2326 Solutions to Problem Sheet 21 Second Order Differential Equations I Question 1: Find the general (real solution of each of the following equations). (a) y 00 − 7y 0 + 10y = 0 y(x) = C1 e5x + C2 e2x (b) y 00 + 6y 0 + 10y = 0 y(x) = e3x (C1 cos 4x + C2 sin 4x) (c) y 00 + 25y = 0 y(x) = C1 cos 5x + C2 sin 5x (d) y 00 − 5y 0 − 14y = 0 y(x) = C1 e−2x + C2 e7x (e) y 00 − 4y = 0 y(x) = C1 e2x + C2 e−2x Question 2: Find the general (real solution of each of the following equations). (a) y 00 − 7y 0 + 10y = x3 e5x , (F) y(x) = C2 e5x + C1 e2x + 1 x(−8 + 12x − 12x2 + 9x3 )e5x 108 (b) y 00 + 6y 0 + 10y = cos 2x y(x) = C2 e−3x sin x + C1 e3x cos x + 1 1 1 sin 2x + cos 2x 15 30 Esther Vergara Diaz, [email protected], see also http://www.maths.tcd.ie/~evd 1 (c) y 00 + 25y = x sin x y(x) = C2 sin 5x + C1 cos 5x − 1 1 cos(x) + x sin x 288 24 (d) y 00 − 5y 0 − 14y = e−2x 1 y(x) = C2 e−2x + C1 e7x − xe−2x 9 (e) y 00 − 4y = 1 + x + x5 , (F) y(x) = C2 e−2x + C1 e2x − 1 17 5 1 − x − x3 − x 5 4 8 4 4 (f) y 00 − y 0 = x2 1 y(x) = −x2 − x3 + C1 ex − 2x + C2 3 (g) y 00 − 2y 0 + y = ex + e2x , (F) 1 y(x) = C2 ex + C1 ex x + ex x2 + e2x 2 (h) y 00 + y = ex sin 2x, (F) y(x) = C2 sin x + C1 cos x − 1 x e (sin 2x + 2 cos 2x) 10 Question 3: Find the solution to the following initial value problems. (a) y 00 − 7y 0 + 10y = x3 e5x , y(0) = 3, y 0 (0) = 0 160 5x 1 2x 2 3 5x y(x) = 403 81 e − 81 e + 108 x(−8 + 12x − 12x + 9x )e (b) y 00 + 6y 0 + 10y = cos 2x, y(0) = 0, y 0 (0) = 1, (F) 23 ∗ e−3x sin x − 1 e−3x cos x + 1 sin 2 ∗ x + 1 cos 2x y(x) = 30 30 15 30 2 Question 4: ‘Euler’s equidimensional equation’ is: x2 y 00 (x) + axy 0 (x) + by(x) = 0 where a, b are constants. If the independent variable is changed to z = ln x (for x > 0) show that y(z) satisfies an equation with constant coefficients. (F) Hence obtain the general solution of each of the following equations: (a) x2 y 00 + 3xy 0 + 10y = 0, (b) x2 y 00 + 5xy 0 + 4y = 0, (F) (c) x2 y 00 + 2xy 0 − 12y = 0. By the chain rule: y 0 (z) = y 0 (x)x0 (z) = y 0 (x)ez = xy 0 (x), y 00 (z) = y 00 (x)x0 (z)2 + y 0 (x)x00 (z) = y 00 (x)e2z + y 0 (x)ez = x2 y 00 (x) + xy 0 (x). Therefore x2 y 00 (x) + axy 0 (x) + by(x) = y 00 (z) + (a − 1)y 0 (z) + by(z) and the associated constant coefficient equation is: y 00 + (a − 1)y 0 + by = 0. 1 c1 cos(3 log x) + c2 sin(3 log x) x 1 (b) y = 2 (c1 + c2 log x) (c) y = c1 x3 + c2 x−4 . x (a) y = 3 Question 1. Extra Problems: Find the general (real) solution of each of the following equations. (a) y 000 − 6y 00 + 11y 0 − 6y = 0, (F) y(x) = C1 ex + C2 e3x + C3 e2x (b) y 000 + 4y 00 + 4y 0 = 0, y(x) = C1 + C2 e−2x + C3 e2x x (c) y (4) + 4y 000 + 6y 00 + 4y 0 + y = 0, y(x) = C1 e−x + C2 e−x x + C3 e−x x2 + C4 e−x x3 (d) y (4) − 16y = 0, y(x) = C1 e−2x + C2 e2∗x + C3 sin(2x) + C4 cos(2x) (e) y (6) + 8y (4) + 16y 00 = 0, (F) y(x) = C1 + C2 x + C3 sin(2x) + C4 cos(2x) + C5 sin(2x)x + C6 cos(2x)x (f) y (6) + 4y (4) + 4y 00 = 0, √ √ √ √ y(x) = C1 +C2 x+C3 sin( 2x)+C4 cos( 2x)+C5 sin( 2x)x+C6 cos( 2x)x (g) y (4) + 4y 000 + 8y 00 + 8y 0 + 4y = 0, y(x) = C1 e−x sin(x) + C2 e−x cos(x) + C3 ∗ e−x sin(x)x + C4 e−x cos(x)x (h) y (4) + 16y = 0 (F) √ y(x) = −C1 e− 2x √ √ √ √ √ √ √ sin( 2x)−C2 e 2x sin( 2x)+C3 e− 2x cos( 2x)+C4 e 2x cos( 2x) Question 2. Extra Problems: Find the general (real) solution of each of the following equations. (a) y 000 − y 0 = ex + e−x , y(x) = ex C2 − C1 e−x + 21 xe−x + 12 e−x + C3 4 (b) y 000 + 3y 00 + 3y 0 + y = xe−x , (F) 1 x4 ex + C e−x + C e−x x + C e−x x2 y(x) = 24 1 2 3 (c) y 000 − y = ex . 1 y(x) = − 21 e−x + C1 ex + C2 e− 2 x cos 5 √ √ 3 x + C e−12x sin 3 3 2 2 x
© Copyright 2026 Paperzz