Day 1 Exponential Notation

Name ___________________________________
Unit 1 Exponential Notation and Properties of Integer Exponents
Day 1 Exponential Notation
Date _________
When we add 5 copies of 3, what are two ways of abbreviating this mathematically?
When we multiply the same number, 3, with itself 5 times, how can we abbreviate this
mathematically?
Student Outcomes
ο‚· I can know what it means for a number to be raised to a power and how to represent the
repeated multiplication symbolically.
_______________
4
3x
__________________
__________________
________________
Base
Coefficient
Exponent
Term
Monomial
Name ___________________________________
Unit 1 Exponential Notation and Properties of Integer Exponents
Day 1 Exponential Notation
9 4
9
56 means 5 × 5 × 5 × 5 × 5 × 5 and (7) means
9
9
Date _________
9
× 7 × 7 × 7.
7
You have seen this kind of notation before, it is called exponential notation. In general, for any
number π‘₯ and any positive integer n,
(π‘₯ βˆ™ π‘₯ β‹― π‘₯)
π‘₯𝑛 = ⏟
𝑛 π‘‘π‘–π‘šπ‘’π‘ 
The number xn is called x raised to the n-th power, n is the exponent of x in xn and x is the base of xn.
Use what you know about exponential notation to fill in the blank.
1) 5 × 5 × 5 × 5 × 5 × 5 =
_______
4 3
3) (βˆ’ 11) = ___________________
9
9
9
9
2) 7 × 7 × 7 × 7 =
_______
4) (-2)6 = _______________________
5) 3.84 = ________________________
4
( 7 × β‹― × 7)
6) 7𝑛 = ⏟
23
4
4
7) (5) = (⏟5 × β‹― × 5)
________
_________
8) (βˆ’2.3)176 = ((
⏟ βˆ’2.3) × β‹― × (βˆ’2.3))
_______________
9) ⏟
4 × β‹―× 4 =
7 π‘‘π‘–π‘šπ‘’π‘ 
_______
7
7
10) ⏟
× β‹―× 2 =
2
21 π‘‘π‘–π‘šπ‘’π‘ 
_______
Name ___________________________________
Unit 1 Exponential Notation and Properties of Integer Exponents
Day 1 Exponential Notation
11) ⏟
3.6 × β‹― × 3.6 = 3.647
Date _________
(βˆ’13) × β‹― × (βˆ’13) = _______
12) ⏟
6 π‘‘π‘–π‘šπ‘’π‘ 
π‘‘π‘–π‘šπ‘’π‘ 
(βˆ’11.63) × β‹― × (βˆ’11.63) = _____
13) ⏟
34 π‘‘π‘–π‘šπ‘’π‘ 
1
1
14) (βˆ’
⏟ 14) × β‹― × (βˆ’ 14) = _____
10 π‘‘π‘–π‘šπ‘’π‘ 
15) ⏟
12 × β‹― × 12 = 1215
16) ⏟
π‘₯ βˆ™ π‘₯β‹―π‘₯ =
_____
185 π‘‘π‘–π‘šπ‘’π‘ 
π‘‘π‘–π‘šπ‘’π‘ 
17) (βˆ’5)
× β‹― × (βˆ’5) = ______
⏟
10 π‘‘π‘–π‘šπ‘’π‘ 
18) ⏟
π‘₯ βˆ™ π‘₯ β‹― π‘₯ = π‘₯𝑛
π‘‘π‘–π‘šπ‘’π‘ 
Will these products be positive or negative? How do you know?
(βˆ’1) × (βˆ’1) × β‹― × (βˆ’1) = (βˆ’1)12
19) ⏟
12 π‘‘π‘–π‘šπ‘’π‘ 
(βˆ’1) × (βˆ’1) × β‹― × (βˆ’1) = (βˆ’1)13
20) ⏟
13 π‘‘π‘–π‘šπ‘’π‘ 
(βˆ’5) × (βˆ’5) × β‹― × (βˆ’5) = (βˆ’5)95
21) ⏟
95 π‘‘π‘–π‘šπ‘’π‘ 
(βˆ’1.8) × (βˆ’1.8) × β‹― × (βˆ’1.8) = (βˆ’1.8)122
22) ⏟
122 π‘‘π‘–π‘šπ‘’π‘ 
Fill in the blanks about whether the number is positive or negative.
23) If n is a positive even number, then (-55)n is __________________________.
24) If n is a positive odd number, then (-72.4)n is __________________________.
25) Josie says that (βˆ’15)
× β‹― × (βˆ’15) = βˆ’156 . Is she correct? How do you know?
⏟
6 π‘‘π‘–π‘šπ‘’π‘ 
Rewrite each number in exponential notation using 3 as the base.
26) 27
27) 81
28) 243
Name ___________________________________
Unit 1 Exponential Notation and Properties of Integer Exponents
Day 1 Exponential Notation
Exit Ticket
1) Express the following in exponential notation:
(βˆ’13)
× β‹― × (βˆ’13)
⏟
35 π‘‘π‘–π‘šπ‘’π‘ 
Will the product be positive or negative? How do you know
2) Fill in the blank:
2
2
2 4
×β‹―× = ( )
⏟
3
3
3
_______π‘‘π‘–π‘šπ‘’π‘ 
Date _________