CYCLODEXTRINS: NEW OPPORTUNITIES FOR AQUEOUS CATALYSIS Anne Ponchel, Sébastien Tilloy and Eric Monflier* Université d’Artois, Laboratoire de Physico-Chimie des Interfaces – FRE CNRS 2485 – LENS – France Phone: 00 33 (0)3 3 21 79 17 72; Fax: 00 33 (0)3 3 21 79 17 55; email: [email protected] Biphasic aqueous catalysis Chemically modified cyclodextrins in biphasic aqueous catalysis Abbreviation Substituant Carbon bearing Average number (Z) the OCH3 group of OCH3 group by CD (DS) Hydrophilic surface H (-) (-) β-CD Main advantages of aqueous catalysis: catalysis: Substrate - Catalyst is easily recovered by separation of the aqueous and organic phase - Water is non-toxic, nonflammable, inexpensive, and environmentally friendly solvent - Use of organic solvent can be avoided Product Hydrophobic Cavity OZ OZ O O ZO Organic layer RAME-β-CD H and CH3 7 2, 3 and 6 12.6 (DS: 1.8) or 5 (DS: 0.7) (Z = CH3 or H) Water Main drawbacks of aqueous catalysis: catalysis: - Substrate or product must be stable in water - Use of water soluble ligands or dispersing agents is required to maintain catalyst in aqueous phase - Substrate must be partially soluble in the aqueous phase to avoid mass transfert limitation catalyst Cyclodextrins allow: - to increase the rate and selectivity of reactions catalyzed by water-soluble organometallic catalysts. - to stabilize catalytically active noble metal nanoparticles in water - to favour the dispersion of the Pd/C particles in water - to design new water soluble ligands for aqueous organometallic catalysis Cyclodextrin as mass transfer promoter in aqueous organometallic biphasic catalysis Stabilization of metal nanoparticles in water % 25 20 Organic Layer Organic Layer Product Product Substrate Substrate 15 10 5 Water-soluble organometallic catalyst Interfacial layer Aqueous layer The mechanism depends on the water-solubility of inclusion complexes. Interfacial layer NaBH4, RAME-CD H2O, RT RuCl3. H2O 1,0 1,5 2,0 2,5 3,0 3,5 Transmission Electron micrograph and size distribution of Ru(0) nanoparticles stabilized by RAME-β-CD (0.7) ; Mean size: 1.5 nm nm Ru (0) Water-soluble organometallic catalyst Aqueous layer Aqueous layer Inverse phase transfer catalysis Interfacial catalysis CDs stabilized Ru(0) nanoparticles were active in hydrogenation reaction CDs increase the conversion and selectivity in hydroformylation reaction RAME-CD / Ru(0) CHO Rh, Sulfoxanthphos CH3 (CH2)7 CH CH2 CO / H2 NaO3S SO3Na 40 100 Ph O H Rh P 80 P RAME-α α-CD (DS: 1.8): 100 % ethylbenzene RAME-β β -CD (DS: 1.8): 100 % ethylbenzene RAME-β β -CD (DS: 0.7): 100 % ethylcyclohexane RAME-γγ-CD (DS: 1.8): 100 % ethylcyclohexane Ph CO 60 20 (%) R RAME-CD or HEA16 / Ru(0) 1 bar H2, RT, H2O 40 20 0 + 1 bar H2, RT, H2O CH2 CHO (l) + CH3 (CH2)7 CH CH3 (b) CH3 (CH2)7 CH2 Additional steric stress of the CD cavity compelled the substrate to react preferentially by its terminal carbon. 0 Conversion l/b Selectiviy RAME-β-CD (-) HEA 16: t(100 %) = 15 h ; e.d. 50 % RAME-β β -CD (DS: 1.8): t(100 %) = 4 h ; e.d. 52 % RAME-α α-CD (DS: 1.8): t(100 %) = 6 h ; e.d. 74 % E. Monflier et al. Organometallics 2005, 24, 2070 E. Monflier et A. Roucoux. Chem. Commun. 2006, 296-298. E. Monflier et A. Roucoux. Dalton. Trans. 2007, in press, CDs as efficient dispersing agent of Pd/C in water and as mass transfer promoter New Ligands for aqueous organometallic catalysis Self-assembled supramolecular bidentate ligand Bulky supramolecular monodentate ligand Pd/C dispersion NH2 Product Substrate + + M Phase transfer PtCl2 += monoamino-β-CD n SO3Na n = NH2 SO3Na A H P = NH2 K2PtCl4 M P B = Hmonoamino-β-CD = P Dispersion HA With β-CD Without CD Aqueous phase Metal/Charcoal 2 SO3Na 2 HB 2 With RAME-β-CD Active in hydrogenation reaction Active in C-C coupling reaction E. Monflier et al. Angew. Chem. Int. Ed. 2007, 46, 3040-42 E. Monflier et al. Adv. Synth. Catal. 2004, 346, 1449-1456. Aqueous CD-Pd/C solutions were active in hydrodechloration, Suzuki and Heck reactions O Conclusion Cyclodextrins, Pd/C I CH CH CO2Et + byproducts OEt + H2O, N(Et)3 Z or E Entry Additive Conv. (%) Can CD also contribute to development of catalytic processes conducted in others green solvents (scCO2, ionic liquid)? YES Selectivity (%) E-isomer O CD can contribute to the development of aqueous catalytic processes (Increase reaction rate, chimio-, regio- and stereoselectivity and stability or availability of catalyst Z-isomer OC2 H5 OC 2H5 OAc O CDs increase the conversion and selectivity in Heck reaction O O AcO 1 - 33 45.5 0.4 33.2 20.9 2 β-CD 43 44.3 0.3 28.9 26.5 3 RAME-α-CD 57 75.9 0.1 12.7 11.3 4 RAME-β-CD 66 81.1 0.6 8.9 9.4 4 RAME-γ-CD 53 86.2 1.6 3.2 9.0 OAc P 7 O Rh E. Monflier et al. Org. Lett. 2006, 8, 4823-4826, E. Monflier et al. Catal. Comun. 2007, in press scCO2 / CO / H2 H E. Monflier et al. J. Phy.Chem. B.. 2007, 111, 2573-78
© Copyright 2026 Paperzz