 3 d. The range of f (x) in interval notation. 4 [ 4 −∞, ,∞ 3 3 e. The range of f −1 (x) in interval notation. 2 [ 2 −∞, ,∞ 3 3 9. Prove that the inverse of a linear function is also linear and the slopes of the two are reciprocals of each other. Let f (x) = mx+b be a linear function with slope m and y-intercept (0, b). y = mx + b x = my + b x − b = my x−b =y m x b y= − m m 1 b f −1 (x) = x − m m The slope of f (x) is m and the slope of f −1 (x) is the reciprocal 6 1 . m
© Copyright 2025 Paperzz