Pre-Calculus Trig Unit 3 Review Name: _____________________________________ For numbers 1 – 8, use the following formulas to simplify the expression or verify the identity. Reciprocal Identities Even-Odd Identities Pythagorean Identities sin(–x) = –sin x cos(–x) = cos x tan(–x) = –tan x sin2 x + cos2 x = 1 csc(–x) = –sin x sec(–x) = sec x cot(–x) = –cot x 1 + cot2 x = csc2 x 1 + tan2 x = sec2 x sec 2 t tan t 1. tan(–x) cos x 2. cos θ csc θ 3. 4. cot(–x) sin x 5. cot(–x) sin (–x) 6. tan θ csc θ cos θ 7. cot x sec x sin x 8. sec α – sec α sin2 α Sum Formulas Difference Formulas cos (α + β) = cos α cos β – sin α sin β cos (α – β) = cos α cos β + sin α sin β sin (α + β) = sin α cos β + cos α sin β sin (α – β) = sin α cos β – cos α sin β tan (α + β) = tan (α – β) = For numbers 9 – 14, use a sum or difference formula to find the exact value of the expression. 9. cos (120° – 45°) 10. sin (60° – 45°) 11. tan (30° + 45°) 3π π + 12. cos 4 6 5π 13. sin 12 5π π + 14. tan 3 4 For numbers 15 – 17, write each expression as the sine, cosine, or tangent of an angle. Then find the exact value of the expression. 7π π 7π π cos − cos sin 15. sin 12 12 12 12 16. sin 40 cos 20 + cos 40 sin 20 4π 5 17. π 4π 1 − tan tan 5 5 tan π 5 + tan For numbers 18 – 21, use any of the previous formulas to simplify each expression. π 18. cos x − 2 19. cos (α + β ) + cos (α − β ) π 20. tan θ + 4 3π 21. sin x + 2 22. Use sin α = 4 7 , α lies in quadrant I, and sin β = , β lies in quadrant II to find the exact value of the following under the given 5 25 conditions. a) cos (α + β) b) sin (α + β) c) tan (α + β) Double-Angle Formulas Three Forms of the Double-Angle Formulas for cos 2θ For numbers 23 and 24, use the given information to find the exact value of each of the following. a) sin 2θ 23. sin θ = b) cos 2θ 12 , θ lies in quadrant II. 13 c) tan 2θ 24. cos θ = 40 , θ lies in quadrant IV. 41 For numbers 25 – 27, write each expression as the sine, cosine, or tangent of a double angle. Then find the exact value of the expression. 2 tan 25. 2 sin 22.5° cos 22.5° 2 2 26. cos 105° – sin 105° 27. π 8 1 − tan 2 Half-Angle Formulas For numbers 28 – 30, use a half-angle formula to find the exact value of each expression. 28. sin 15° 29. cos 157.5° 30. tan 3π 8 π 8 31. Use tan = α a) sin α 2 8 , 180 < α < 270 to find the exact value of each of the following 15 b) cos α 2 c) tan α 2
© Copyright 2026 Paperzz