Math 227 Extra Practice Problems for Test #2 B) Find the domain and range and describe the level curves for the function f(x,y). 1) f(x, y) = 9x + 8y 2) f(x, y) = 1 6x2 + 9y2 3) f(x, y) = ln (5x + 3y) 4) f(x, y) = 36 - x2 - y2 5) f(x, y) = C) 5x2 y Match the surface show below to the graph of its level curves. 6) D) A) 1 7) C) D) A) 8) B) A) 2 11) Find an equation for the level surface of the function f(x, y, z) = x + ey+z that passes B) through the point 1, ln(5), ln(8) . Find the limit. C) 12) 4x2 + 4y2 + 2 lim (x, y) → (0, 0) 4x2 - 4y2 + 1 13) lim (x, y) → (0, 1) 14) 2 3 lim - (x, y) → (5, 2) x y 15) lim x ln y (x, y) → (4, 3) 16) lim -5xz - 2xy P → (1, - 1, 0) x2 + y2 - z 2 17) lim ln z x2 + y2 P → (5, 5, 1) y5 sin x x D) At what points is the given function continuous? 18) f(x, y) = ex+y 19) f(x, y) = xy x + y 20) f(x, y) = x - y 2 2x + x - 6 21) f(x, y, z) = yz cos Solve the problem. 9) Find an equation for the level curve of the function f(x, y) = 64 - x2 - y2 that passes through the point 1 x Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). 3y 22) f(x, y) = 3x2 + 3y2 3, 2 . 10) Find an equation for the level curve of the function f(x, y) = x2 + y2 that passes through 23) f(x, y) = the point 3, 4 . 3 x3 + y6 x3 24) f(x, y) = 2 40) f(x, y) = xy2 + yex + 5 xy x2 + y2 41) f(x, y) = Find all the first order partial derivatives for the following function. 25) f(x, y) = 2x - 2y2 - 7 Use the limit definition of the partial derivative to compute the indicated partial derivative of the function at the specified point. ∂f 42) Find at the point (4, 8): f(x, y) = 7x2 + 4xy + ∂x 2 26) f(x, y) = (8x5 y2 + 4) 27) f(x, y) = 1 x2 + y2 5y2 43) Find y3 28) f(x, y) = ln x5 29) f(x, y) = 30) f(x, y) = x x + y ∂f at the point (-3, 7): f(x, y) = 4 - 10xy + ∂y 2xy2 e-x x2 + y2 44) Find ∂f at the point (-9, -5, 10): f(x, y, z) = 4 ∂y x2 y + 6y2 + 3z x x + y Solve the problem. 45) Evaluate 31) f(x, y) = x3 + 6x2 y + 9xy3 y) = x2 - y2 + 10x; x = cost, y = sin t. 32) f(x, y, z) = x2 y + y2 z + xz 2 46) Evaluate 33) f(x, y, z) = ln (xy)z z) = 47) Evaluate 2 2 2 35) f(x,y,z) = xe(x + y + z ) 3 dw at t = π for the function w(x, y, 2 dt xy ; x = sin t, y = cost, z = t2 . z 34) f(x ,y, z) = (sin xy)(cos yz 2 ) 36) f(x, y, z) = dw 1 at t = π for the function w(x, dt 2 dw at t = 8 for the function w(x, y) = dt ey - ln x; x = t2 , y = ln t. cos y xz 2 48) Evaluate dw at t = 2 for the function w(x, y, z) dt 2 1 = exyz ; x = t, y = t, z = . t Find all the second order partial derivatives of the given function. 37) f(x, y) = x2 + y - ex+y 49) Evaluate ∂w at (u,v) = (1, 4) for the function ∂u w(x, y) = xy - y2 ; x = u - v, y = uv. 38) f(x, y) = cos xy2 39) f(x, y) = x ln (y - x) 4 50) Evaluate ∂w at (u, v) = (1, 5) for the function ∂v 60) Find - 2yz 2 - 7ez = 0. w(x, y) = xy2 - ln x; x = eu+v, y = uv. 51) Evaluate ∂w at (u, v) = (1, 5) for the function ∂u 61) Find w(x, y, z) = xz + yz - z 2 ; x = uv, y = uv, z = u. 52) Evaluate yz ∂z at the point (6, 1, -1) for ln x ∂y 2 exy+z = 0. ∂u at (x, y, z) = (5, 4, 5) for the ∂x 62) Find function u(p, q, r) = p2 - q2 - r; p = xy, q = y2 , r = xz. π 2 ∂x at the point 1, , 7 for ex cos yz = 28 ∂y 0. Provide an appropriate answer. ∂w 63) Find when r = -4 and s = 1 if w(x, y, z) = ∂r ∂u 53) Evaluate at (x, y, z) = (5, 4, 5) for the ∂z function u(p, q, r) = p2 q2 - r; p = y - z, q = x + z, r = x + y. 54) Evaluate ∂y at the point (4, 6, 4) for -6x2 + 4 ln xz ∂x xz + y^2, x = 3r + 1, y = r + s, and z = r - s. 64) Find ∂u at (x, y, z) = (2, 2, 0) for the ∂y ∂w when u = -3 and v = 4 if w(x, y, z) = ∂u u xy2 , x = , y = u + v, and z = u · v. v z 1 function u(p, q, r) = epq cos(r); p = , x q = x2 ln y, r = z. 65) Find 11π ∂z when u = 0 and v = if z(x, y) = 2 ∂v sin x + cos y, x = u·v, and y = u + v. Use implicit differentiation to find the specified derivative at the given point. dy 55) Find at the point (1, 1) for 3x2 + 2y3 + 2xy dx Compute the gradient of the function at the given point. 66) f(x, y) = -6x + 3y, (-6, -3) = 0. 67) f(x, y) = 2x2 - 8y, (4, 8) dy 3 56) Find at the point (-1, 1) for 6x - + 7x2 y2 dx y 68) f(x, y) = ln(-8x - 9y), (8, -5) = 0. 57) Find -3x 69) f(x, y) = tan-1 , (-2, 9) y dy at the point (2, 1) for ln x + xy2 + ln y dx = 0. 70) f(x, y, z) = 3x + 10y + 2z, (-10, -7, -5) 58) Find dy at the point (1, 0) for cos xy + yex = 0. dx 59) Find dy at the point (1, -1) for -5xy2 + 4x2 y dx 71) f(x, y, z) = ln(x2 + 3y2 + 2z 2 ), (3, 3, 3) Find the derivative of the function at the given point in the direction of A. 72) f(x, y) = 10x + 6y, (3, -5), A = 4i - 3j - 2x = 0. 5 73) f(x, y) = 6x2 - 3y, (-6, 7), A = 3i - 4j 85) Find the derivative of the function x y z f(x, y, z) = + + at the point (8, -8, 8) in y z x 74) f(x, y) = ln(-10x - 9y), (4, -5), A = 6i + 8j the direction in which the function increases most rapidly. -9x , (4, -7), A = 12i - 5j 75) f(x, y) = tan-1 y 86) Find the equation for the tangent plane to the surface -6x - 7y - 8z = -15 at the point (1, -1, 2). 76) f(x, y, z) = -3x + 6y - 9z, (-9, 10, -2), A = 3i - 6j - 2k 87) Find parametric equations for the normal line to the surface -10x - 7y + 7z = 11 at the point (1, -1, 2). 5x 77) f(x, y, z) = tan-1 , (-8, 0, 0), 8y - 8z A = 12i - 3j + 4k 88) Find the equation for the tangent plane to the surface z = -8x2 + 3y2 at the point (2, 1, -29). 78) f(x, y, z) = ln(x2 - 5y2 - 2z 2 ), (-5, -5, -5), A = 3i + 4j 89) Find parametric equations for the normal line to the surface z = 4x2 + 2y2 at the point Answer the question. 79) Find the direction in which the function is increasing or decreasing most rapidly at the point Po. (2, 1, 18). 90) Find the equation for the tangent plane to the surface x2 - 8xyz + y2 = 6z 2 at the point f(x, y) = xy2 - yx2 , Po(-2, 1) (1, 1, 1). 80) Find the direction in which the function is increasing or decreasing most rapidly at the point Po. 91) Find parametric equations for the normal line to the surface x2 + 7xyz + y2 = 9z 2 at the point (1, 1, 1). f(x, y, z) = xy - ln(z), Po(2, -2, 2) Find all local extreme values of the given function and identify each as a local maximum, local minimum, or saddle point. 92) f(x, y) = x2 + 2x + y2 + 8y + 9 Solve the problem. 81) Find the derivative of the function f(x, y) = x2 + xy + y2 at the point (8, 9) in the direction in which the function increases most rapidly. 93) f(x, y) = 2xy - 6x + 6y 82) Find the derivative of the function f(x, y) = x2 + xy + y2 at the point (-6, -5) in 94) f(x, y) = -2xy(x + y) - 9 the direction in which the function decreases most rapidly. 95) f(x, y) = x2 + 10xy + y2 83) Find the derivative of the function f(x, y) = exy at the point (0, 7) in the direction in which the function increases most rapidly. 96) f(x, y) = x3 + y3 - 300x - 75y - 2 97) f(x, y) = 4 - x4 y4 84) Find the derivative of the function f(x, y, z) = ln(xy + yz + zx) at the point (-8, -16, -24) in the direction in which the function increases most rapidly. 98) f(x, y) = 5x2 y + 3xy2 6 99) f(x, y) = 100x2 + 40xy + 16y2 2 2 100) f(x, y) = (x2 - 81) + (y2 - 9) 2 2 101) f(x, y) = (x2 - 16) - (y2 - 4) Find the extreme values of the function subject to the given constraint. 102) f(x, y) = 9x2 + 3y2 , x2 + y2 = 1 103) f(x, y) = xy, x2 + y2 = 200 104) f(x, y) = x2 + y2 , xy2 = 128 105) f(x, y) = y2 - x2 , x2 + y2 = 25 106) f(x, y) = 4x + 6y, x2 + y2 = 13 107) f(x, y) = x2 y, x2 + 2y2 = 6 108) f(x, y) = 3x - y + 1, 3x2 + y2 = 9 109) f(x, y) = x2 + 4y3 , x2 + 2y2 = 2 110) f(x, y) = xy, 9x2 + 4y2 = 36 111) f(x, y) = 12x + 3y, xy = 4, x > 0, y > 0 112) f(x, y, z) = x3 + y3 + z 3 , x2 + y2 + z 2 = 4 113) f(x, y, z) = x + 2y - 2z, x2 + y2 + z 2 = 9 114) f(x, y, z) = x2 + y2 + z 2 , x + 2y + 3z = 6 7 Answer Key Testname: 227PRACTICEPROBT2 1) Domain: all points in the x-y plane; range: all real numbers; level curves: lines 9x + 8y = c 2) Domain: all points in the x-y plane except (0, 0); range: real numbers > 0; level curves: ellipses 6x2 + 9y2 = c 3) Domain: all points in the x-y plane satisfying 5x + 3y > 0; range: all real numbers; level curves: lines 5x + 3y = c 4) Domain: all points in the x-y plane satisfying x2 + y2 ≤ 36; range: real numbers 0 ≤ z ≤ 6; level curves: circles with centers at (0, 0) and radii r, 0 < r ≤ 6 Domain: all points in the x-y plane except y = 0; range: all real numbers; level curves: parabolas y = cx2 D A B 9) x2 + y2 = 5 10) x2 + y2 = 25 5) 6) 7) 8) 11) x + ey+z = 41 12) 2 13) 1 11 14) - 10 15) ln 81 16) 1 17) ln 5 2 18) All (x, y) 19) All (x, y) such that x ≠ - y 3 20) All (x, y) such that x ≠ and x ≠ -2 2 21) All (x, y, z) such that x ≠ 0 22) Answers will vary. One possibility is Path 1: x = t, y = t ; Path 2: x = 0, y = t 23) Answers will vary. One possibility is Path 1: x = t, y = t ; Path 2: x = t, y = t3/2 24) Answers will vary. One possibility is Path 1: x = t, y = t ; Path 2: x = 0, y = t ∂f ∂f = 2; = -4y 25) ∂y ∂x 26) ∂f ∂f = 80x4 y2 (8x5 y2 + 4); = 32x5 y1 (8x5 y2 + 4) ∂y ∂x 27) ∂f = - ∂x 28) 5 ∂f 3 ∂f = - ; = x ∂y y ∂x 29) e-x(x2 + y2 + 2x) ∂f 2ye-x ∂f = - ; = - 2 2 ∂x ∂y (x2 + y2 ) (x2 + y2 ) 30) y x ∂f ∂f = ; = - ∂x (x + y)2 ∂y (x + y)2 31) ∂f ∂f = 3x2 + 12xy + 9y3 ; = 6x2 + 27xy2 ∂x ∂y 32) ∂f ∂f ∂f = 2xy + z 2 ; = x2 + 2yz; = y2 + 2xz ∂y ∂z ∂x x 3/2 (x2 + y2 ) ; ∂f = - ∂y y 3/2 (x2 + y2 ) 8 Answer Key Testname: 227PRACTICEPROBT2 33) z ∂f z ∂f ∂f = ; = ; = ln xy ∂x x ∂y y ∂z 34) ∂f ∂f ∂f = (y cos xy)(cosyz 2 ); = (x cos xy)(cos yz 2 ) - (z 2 sin xy)(sin yz 2 ); = -2(yz sin xy)(sin yz 2 ) ∂y ∂z ∂x 35) 2 2 2 ∂f 2 2 2 ∂f 2 2 2 ∂f = (1 + 2x2 ) e(x + y + z ); = 2xye(x + y + z ); = 2xze(x + y + z ) ∂y ∂z ∂x 36) cosy ∂f siny ∂f 2 cos y ∂f = - ; = - ; = - 2 2 2 ∂y ∂z ∂x x z xz xz 3 37) ∂2 f ∂2 f ∂2 f ∂2 f = 2 - ex+y; = - ex+y; = = -ex+y ∂y∂x ∂x∂y ∂x2 ∂y2 38) ∂2 f ∂2 f ∂2 f ∂2 f = -y4 cos xy2 ; = - 2x[2xy2 cos (xy2 ) + sin(xy2 )]; = = - 2y[xy2 cos (xy2 ) + sin(xy2 )]; ∂y∂x ∂x∂y ∂y2 ∂x2 39) x - 2y ∂2 f x y ∂2 f ∂2 f ∂2 f = ; = - ; = = 2 2 2 2 ∂y∂x ∂x∂y (y - x) ∂y (y - x) (y - x)2 ∂x 40) 2 2 ∂2 f ∂2 f ∂2 f ∂2 f = 2yex (1 + 2x2 ); = 2x; = = 2y + 2xex ∂y∂x ∂x∂y ∂x2 ∂y2 41) 2y 2x x - y ∂2 f ∂2 f ∂2 f ∂2 f = - ; = ; = = 3 3 2 2 ∂y∂x ∂x∂y (x + y) ∂y (x + y) (x + y)3 ∂x 42) lim 7(4 + h)2 + 32(4 + h) + 320 - 560 ∂f = h ∂x h → 0 = = 43) lim 102h + h 2 lim = 102 + h = 102 h → 0 h h → 0 lim 4 + 30(7 + h) - 6(7 + h)2 + 500 ∂f = h ∂y h → 0 = 44) lim 7(16 + 8h + h 2 ) + 32h - 112 h → 0 h lim -54h - 6h 2 lim = -54 - 6h = -54 h h → 0 h → 0 lim 324(-5 + h) + 6(-5 + h)2 + 30 + 1440 ∂f = h ∂y h → 0 = lim 216h + 6h 2 lim = 216 + 6h = 216 h → 0 h h → 0 45) -10 4 1 46) - 9 π2 47) 3 4 48) 0 49) -40 50) 35e6 - 1 51) 18 9 Answer Key Testname: 227PRACTICEPROBT2 52) 155 53) 220 54) 4 55) - 1 8 56) 17 57) - 3 10 58) 0 15 59) 14 60) - 47 32 61) 1 - 6e7 1 - 2e7 62) 7 2 63) ∂w = -32 ∂r 64) ∂w 1 = 8 ∂u 65) ∂z = 1 ∂v 66) -6i + 3j 67) 16i - 8j 9 8 68) i + j 19 19 69) - 2 3 i - j 39 13 70) 3i + 10j + 2k 1 2 1 71) i + j + k 3 9 9 72) 22 5 73) - 204 5 74) - 66 25 75) 576 17485 76) - 27 7 77) - 7 65 10 Answer Key Testname: 227PRACTICEPROBT2 78) - 17 150 79) 5 -8 i + j 89 89 80) 1 (-4i + 4j - k) 33 81) 1301 82) - 545 83) 7 5 2 84) 88 85) 1 4 2 86) -6x - 7y - 8z = -15 87) x = -10t + 1, y = -7t - 1, z = 7t + 2 88) -32x + 6y - z = -29 89) x = 16t + 2, y = 4t + 1, z = -t + 18 90) 6x + 6y - 4z = 8 91) x = 9t + 1, y = 9t + 1, z = -11t + 1 92) f(-1, -4) = -8, local minimum 93) f - 3, 3 = 18, saddle point 94) f(0, 0) = -9, saddle point 95) f(0, 0) = 0, saddle point 96) f(10, 5) = -2252. local minimum; f(10, -5) = -1752, saddle point; f(-10, 5) = 1748, saddle point; f(-10, -5) = 2248, local maximum 97) f(0, 0) = 4, local maximum 98) f(0, 0) = 0, saddle point 99) f(0, 0) = 0, local minimum 100) f(0, 0) = 6642, local maximum; f(0, 3) = 6561, saddle point; f(0, -3) = 6561, saddle point; f(9, 0) = 6642, saddle point; f(9, 3) = 0, local minimum; f(9, -3) = 0, local minimum; f(-9, 0) = 81, saddle point; f(-9, 3) = 0, local minimum; f(-9, -3) = 0, local minimum 101) f(0, 0) = 240, saddle point; f(0, 2) = 256, local maximum; f(0, -2) = 256, local maximum; f(4, 0) = -16, local minimum; f(4, 2) = 0, saddle point; f(4, -2) = 0, saddle point; f(-4, 0) = -16, local minimum; f(-4, 2) = 0, saddle point; f(-4, -2) = 0, saddle point 102) Maximum: 3 at (0, ±1); minimum: 9 at (±1, 0) 103) Maximum: 100 at (10, 10) and (-10, -10); minimum: -100 at (10, -10) and (-10, 10) 104) Maximum: none; minimum: 48 at (4, ±4 2) 105) Maximum: 25 at (0, ±5); minimum: -25 at (±5, 0) 106) Maximum: 26 at (2, 3); minimum: -26 at (-2, -3) 107) Maximum: 4 at (±2, 1); minimum: -4 at (±2, -1) 3 3 3 3 108) Maximum: 7 at , - ; minimum: -5 at - , 2 2 2 2 109) Maximum: 4 at (0, 1); minimum: -4 at (0, -1) 3 3 110) Maximum: 3 at 2, 2 and - 2, - 2 ; minimum: -3 at 2 2 2, - 3 2 2 and - 2, 111) Maximum: none; minimum: 24 at (1, 4) 112) Maximum: 8 at (2, 0, 0), (0, 2, 0), (0, 0, 2); minimum: -8 at (-2, 0, 0), (0, -2, 0), (0, 0, -2) 113) Maximum: 9 at (1, 2, -2); minimum: -9 at (-1, -2, 2) 11 3 2 2 Answer Key Testname: 227PRACTICEPROBT2 114) Maximum: none; minimum: 18 3 6 9 at , , 7 7 7 7 12
© Copyright 2026 Paperzz