Name ___________________________________ Unit 1 Exponential Notation and Properties of Integer Exponents Day 1 Exponential Notation Date _________ When we add 5 copies of 3, what are two ways of abbreviating this mathematically? When we multiply the same number, 3, with itself 5 times, how can we abbreviate this mathematically? Student Outcomes ο· I can know what it means for a number to be raised to a power and how to represent the repeated multiplication symbolically. _______________ 4 3x __________________ __________________ ________________ Base Coefficient Exponent Term Monomial Name ___________________________________ Unit 1 Exponential Notation and Properties of Integer Exponents Day 1 Exponential Notation 9 4 9 56 means 5 × 5 × 5 × 5 × 5 × 5 and (7) means 9 9 Date _________ 9 × 7 × 7 × 7. 7 You have seen this kind of notation before, it is called exponential notation. In general, for any number π₯ and any positive integer n, (π₯ β π₯ β― π₯) π₯π = β π π‘ππππ The number xn is called x raised to the n-th power, n is the exponent of x in xn and x is the base of xn. Use what you know about exponential notation to fill in the blank. 1) 5 × 5 × 5 × 5 × 5 × 5 = _______ 4 3 3) (β 11) = ___________________ 9 9 9 9 2) 7 × 7 × 7 × 7 = _______ 4) (-2)6 = _______________________ 5) 3.84 = ________________________ 4 ( 7 × β― × 7) 6) 7π = β 23 4 4 7) (5) = (β5 × β― × 5) ________ _________ 8) (β2.3)176 = (( β β2.3) × β― × (β2.3)) _______________ 9) β 4 × β―× 4 = 7 π‘ππππ _______ 7 7 10) β × β―× 2 = 2 21 π‘ππππ _______ Name ___________________________________ Unit 1 Exponential Notation and Properties of Integer Exponents Day 1 Exponential Notation 11) β 3.6 × β― × 3.6 = 3.647 Date _________ (β13) × β― × (β13) = _______ 12) β 6 π‘ππππ π‘ππππ (β11.63) × β― × (β11.63) = _____ 13) β 34 π‘ππππ 1 1 14) (β β 14) × β― × (β 14) = _____ 10 π‘ππππ 15) β 12 × β― × 12 = 1215 16) β π₯ β π₯β―π₯ = _____ 185 π‘ππππ π‘ππππ 17) (β5) × β― × (β5) = ______ β 10 π‘ππππ 18) β π₯ β π₯ β― π₯ = π₯π π‘ππππ Will these products be positive or negative? How do you know? (β1) × (β1) × β― × (β1) = (β1)12 19) β 12 π‘ππππ (β1) × (β1) × β― × (β1) = (β1)13 20) β 13 π‘ππππ (β5) × (β5) × β― × (β5) = (β5)95 21) β 95 π‘ππππ (β1.8) × (β1.8) × β― × (β1.8) = (β1.8)122 22) β 122 π‘ππππ Fill in the blanks about whether the number is positive or negative. 23) If n is a positive even number, then (-55)n is __________________________. 24) If n is a positive odd number, then (-72.4)n is __________________________. 25) Josie says that (β15) × β― × (β15) = β156 . Is she correct? How do you know? β 6 π‘ππππ Rewrite each number in exponential notation using 3 as the base. 26) 27 27) 81 28) 243 Name ___________________________________ Unit 1 Exponential Notation and Properties of Integer Exponents Day 1 Exponential Notation Exit Ticket 1) Express the following in exponential notation: (β13) × β― × (β13) β 35 π‘ππππ Will the product be positive or negative? How do you know 2) Fill in the blank: 2 2 2 4 ×β―× = ( ) β 3 3 3 _______π‘ππππ Date _________
© Copyright 2026 Paperzz