08-035_06_AFSM_C06_001-034.qxd 7/23/08 11:14 AM Page 23 6.7 Rates of Change in Trigonometric Functions, pp. 369–373 1. a) The average rate of change is zero in the intervals of 0 , x , p, p , x , 2p. b) The average rate of change is negative in the p p 3p 3p 5p intervals of , x , , , x , 3p. 2 2 2 2. a) Two points where the instantaneous rate of p 5p change is zero are x 5 , x 5 . 4 4 b) Two points where the instantaneous rate of p 5p change is a negative value are x 5 , x 5 . 2 2 c) Two points where the instantaneous rate of change is a positive value are x 5 0, x 5 2p. 3. Average rate of change for the interval 2 # x # 5: 020 0 ` 5 ` ` 50 ` 522 3 4. 4 3 2 p 3 p 2 p 6 2 3 20.27 5 0.5236 8 20.5157 d) p 5p #x# 2 4 Average rate of change 5 20.932 2 2.73 5p p 2 4 2 23.662 2.356 8 21.554 5 5. 6 4 2 y x 0 –2 –4 –6 p 2 p 3p 2 2p p 3p p 5p intervals of 0 , x , , p , x , . 2 2 b) The average rate of change is negative in the 0 p –1 2p intervals of 0 , x , , p , x , . 4 4 c) The average rate of change is positive in the 5p 4 –2 intervals of p 2 Average rate of change 5 p 2 20 0.73 1.57 8 0.465 5 p p #x# 6 2 Average rate of change 5 2.73 2 2.73 p p 2 6 2 0 1.047 50 5 Advanced Functions Solutions Manual p p 5p 3p ,x, , ,x, . 4 2 4 2 y 6. 2.73 2 2 b) 2.73 2 3 Average rate of change 5 p p 2 a) The average rate of change is zero in the 1 a) 0 # x # p p #x# 3 2 5p intervals of 2 2 , x , 2 , 2 , x , 2 . c) The average rate of change is positive in the p c) 8 6 4 2 0 –2 –4 –6 x p 2 p 3p 2 2p a) Two points where the instantaneous rate of change is zero are x 5 14, x 5 34. b) Two points where the instantaneous rate of change is a negative value are x 5 0, x 5 1. c) Two points where the instantaneous rate of change is a positive value are x 5 12, x 5 32. 6-23 08-035_06_AFSM_C06_001-034.qxd 7/22/08 7. a) y 5 6 cos (3x) 1 2 for 4:11 PM Page 24 p #x#p 4 p For x 5 , 4 6.25 2 6.25 p 2p 4 0 22.3562 50 8. The tip is at its minimum height at t 5 0. Normally the sine function is 0 at 0, so the function in this case is translated to the right by 14 of its period. The propeller makes 200 revolutions per 1 second, so the period is 200 . The amplitude of the function is the length of the propeller, which is positive. Assume that it is 1 m for this exercise. Then the function that describes the height of the 1 tip of the propeller is h(t) 5 sin (400p (t 2 800 )). The graph of this function is shown below. 5 p y 5 6 cos a3a bb 1 2 4 y 8 22.2426 For x 5 p, y 5 6 cos (3(p)) 1 2 y 5 24 Average rate of change 5 22.2426 2 (24) p 2p 4 1.7574 22.3562 8 20.7459 p 1 b) y 5 25 sin a xb 2 9 for # x # p 2 4 p For x 5 , 4 1 p y 5 25 sin a a bb 2 9 2 4 y 8 210.9134 For x 5 p, 1 y 5 25 sin a pb 2 9 2 y 5 214 210.9134 2 (214) Average rate of change 5 p 2p 5 4 3.0866 5 22.3562 8 21.310 p 1 c) y 5 cos (8x) 1 6 for # x # p 4 4 p For x 5 , 4 1 p y 5 cos a8a bb 1 6 4 4 y 5 6.25 For x 5 p, 1 y 5 cos (8p) 1 6 4 y 5 6.25 6-24 Average rate of change 5 3.2 2.4 1.6 0.8 0 –0.8 –1.8 –2.4 –3.2 h(t) t 0.001 0.002 0.003 0.004 1 8 0.0033 300 From the graph, it is clear that the instantaneous 1 rate of change at t 5 300 is negative. 9. a) The axis is at 20.2. So, the equation of the axis is y 5 20.2 and the amplitude is 4.5. 2p p k5 5 24 12 p R(t) 5 4.5 cos a tb 1 20.2 12 b) fastest: t 5 6 months, t 5 18 months, t 5 30 months, t 5 42 months; slowest: t 5 0 months, t 5 12 months, t 5 24 months, t 5 36 months, t 5 48 months c) For 5 # t # 7 t55 p R(5) 5 4.5 cos a (5)b 1 20.2 12 R(5) 8 21.364 t57 t5 Chapter 6: Trigonometric Functions R(7) 5 4.5 cos a 7/22/08 4:11 PM Page 25 p (7)b 1 20.2 12 R(7) 8 19.035 Use the points (5, 21.364) and (7, 19.035). 19.035 2 21.364 22.329 8 8 21.164 725 2 8 1.164 mice per owl> s 10. a) y 4 3 2 1 x 0 4 8 12 16 20 24 –1 The instantaneous rate of change appears to be at its greatest at 12 hours. i) For 11 # t # 13 t 5 11 p y 5 0.5 sin a (11)b 1 4 6 y 5 3.75 t 5 13 p y 5 0.5 sin a (13)b 1 4 6 y 5 4.25 Use the points (11, 3.75) and (13, 4.25). 4.25 2 3.75 0.5 5 5 0.25 t> h 13 2 11 2 ii) For 11.5 # t # 12.5 t 5 11.5 p y 5 0.5 sin a (11.5)b 1 4 6 y 8 3.8706 t 5 12.5 p y 5 0.5 sin a (12.5)b 1 4 6 y 8 4.1294 Use the points (11.5, 3.8706) and (12.5, 4.1294). 4.1294 2 3.8706 8 0.2588 t> h 12.5 2 11.5 iii) For 11.75 # t # 12.25 t 5 11.75 p y 5 0.5 sin a (11.75)b 1 4 6 y 8 3.9347 Advanced Functions Solutions Manual t 5 12.25 p y 5 0.5 sin a (12.25)b 1 4 6 y 8 4.0653 Use the points (11.75, 3.9347 and (12.25, 4.0653). 0.1306 4.0653 2 3.9347 5 5 0.2612 t> h 12.25 2 11.75 0.5 b) The estimate calculated in part iii) is the most accurate. The smaller the interval, the more accurate the estimate. y 11. a) 8 Distance from rest position (cm) 08-035_06_AFSM_C06_001-034.qxd 4 0 –4 x 0.2 0.4 0.6 0.8 1.0 –8 Time (s) b) half of one cycle 27.2 2 7.2 c) 5 214.4 cm> s 120 d) The bob is moving the fastest when it passes through its rest position. You can tell because the images of the balls are farthest apart at this point. e) The pendulum’s rest position is halfway between the maximum and minimum values on the graph. Therefore, at this point, the pendulum’s instantaneous rate of change is at its maximum. p 12. h(t) 5 sin a tb 5 a) For 0 # t # 5, p h(0) 5 sin a (0)b 5 0 5 p h(5) 5 sin a (5)b 5 0 5 020 50 520 b) For 5.5 # t # 6.5 t 5 5.5 p h(5.5) 5 sin a (5.5)b 5 h(5.5) 5 20.309 p h(6.5) 5 sin a (6.5)b 5 h(6.5) 8 20.809 6-25 08-035_06_AFSM_C06_001-034.qxd 7/23/08 11:14 AM Page 26 Use the points (5.5, 20.309) and (6.5, 20.809). 20.809 2 (20.309) 20.5 5 5 20.5 m> s 6.5 2 5.5 1 13. a) u 0.20 0.15 0.10 0.05 t 0 1 2 3 4 5 6 7 8 –0.05 –0.10 –0.15 –0.20 b) When t 5 0, u 5 0. When t 5 1, u 5 0.2. The average rate of change is 0.2 radians> s. c) Answers may vary. For example, from the graph, it appears that the instantaneous rate of at t 5 1.5 is about 2 23 radians> s. d) The pendulum speed seems to be the greatest for t 5 0, 2, 4, 6, and 8. 14. Answers may vary. For example, for x 5 0, the instantaneous rate of change of f(x) 5 sin x is approximately 0.9003, while the instantaneous rate of change of f(x) 5 3 sin x is approximately 2.7009. p 4 (The interval 2 , x , p 4 was used.) Therefore, the instantaneous rate of change of f(x) 5 3 sin x is at its maximum three times more than the instantaneous rate of change of f(x) 5 sin x. However, there are points where the instantaneous rate of change is the p same for the two functions. For example, at x 5 , it 2 is 0 for both functions. 15. a) By examining the graph of f(x) 5 sin x, it appears that the instantaneous rate of change at the given values of x are 21, 0, 1, 0, and 21. b) y 4 2 0 – 3p –p– p 2 2 –4 –6 x p p 3p 2 2 The function is f (x) 5 cos x. Based on this information, the derivative of f (x) 5 sin x is cos x. 6-26 16. a) By examining the graph of f (x) 5 cos x, it appears that the instantaneous rate of change at the given values of x are 0, 1, 0, 21, and 0. b) y 4 2 0 – 3p –p– p 2 2 –4 –6 x p p 3p 2 2 The function is f (x) 5 2sin x. Based on this information, the derivative of f (x) 5 cos x is 2sin x. Chapter Review, pp. 376–377 1. Circumference 5 2pr 5 2p(16) 5 32p 33 x 5 32p 2p (32p)(x) 5 (33)(2p) (32p)(x) 5 66p 66p x5 32p 33 x5 16 2. Circumference 5 2pr 5 2p(75) 5 150p 14p x 5 15 150p 2p (2p)(x) 5 (150p)a 14p b 15 (2p)(x) 5 140p2 x 5 70p 3. a) 20° 5 20° 3 a p radians p b 5 radians 180° 9 p radians 25p b) 250° 5 250° 3 a b5 radians 180° 18 p radians 8p c) 160° 5 160° 3 a b5 radians 180° 9 p radians 7p d) 420° 5 420° 3 a b5 radians 180° 3 p 4. a) radians; 4 p 180 ° radians 3 a b 5 45° 4 p radians Chapter 6: Trigonometric Functions
© Copyright 2026 Paperzz